Experimental General Methods. Anhydrous hexanes, triethylsilane, dimethyl malonate, 3,5-bis(trifluoromethyl)benzonitrile (Aldrich), H¹³C≡¹³C¹³CH₂OH, and (¹³CO₂Et)₂¹³CH₂ (Cambridge Isotope Laboratories), and dimethyl diallylmalonate (Lancaster) were used as received. Dichloromethane and dichloroethane were distilled from CaH₂ prior to use. [(phen)Pd(Me)(NCAr)]+ [BAr₄]- [Ar = 3,5-C₆H₃(CF₃)₂],¹ (phen)Pd(Me)Cl,² NaBAr₄,³ and DSiEt₃⁴ were prepared according to known methods. Labelled dienes 1-2,6-d₂ and 1-3,3,5,5-d₄ have been previously synthesized in our laboratory.⁵ Elemental analysis was performed by Complete Analysis Laboratories, Inc. (Parsippany, NJ). Low temperature NMR were recorded at 500 MHz for ¹H and 125 MHz for ¹³C except where noted; room temperature NMR were recorded at 400 MHz for ¹H and 100 MHz for ¹³C. NMR Probe temperatures were measured using a methanol thermometer and were maintained to within ± 1 degree. Atom labeling schemes for phenanthroline, N≡CAr, and BAr₄- are shown in Figure S1. NMR Yields for the conversion of 3 to 2, 2 to 4, 4 to 5 and 5 to 6 were obtained employing a 10 s delay between pulses. Error limits for rate constants refer to the deviation of multiple runs. Figure S1. Atom labeling schemes for phenanthroline, N≡CAr, and BAr₄-. #### Labelled Dienes (13CO₂Et)₂13C(CH₂CH=CH₂)₂ (1a-13C₃). A suspension of (13CO₂Et)₂13CH₂ (150 μL, 1.0 mmol), allyl bromide (260 μL, 3.0 mmol) and NaH (140 mg, 6.0 mmol) in THF was stirred overnight at room temperature. Work up and chromatography (SiO₂; hexane–EtOAc = 24:1) gave 1a-13C₃ (126 mg, 52%) as a colorless oil. ¹H NMR (CDCl₃, 25 °C): δ 5.64 (dtdd, J = 1.4, 7.4, 10.6, 14.9 Hz, 2 H), 5.11 (dm, J = 1.2 Hz, 2 H), 5.08 (broad d, J = 2.0 Hz, 2 H), 4.17 (dq, J = 3.3, 7.2 Hz, 4 H), 2.63 (m, 4 H), 1.24 (d, J = 7.1 Hz, 6 H). ¹³C{¹H} NMR (CDCl₃, 25° C): δ 171.0 (d, J = 57.2 Hz), 132.5, 119.4, 61.4, 57.4 (t, J = 57.3 Hz), 36.9 (d, J = 34.0 Hz), 14.3. $(CO_2Me)_2C(^{13}CH_2^{13}CH_2^{13}CH_2^{13}CH_2)_2$ $(1^{-13}C_6)$. Labelled diene $1^{-13}C_6$ was synthesized in four steps from $H^{13}C\equiv^{13}C^{13}CH_2OH$ in 24% overall yield by the pathway depicted in Scheme S1. A solution of $H^{13}C\equiv^{13}C^{13}CH_2OH$ (250 mg, 4.2 mmol), $HSiEt_3$ (0.81 g, 7.0 mmol), $[Rh(COD)_2]^+$ BF_4^- (13 mg, 0.03 mmol), and PPh_3 (16 mg, 0.06 mmol) in acetone (7 mL) was stirred at room temperature for 40 min.⁶ The solvent was evaporated and the residue was chromatographed (SiO₂; hexanes–EtOAc = $50:1 \rightarrow 25:1$) to give $Et_3Si^{13}CH=^{13}CH^{13}CH_2OH$ (S1) (0.65 g, 88%) as a colorless oil. A solution of S1 (0.63 g, 3.6 mmol), methane sulfonylchloride (0.82 g, 7.2 mmol), and triethylamine (0.81 g, 8.0 mmol) in CH_2Cl_2 (15 mL) was warmed from 0 to 25 °C and stirred for 4 h Solvent was evaporated and the residue was diluted with ether and washed with water, 1 N HCl, saturated NaHCO₃, and brine, and dried (MgSO₄). Evaporation of ether gave $Et_3Si^{13}CH=^{13}CH_2OMs$ (S2) (0.79 g, 86%) as a pale yellow oil which was ~97% pure by GC and NMR analysis. Scheme S1 A suspension of S2 (0.78 g, 3.1 mmol), dimethyl malonate (0.17 g, 1.3 mmol), and NaH (60% in mineral oil; 0.21 g, 5.2 mmol) in THF (15 mL) was refluxed overnight. Water and ether were added, the layers were separated, and the organic fraction was washed with water, 1 N HCl, saturated NaHCO₃, and brine, and dried (MgSO₄). Chromatography (SiO₂; hexane–EtOAc = $80:1 \rightarrow 50:1$) of the residue gave (CO₂Me)₂C(13 CH₂ 13 CH= 13 CHSiEt₃)₂ (S3) (0.36 g, 62 %) as a pale yellow oil. A solution of S3 (0.35 g, 0.78 mmol) and CF₃CO₂H (1.0 mL, 13 mmol) in CH₂Cl₂ (3.2 mL) was stirred at room temperature for 24 h. The resulting solution was diluted with CH₂Cl₂, washed with saturated NaHCO₃, and dried (MgSO₄). Chromatography of the residue (SiO₂; hexane–EtOAc = $75:1 \rightarrow 50:1$) gave 1^{-13} C₆ (89 mg, 52%) as a colorless oil. For S1: ${}^{13}C\{{}^{1}H\}$ NMR (CDCl₃, 25 °C), labelled carbons only: δ 146.4 (dd, J = 42, 60 Hz), 126.0 (d, J = 60 Hz), 66.1 (d, J = 43 Hz). HRMS Calcd. (found) for ${}^{12}C_4{}^{13}C_3H_{15}OSi$ (M⁺ – ${}^{12}C_2H_5$): 146.0993 (146.0996). For S2: ${}^{13}C{}^{1}H}$ NMR (CDCl₃, 25 °C), labelled carbons only: δ 138.5 (dd, J = 45, 60 Hz), 134.0 (d, J = 60 Hz), 72.5 (d, J = 45 Hz). HRMS Calcd. (found) for ${}^{12}C_4{}^{13}C_3H_{17}O_3SSi$ (M⁺ – ${}^{12}C_2H_5$): 224.0768 (224.0764). 4 For S3: ${}^{13}C{}^{1}H}$ NMR (CDCl₃, 25 °C), labelled carbons only: δ 141.6 (dd, J = 41, 60 Hz), 132.4 (d, J = 60 Hz), 40.6 (d, J = 41 Hz). HRMS Calcd. (found) for ${}^{12}C_{15}{}^{13}C_{6}H_{39}O_{4}Si_{2}$ (M⁺ – ${}^{12}C_{2}H_{5}$): 417.2588 (417.2581). For 1-13C₆: ¹H NMR (CDCl₃, 25 °C): δ 5.62 (dm, J_{CH} = 156 Hz, 1 H), 5.08 (dm, J_{CH} = 160 Hz, 2 H), 3.71 (s, 6 H), 2.62 (dm, J_{CH} = 132 Hz, 4 H). ¹³C{¹H} NMR (CDCl₃, 25 °C), labelled carbons only: δ 132.5 (dd, J = 43, 69 Hz), 119.5 (d, J = 69 Hz), 37.2 (d, J = 43 Hz). HRMS Calcd. (found) for ¹²C₄¹³C₆H₁₃O₃ (M⁺ – O¹²CH₃): 187.1066 (187.1065). ### Palladium Complexes [(phen)Pd(SiEt₃)(NCAr)]⁺ [BAr₄]⁻ (2). HSiEt₃ (2.62 mg, 0.0225 mmol) was added via syringe to an NMR tube containing a solution of [(phen)Pd(Me)(NCAr)]⁺ [BAr₄]⁻ (3) at -78 °C. The tube was shaken briefly and placed in an NMR probe precooled to -81 °C. Reaction progress was determined by measuring disappearance of the Pd–CH₃ resonance of 2 (δ 1.26) relative to the para phenyl proton of the BAr₄⁻ counter ion (δ 7.76) in the ¹H NMR spectrum. After 20 min, 3 was completely consumed to form 2 in $101\pm10\%$ yield. Complex 2 was thermally sensitive and characterized in solution by ¹H NMR spectroscopy. ¹H NMR (CD₂Cl₂, -81 °C): δ 9.02 (d, J = 4.9 Hz, 1 H, $H_{\rm phen}$), 8.83 (d, J = 4.5 Hz, 1 H, $H_{\rm phen}$), 8.55 (d, J = 8.2 Hz, 1 H, $H_{\rm phen}$), 8.43 (d, J = 8.3 Hz, 1 H, $H_{\rm phen}$), 8.39 (s, 2 H, $H_{\rm o}$), 8.36 (s, 1 H, $H_{\rm p}$), 7.93 (m, 3 H, $H_{\rm phen}$), 7.78 (dd, J = 4.8, 8.0 Hz, 1 H, $H_{\rm b}$), 7.73 (s, 8 H, $H_{\rm o}$), 7.46 (s, 4 H, $H_{\rm p}$), 1.06 (t, J = 7.5 Hz, 9 H, SiCH₂CH₃), 0.97 (q, J = 7.5 Hz, 6 H, SiCH₂CH₃). {(phen)Pd[η^1 , η^2 -CH(CH₂SiEt₃)CH₂C(CO₂Me)₂CH₂CH=CH₂]}+ [BAr₄]- (4). Dimethyldiallyl malonate (4.7 μL, 0.023 mmol) was added via syringe to an NMR tube containing a solution of [(phen)Pd(SiEt₃)(NCAr)]+ [BAr₄]- (2) (0.023 mmol) in CD₂Cl₂ (0.6 mL) at -78° C. The tube was shaken briefly and placed in the probe of an NMR spectrometer precooled to -81 °C. The probe was warmed to -62 °C and the solution was monitored periodically by ¹H NMR spectroscopy. Reaction progress was determined by integrating the carbomethoxy resonances of 4 (δ 3.69 and 3.43) relative to the para phenyl proton of the BAr₄- counter ion (δ 7.74). After 20 min, 2 had been completely consumed to form 4 as the exclusive product in 84%±10% yield as a single diastereomer by 1 H NMR spectroscopy. Complex 4 was thermally sensitive and was characterized in solution by 1 H NMR spectroscopy at -62 °C. Assignment of the proton resonances and coupling constants of 4 was aided by 1 H COSY analysis (Figure S2) and by spectroscopic analysis of the deuterium isotopomers {(phen)Pd[η^{1} , η^{2} -CD(CH₂SiEt₃)CH₂C(CO₂Me)₂CH₂CD=CH₂]}+ [BAr₄]- (4-d₂) and {(phen)Pd[η^{1} , η^{2} -CH(CH₂SiEt₃)CD₂C(CO₂Me)₂CD₂CH=CH₂]}+ [BAr₄]- (4-d₄) (see below). For 4: ¹H NMR (CD₂Cl₂, -62 °C): δ 8.71 (d, J = 4.4 Hz, 1 H, H_a), 8.61 (d, J = 8.1 Hz, 1 H, H_c), 8.48 (dd, J = 1.2, 8.2 Hz, 1 H, H_c), 8.35 (dd, J = 1.2, 4.9 Hz, 1 H, H_a), 8.16 (s, 2 H, H_0), 8.14 (s, 1 H, H_p), 8.05 (dd, J = 5.2, 8.0 Hz, 1 H, H_b), 7.96 (s, 2 H, H_d), 7.87 (dd, J = 4.9, 8.1 Hz, 1 H, H_b), 7.74 (s, 8 H, H_0), 7.49 (s, 4 H, H_p), 6.41 (dtd, J = 4.3, 8.4, 16.1 Hz, 1 H, -CH= CH_2), 5.44 (d, J = 9.0 Hz, 1 H, -CH= CH_2), 4.22 (d, J = 16.1 Hz, 1 H, -CH= CH_2), 3.68 (S, 3 H, CO_2Me), 3.43 (s, 3 H, CO_2Me), 3.02 (dd, J = 8.2, 12.7 Hz, 1 H, $-CH_2CH$ = CH_2), 2.66 (m, 1 H, Pd-CH), 2.22 (dd, J = 4.0, 12.6 Hz, 1 H, $-CH_2CH$ = CH_2), 1.74, 1.70 [ABX, J_{AB} = 15.6 Hz, J_{AX} = 10.9 Hz, J_{BX} = 5.4 Hz, 2 H, Pd- $CH(CH_2SiEt_3)CH_2$], 1.23 [dd, J = 2.6, 13.3 Hz, 1 H, Pd- $CH(CH_2SiEt_3)CH_2$], 1.11 [t, J = 13.3 Hz, 1 H, Pd- $CH(CH_2SiEt_3)CH_2$], 0.94 (t, J = 7.9 Hz, 9 H, $SiCH_2CH_3$), 0.64 (q, J = 7.9 Hz, 6 H, $SiCH_2CH_3$). Figure S2. ¹H COSY Spectrum of 4. {(**phen**)**Pd**[η^1 , η^2 -**CD**(**CH**₂**SiEt**₃)**CH**₂**C**(**CO**₂**Me**)₂**CH**₂**CD**=**CH**₂]}+ [**BAr**₄]⁻ (**4-***d*₂). Reaction of **1**-2,6-*d*₂ (4.9 μL, 0.024 mmol) and **2** (0.024 mmol) in CD₂Cl₂ (0.6 mL) at -62 °C employing a procedure analogous to that used in the synthesis of **4** gave **4**-*d*₂ as the exclusive product by ¹H NMR analysis. ¹H NMR (CD₂Cl₂, -62 °C), hexenyl ligand only: δ 5.45 (s, 1 H, -CH=CH₂), 4.22 (s, 1 H, -CH=CH₂), 3.69 (S, 3 H, CO₂*Me*), 3.43 (s, 3 H, CO₂*Me*), 3.02 (d, J = 12.7 Hz, 1 H, -CH₂CD=CH₂), 2.22 (d, J = 12.7 Hz, 1 H, -CH₂CD=CH₂), 1.73, 1.70 [ABq, J = 15.6 Hz, 2 H, Pd-CD(CH₂SiEt₃)CH₂], 1.23, 1.11 [ABq, J = 13.6 Hz, 2 H, Pd-CD(CH₂SiEt₃)CH₂], 0.92 (t, J = 7.8 Hz, 9 H, SiCH₂CH₃), 0.62 (q, J = 7.7 Hz, 6 H, SiCH₂CH₃). {(**phen**)**Pd**[η¹,η²-**CH**(**CH**₂**SiEt**₃)**CD**₂**C**(**CO**₂**Me**)₂**CD**₂**CH**=**CH**₂]}+ [**BAr**₄]⁻ (**4-***d*₄). Addition of 1-3,3,5,5-d₄ (5.0 μL, 0.025 mmol) to a solution of **2** (0.025 mmol) in CD₂Cl₂ (0.6 mL) at -62 °C gave a 5:6:10 mixture of 1-d₄, 4-d₄, and 5-d₄ by ¹H NMR analysis. From this mixture, the ¹H NMR resonances for the hexenyl ligand of 4-d₄ were determined. ¹H NMR (CD₂Cl₂, -81 °C), hexenyl ligand only: δ 6.41 (dd, J = 9.0, 15.9 Hz, 1 H, -CH=CH₂), 5.45 (d, J = 9.0 Hz, 1 H, -CH=CH₂), 4.23 (d, J = 16.1 Hz, 1 H, -CH=CH₂), 3.68 (S, 3 H, CO₂Me), 3.44 (s, 3 H, CO₂Me), 2.64 (dd, J = 3.4, 12.4 Hz, 1 H, Pd-CH), 0.61 (q, J = 7.7 Hz, 6 H, SiCH₂CH₃). The SiCH₂CH₃ resonances were obscured. {(phen)Pd[η¹,η²-CH(CH₂SiEt₃)CH₂¹³C(¹³CO₂Et)₂CH₂CH=CH₂]}+ [BAr₄]⁻ (4a-¹³C₃). Reaction of 1-¹³C₃ (4.7 μL, 0.023 mmol) and 2 (0.023 mmol) in CD₂Cl₂ (0.6 mL) at -62° C employing a procedure analogous to that used in the synthesis of 4 gave 4a-¹³C₃ as the exclusive product by ¹H NMR analysis. 13 C{¹H} NMR (CD₂Cl₂, -62 °C), labelled carbon atoms only: δ 172.6 (dd, J = 2.3, 55.3 Hz), 172.5 (d, J = 58.4 Hz), 65.5 (dd, J = 55.2, 58.4 Hz). ${(phen)Pd[\eta^1,\eta^2-$ 13CH(13CH₂SiEt₃)13CH₂C(CO₂Me)₂13CH₂13CH=13CH₂]}+ [BAr₄]- (4-13C₆). Reaction of 1-13C₆ (4.2 μL, 0.021 mmol) and 2 (0.022 mmol) in CD₂Cl₂ (0.6 mL) at -60 °C employing a procedure analogous to that used in the synthesis of 4 gave 4-13C₆ as the exclusive product by ¹H NMR analysis. ¹³C{¹H} NMR (CD₂Cl₂, 75 MHz –60 °C), labelled carbon atoms only: δ 103.7 (dd, J = 41, 47 Hz, -CH=CH₂), 87.5 (d, J = 47 Hz, -CH=CH₂), 50.0 [dd, J = 30, 36 Hz, Pd–CH(CH₂SiEt₃)CH₂], 39.2 [d, J = 36 Hz, Pd–CH(CH₂SiEt₃)CH₂], 32.5 (d, J = 41 Hz, -CH₂CH=CH₂), 20.3 [d, J = 30 Hz, Pd–CH(CH₂SiEt₃)CH₂]. {(phen)Pd[CH2CHCH2C(CO2Me)2CH2CHCH2SiEt3](NCAr)}+ [BAr4]-(5). An NMR tube containing a solution 4 (39 mM) and NCAr in CD₂Cl₂ was warmed at -41 °C and monitored periodically by ¹H NMR spectroscopy; the progress of the reaction was determined by integrating the carbomethoxy resonances of 5 (8 3.67 and 3.59) and 4 (8 3.69 and 3.43) and the para phenyl resonance of the BAr₄⁻ counterion (δ 7.72). After 2 h, 4 had been completely consumed to form 5 in 96%±10% yield by ¹H NMR analysis. Complex 5 was thermally sensitive and was characterized in solution by ¹H and ¹³C NMR spectroscopy at -41 °C. The ¹H and ¹³C NMR labeling scheme for the cyclopentyl portion of 5 is shown in Figure S3. Assignment of proton resonances and J_{HH} coupling constants was aided by ¹H COSY analysis (Figure S4) and 1 H NMR analysis o f the labelled derivatives $\{(phen)Pd[CH_2CDCH_2C(CO_2Me)_2CH_2CDCH_2SiEt_3](NCAr)\}^+$ [BAr₄]⁻ (5-d₂) and $\{(phen)Pd[CH_2CHCD_2C(CO_2Me)_2CD_2CHCH_2SiEt_3](NCAr)\}^+$ [BAr₄]⁻(5-d₄) (see below). For 5: ¹H NMR (CD₂Cl₂, -41 °C): δ 8.86 (dd, J = 1.0, 5.4 Hz, 1 H, H_a), 8.84 (dd, J = 1.5, 4.9 Hz, 1 H, H_a), 8.65 (s, 2 H, H_o), 8.64 (dd, J = 1.1, 8.6 Hz, 1 H, H_c), 8.55 (dd, J = 1.5, 8.4 Hz, 1 H, H_c), 8.38 (s, 1 H, H_p), 8.02 (d, J = 2.7 Hz, 2 H, H_d), 7.99 (dd, J = 5.4, 8.2 Hz, 1 H, H_b), 7.86 (dd, J = 4.8, 8.2 Hz, 1 H, H_b), 7.72 (s, 8 H, H_o), 7.51 (s, 4 H, H_p), 3.67 (s, 3 H, CO₂CH₃), 3.59 (s, 3 H, CO₂CH₃), 2.93 (dd, J = 7.4, 13.5 Hz, 1 H, H_3), 2.62 (dd, J = 6.3, 13.1 Hz, 1 H, H_5), 2.52 (dd, J = 4.0, 7.7 Hz, 1 H, H_1), 2.18 (dd, J = 10.4, 13.4 Hz, 1 H, H_1), 2.09 (dd, J = 8.3, 10.8 Hz, 1 H, H_1), 1.80 (m, 1 H, H_2), 1.77 (dd, J = 11.9, 12.9 Hz, 1 H, H_3), 1.67 (m, 1 H, H_6), 1.26 (dd, J = 3.0, 13.4 Hz, 1 H, H_7), 0.92 (t, J = 7.9 Hz, 9 H, I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + I + 141.4 ($C_{\rm phen}$), 136.6 ($C_{\rm o'}$), 136.1 ($C_{\rm o}$), 134.9 (q, $^2J_{\rm CF}$ = 35.1 Hz, $C_{\rm m}$), 132.6, 132.0 ($C_{\rm phen}$), 131.3 ($C_{\rm p}$), 130.6 (q, $^2J_{\rm CF}$ = 31.4 Hz, $C_{\rm m'}$), 129.9, 129.6, 127.9, 127.8 ($C_{\rm phen}$), 126.4 (q, $^1J_{\rm CF}$ = 273 Hz, $C_{\rm r'}$), 124.1 (q, $^1J_{\rm CF}$ = 274 Hz, $C_{\rm r}$), 121.5, 113.8 ($C_{\rm i}$ and $C_{\rm q}$), 119.5 ($C_{\rm p'}$), 59.2 ($C_{\rm q}$), 55.3 (CO_2CH_3), 55.2 (CO_2CH_3), 53.6 (C_2), 45.2, 44.8, 43.9 (C_3 , C_5 , and C_6) 32.4 (C_1), 16.0 (C_7), 9.5 ($SiCH_2CH_3$), 5.2 ($SiCH_2CH_3$). Figure S3. Atom labeling Schemes for complexes 5 and 6. 10 Figure S4. ¹H NMR COSY Spectrum of 5. {(phen)Pd[CH₂CDCH₂C(CO₂Me)₂CH₂CDCH₂SiEt₃](NCAr)}+ [BAr₄]⁻ (5- d_2). Warming a solution of 4- d_2 (0.023 mmol) in CD₂Cl₂ (0.6 mL) at -41 °C for 90 min formed 5- d_2 as the exclusive product by ¹H NMR analysis. ¹H NMR (CD₂Cl₂, -41 °C): δ 3.66 (s, 3 H, CO₂CH₃), 3.57 (s, 3 H, CO₂CH₃), 2.92 (d, J = 13.6 Hz, 1 H, H_3), 2.59 (d, J = 13.4 Hz, 1 H, H_5), 2.48 (d, J = 8.2 Hz, 1 H, H_1), 2.15 (d, J = 13.5 Hz, 1 H, H_3), 2.06 (d, J = 8.1 Hz, 1 H, H_1), 1.74 (d, J = 13.5 Hz, 1 H, H_5), 1.23 (d, J = 14.3 Hz, 1 H, H_7), 0.90 (t, J = 7.8 Hz, 9 H, -SiCH₂CH₃), 0.53 (q, J = 7.8 Hz, 6 H, -SiCH₂CH₃). One of the two diastereotopic -CH₂SiEt₃ protons (H_7) was obscured. {(phen)Pd[CH₂CHCD₂C(CO₂Me)₂CD₂CHCH₂SiEt₃](NCAr)}+ [BAr₄]⁻ (5- d_4). Warming a 5:6:10 mixture of 1- d_4 , 4- d_4 , and 5- d_4 (0.023 mmol combined) in CD₂Cl₂ (0.6 mL) at -41 °C for 90 min formed 5- d_4 as the exclusive product by ¹H NMR analysis. ¹H NMR (CD₂Cl₂, -41 °C): δ 3.67 (s, 3 H, CO₂CH₃), 3.58 (s, 3 H, CO₂CH₃), 2.50 (dd, J = 4.1, 8.0 Hz, 1 H, H_1), 2.08 (dd, J = 8.6, 10.7 Hz, 1 H, H_1), 1.77 (dt, J = 4.2, 10.3 Hz, 1 H, H_2), 1.64 (dd, J = 10.0, 11.8 Hz, 1 H, H_6), 1.24 (d, J = 13.7 Hz, 1 H, H_7), 0.91 (t, J = 8.0 Hz, 9 H, -SiCH₂CH₃), 0.54 (q, J = 7.9 Hz, 6 H, -SiCH₂CH₃). One of the two diastereotopic -CH₂SiEt₃ protons (H_7) was obscured. {(phen)Pd[CH₂CHCH₂¹³C(¹³CO₂Et)₂CH₂CHCH₂SiEt₃](NCAr)}+ [BAr₄]- (5a-¹³C₃). Warming a solution of 4a-¹³C₃ (4.66 μL, 0.023 mmol) in CD₂Cl₂ (0.6 mL) at -41 °C for 90 min formed 5a-¹³C₃ as the exclusive product by ¹H NMR analysis. ¹³C{¹H} NMR (CD₂Cl₂, -41 °C), labelled carbon atoms only: δ 175.4 (dd, J = 1.4, 58.4 Hz, CO_2 CH₃), 175.2 (dd, J = 1.4, 58.4 Hz, CO_2 CH₃), 59.2 (t, J = 58.4 Hz, CA_2). {[(phen)Pd[13 CH $_2^{13}$ Kinetics of the Conversion of 4 to 5. An NMR tube containing an equimolar solution 4 and N=CAr (0.0213 mmol) in CD₂Cl₂ (0.6 mL) was warmed at -41 °C and monitored periodically by 1 H NMR spectroscopy. The concentration of 4 was determined by integrating the carbomethoxy resonances of 4 (δ 3.69 and 3.43) relative to the para phenyl resonance of the BAr₄⁻ counterion (δ 7.72). A plot of $\ln\{[4]_{t/}[4]_{0}\}$ was linear to >3 half-lives with a first-order rate constant of $k = 4.7 \pm 0.3 \times 10^{-4} \text{ M}^{-1} \text{ s}^{-1}$ (Figure S5). The absence of curvature in the first-order plot indicates that the rate of conversion of 4 to 5 is independent of [N=CAr] from 0 to 35.5 mM. Figure S5: First-order plot for the conversion of 4 to 5 at -41 °C in CD₂Cl₂. {(phen)Pd[CHCH(Me)CH(CH₂SiEt₃)CH₂C(COOMe)(COOMe)]}+ [BAr₄]⁻ (6). Triethylsilane (12.3 μL, 0.077 mmol) was added via syringe to a solution of [(phen)Pd(Me)(N≡CMe)]+ [BAr₄]⁻ (3a) (93 mg, 0.077 mmol) in CH₂Cl₂ (25 mL) at −78 °C, stirred for 30 minutes, and treated with 1 (16 μL, 0.077 mmol). The resulting solution was warmed to room temperature and stirred for 120 min. Solvent was evaporated under vacuum to form a yellow glass which was triturated with hexanes $(3 \times 5 \text{ mL})$ and dried under vacuum to give $\mathbf{6}$ (52 mg, 49%) as a yellow microcrystals. The ¹H and ¹³C NMR labeling scheme for the cyclopentyl portion of $\mathbf{6}$ is shown in Figure S3. ¹H NMR resonances were assigned based on COSY analysis (Figure S6). The stereochemistry of $\mathbf{6}$ was assigned assuming non-dissociative rearrangement of $\mathbf{5}$ (Scheme S2). For 6: ¹H NMR (CDCl₃, 23 °C): δ 8.92 (dd, J = 1.4, 4.9 Hz, 1 H, H_c), 8.85 (dd, J = 1.4, 5.4 Hz, 1 H, H_c), 8.64 (dd, J = 1.2, 8.2 Hz, 1 H, H_a), 8.62 (dd, J = 1.6, 8.4 Hz, 1 H, H_a), 8.07, 8.03 (ABq, J = 8.9 Hz, 2 H, H_d), 7.95 (dd, J = 4.8, 8.3 Hz, 1 H, H_b), 7.89 (dd, J = 5.3, 8.2 Hz, 1 H, H_b), 7.72 (t, J = 2.4 Hz, 8 H, H_o), 7.55 (s, 4 H, H_p), 4.16 (s, 3 H, H_{13}), 3.78 (s, 3 H, H_{11}), 2.85 (dd, J = 7.1, 13.0 Hz, 1 H, H_d), 2.47 (d, J = 10.5 Hz, 1 H, H_1), 1.70 (m, 1 H, H_3), 1.67 (d, J = 12.8 Hz, 1 H, H_4), 1.47 (m, 1 H, H_2), 1.20 (d, J = 6.5 Hz, 3 H, H_6), 1.06 (dd, J = 2.4, 14.4 Hz, 1 H, H_7), 0.97 (t, J = 7.9 Hz, 9 H, H_7), 0.58 (q, J = 7.8 Hz, 6 H, H_8), 0.37 (dd, J = 11.2, 14.4 Hz, 1 H, H_7). 13 C{ 1 H} NMR (CDCl₃, 23 °C): δ 191.5 (C_{12}), 171.7 (C_{10}), 161.9 (q, J_{CB} = 50.0 Hz, C_{11}), 151.7, 149.1 (C_{11}), 147.8, 143.8 (C_{12}), 139.7, 139.1 (C_{12}), 130.9, 130.2 (C_{11}), 129.2 (q, C_{11}), 147.8, 143.8 (C_{11}), 127.5, 126.0, 125.4 (C_{11}) and C_{12}), 124.6 (q, C_{11}), 127.5 (C_{12}), 117.6 (C_{11}), 168.5, 56.5, 53.8, 53.2, 42.1, (C_{11} , C_{22} , C_{23} , C_{11} , and C_{13}), 42.9, 40.9 (C_{13} and C_{14}), 17.3 (C_{11}), 158.9, 841. Anal. Calcd (found) for C_{11} H₅₁N₂O₄F₂4PdSiB: H 3.48 (3.14), C 49.59 (49.47), N 1.90 (2.02). Figure S5. ¹H COSY Spectrum of 6. Scheme S2. Stereochemical model for the non-dissociative conversion of 5 to 6. Conversion of 5 to 6. An NMR tube containing a solution of 5 (0.0214 mmol) in CD_2Cl_2 (0.6 mL) was warmed at -9° C and monitored periodically by 1H NMR spectroscopy. The concentration of 5 and 6 were determined by integrating the carbomethoxy resonances of 5 (δ 3.67 and 3.59) and 6 (δ 4.13 and 3.75) and the para phenyl resonance of the BAr₄⁻ counterion (δ 7.72). A plot of $\ln \{ [5]_t/[5]_0 \}$ versus time revealed a slight positive deviation from linearity with an initial half-life of 32 min (Figure S7). The solution was then warmed at 25 °C for 30 min to form 6 in 110%±10% by 1H NMR analysis. Figure S7. First-order plot for the conversion of 5 to 6 at -9 °C in CD_2Cl_2 . # trans-1,1-Dicarbomethoxy-4-deuteriomethyl-3-triethylsilylmethyl **cyclopentane** (7- d_1). DSiEt₃ (300 μL, 1.88 mmol) was added to a solution of dimethyl diallylmalonate (100 μL, 0.50 mmol), (phen)PdMeCl (8 mg, 0.024 mmol), and NaBAr₄ (23 mg, 0.027 mmol) in DCE (10 mL) at room temperature and stirred for 30 min. Solvent and excess silane were evaporated and the residue was chromatographed (SiO₂; hexanes–EtOAc = 24:1) to give 7- d_1 (167 mg, 102%) as a colorless oil. MS analysis of 7- d_1 revealed exclusive (≥98%) formation of the d_1 isotopomer. ¹H and ¹³C NMR analysis of 7- d_1 indicated complete (≥95%) deuteration at the C(4) methyl group. ¹H NMR (CDCl₃): δ 3.64 (s, 6 H), 2.51 (dd, J = 6.8, 13.3 Hz, 1 H), 2.44 (dd, J = 6.8, 13.3 Hz, 1 H), 1.61 (d, J = 13.3 Hz, 1 H), 1.58 (d, J = 13.2 Hz, 1 H), 1.36 (m, 2 H), 0.86 (t, J = 7.9 Hz, 9 H), 0.81 (dd, J = 2.3, 14.6 Hz, 1 H), 0.46 (q, J = 7.9 Hz, 6 H), 0.21 (dd, J = 11.5, 14.5 Hz, 1 H), -CH₂D doublet obscured by resonance at δ 0.86. ${}^{13}C\{{}^{1}H\}$ NMR (CDCl₃): δ 173.6, 58.3, 52.7, 43.8, 43.5, 43.1, 42.3, 17.1 (t, J_{CD} = 19.1 Hz, isotopic shift = 360 ppb), 14.9, 7.6, 4.0. Reaction of 5 and DSiEt₃. DSiEt₃ (5 μ L, 0.031 mmol) was added via syringe to an NMR tube containing a solution of 5 (0.019 mmol) in CH₂Cl₂ (0.6 mL) at -78 °C and placed in the probe of an NMR spectrometer precooled at -41 °C and monitored periodically by ¹H NMR spectroscopy. Reaction progress was determined by integrating the carbomethoxy resonances of 5 (δ 3.67 and 3.59) relative to the para phenyl resonance of the BAr₄⁻ counterion (δ 7.72). After 5 minutes, resonances corresponding to 5 could no longer be observed and resonances corresponding to 2 and 7- d_1 were formed as the only observable products in a 1:1 ratio. The solution was then warmed to room temperature (leading to decomposition of 2), filtered through a plug of Celite, and analyzed by ¹³C NMR spectroscopy. The predominany (\geq 90%) formation of the 7- d_1 isotopomer was established by the predominance of the 1:1:1 triplet at δ 17.1 [t, J_{CD} = 19.1 Hz, -C(4)*C*H₂D] relative to the singlet at δ 17.4 [-C(4)*C*H₃] in the ¹³C NMR spectrum. trans-2-Deuterio-1,1-dicarbomethoxy-3-methyl-4-(triethylsilyl)methyl cyclopentane (7- d_1 '). DSiEt₃ (107 μL, 0.67 mmol) was added via syringe to a solution of 6 (161 mg, 0.13 mmol) in CH₂Cl₂ (1.6 mL) at room temperature and the resulting solution was stirred for two hours to form a dark brown solution. The solvent was evaporated and the residue was chromatographed (SiO₂; hexane–EtOAc = 24:1) to give 7- d_1 ' (20 mg, 46%) as a colorless oil. MS analysis of 7- d_1 ' revealed an 83:17 ratio of d_1 : d_0 isotopomers. ¹H and ¹³C NMR analysis revealed predominant ≥80% deuteration of the C(2) ring carbon without formation of significant amounts of 7- d_1 . The stereochemistry of 7- d_1 ' was assigned assuming retention of stereochemistry in the silylation of 6. ¹H NMR (CDCl₃): δ 3.68 (s, 6 H), 2.55 (dd, J = 6.6, 13.3 Hz, 1 H), 1.63 (m, 2 H), 1.40 (m, 2 H), 0.93 (d, J = 6.3 Hz, 3 H), 0.90 (t, J = 7.8 Hz, 9 H), 0.83 (dd, J = 2.4, 14.6 Hz, 1 H), 0.49 (q, J = 7.8 Hz, 9 H), 0.25 (dd, J = 11.1, 14.6 Hz, 1 H). ¹³C{¹H} NMR (CDCl₃): δ 173.7, 58.3, 52.8, 43.8, 43.5, 43.1, 42.0 (t, J_{CD} = 20.6 Hz, isotopic shift = 315 ppb), 17.4, 14.9, 7.6, 4.0. #### References - 1) Rix, F. C.; Brookhart, M.; White, P. S. J. Am. Chem. Soc. 1996, 118, 4746. - 2) De Delice, V.; Albano, B. G.; Castellari, C.; Cucciolito, M. E.; De Renzi, A. J. Organomet. Chem. 1991, 403, 269. - 3) Brookhart, M.; Grant, B.; Volpe, A. F. Organometallics 1992, 11, 3920. - 4) Doyle, M. P.; McOsker, C. C.; West, C. T. J. Org. Chem. 1976, 41, 1393. - 5) Kisanga, P.; Widenhoefer, R. A. J. Am. Chem. Soc. 2000, 122, 10017. - 6) Takeuchi, R.; Nitta, S.; Watanabe, D. J. Org. Chem. 1995, 60, 3045.