The Stereoselective Synthesis of Functionalized *trans*-2,5-Disubstituted Tetrahydrofurans

Ronaldo A. Pilli^{*^a}, Valéria B. Riatto^a and Ivo Vencato^b

^aInstituto de Química, Unicamp, Cx. Postal 6154, 13083-970 Campinas, SP, Brazil ^bDepartamento de Química, UFSC, 88040-900, Florianópolis, SC, Brazil

pilli@iqm.unicamp.br

Supporting Information

Contents:

- Full characterization for compounds 4a, 5a, 5b, 4c, 6c, 4/5d, 5e, (2'*R*,2*S*,5*S*)-8, (2'*S*,2*S*,5*S*)-8, (2*S*,5*S*)-8, (2*S*,5*S*)-9.
- General procedure for the addition of titanium(IV) enolates **3a-e** to lactol **2**.
- General procedure for the reduction of N-acyloxazolidinones.
- Procedure for the dehalogenation of **5e**.

General Procedure for the Addition of Titanium(IV) Enolates 3a-e to Lactol 2. To a solution of TiCl₄ (1.1 mmol) in CH₂Cl₂ (2.5 mL) at -23°C was added a solution of oxazolidinone **3a-e** (1.0 mmol) in CH₂Cl₂ (2.0 mL) followed by the addition of diisopropylethylamine (1.1 mmol) after 5 min. The reaction mixture was stirred at -23°C for 1 h and then a solution of lactol **2** (1.1 mmol) in CH₂Cl₂ (2.5 mL) was added dropwise. The reaction mixture was stirred at -23°C for 1 h, and then quenched with satd. aq. NH₄Cl (4 mL). The aqueous phase was extracted with CH₂Cl₂ (3 x 3 mL), the combined organic phase was dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was taken up in CH₃CN (10 mL) and aq. HF 40% was added dropwise until total deprotection (TLC control). Then the reaction mixture was quenched with satd. aq. NaHCO₃ (5 mL). The aqueous phase was extracted with Et₂O (3 x 3 mL), the combined organic phase was dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography on silica gel to afford the adducts.

3-{(2'S)-2-[(2S,5S)-5-(tert-Butyldiphenylsiloxymethyl)-tetrahydro-2-furanyl]-

propanoyl}-1,3-oxazolan-2-one (5a). ¹H-NMR (500 MHz, CDCl₃) δ 0.96 (s, 9H), 1.04 (d, J=6.8 Hz, 3H), 1.53-1.63 (m, 1H), 1.68-1.75 (m, 1H), 1.93-1.98 (m, 1H), 2.00-2.05 (m, 1H), 3.49 (dd, J=5.1, 10.5 Hz, 1H), 3.54 (dd, J=5.1, 10.5 Hz, 1H), 3.88 (dq, J=6.8, 9.3 Hz, 1H), 3.89-4.00 (m, 2H), 4.06 (quint, J=6.0 Hz, 1H), 4.12 (dt, J=6.3, 9.3 Hz, 1H), 4.18-4.29 (m, 2H), 7.18-7.35 (m, 6H), 7.58-7.62 (m, 4H); ¹³C-NMR (125 MHz, CDCl₃) δ 13.9, 19.2, 26.7, 27.9, 29.9, 42.5, 42.7, 61.7, 66.4, 79.6, 81.5, 127.6, 129.5, 133.6, 135.6, 153.4, 175.8; IR (film) 1699, 1780 cm⁻¹; LRMS (EI) *m*/*z* 199 (100%, [C₁₂H₁₁OSi]⁺), 424 (33, [M-C₄H₉]⁺); HRMS (EI) *m*/*z* calcd for C₂₃H₂₆NO₅Si [M-C₄H₉]⁺ 424.15802, found 424.15821; [α]_D +16.6 (*c* 1.54, CH₂Cl₂).

3-{(2'R)-2-[(2S,5S)-5-(tert-Butyldiphenylsiloxymethyl)-tetrahydro-2-furanyl]-

propanoyl}-1,3-oxazolan-2-one (4a). ¹H-NMR (500 MHz, CDCl₃) δ 1.05 (s, 9H), 1.27 (d, *J*=6.8 Hz, 3H), 1.62-1.70 (m, 1H), 1.83-1.92 (m, 1H), 1.94-2.03 (m, 1H), 2.05-2.11 (m, 1H), 3.65 (d, *J*=4.7 Hz, 2H), 3.92 (quint, *J*=6.8 Hz, 1H), 3.94-4.02 (m, 2H), 4.09-4.14 (m, 1H), 4.21-4.26 (m, 1H), 4.29-4.38 (m, 2H), 7.36-7.41 (m, 6H), 7.67-7.70 (m, 4H); ¹³C-NMR (125 MHz, CDCl₃) δ 13.2, 19.0, 26.6, 27.6, 29.7, 41.9, 42.6, 61.7, 66.3, 79.5, 80.3,

127.8, 129.7, 133.8, 135.8, 153.5, 175.8; IR (film) 1699, 1778 cm⁻¹; LRMS (EI) m/z 199 (100%, $[C_{12}H_{11}OSi]^+$), 424 (60, $[M-C_4H_9]^+$); HRMS (EI) m/z calcd for $C_{23}H_{26}NO_5Si$ [M- C_4H_9]⁺ 424.15803, found 424.15864; $[\alpha]_D$ –6.5 (*c* 1.30, CH₂Cl₂).

(*4R*)-4-Benzyl-3-{(2'*S*)-2-[(2*S*,5*S*)-5-hydroxymethyltetrahydro-2-furanyl]-propanoyl}-1,3-oxazolan-2-one (5b). ¹H-NMR (300 MHz, CDCl₃) δ 1.13 (d, *J*=6.8 Hz, 3H), 1.70-1.82 (m, 2H), 1.95-2.10 (m, 2H), 2.10-2.18 (m, 1H), 2.84 (dd, *J*=9.2, 13.6 Hz, 1H), 3.26 (dd, *J*=3.3, 13.6 Hz, 1H), 3.49 (dd, *J*=5.5, 11.4 Hz, 1H), 3.66 (dd, *J*=3.3, 11.4 Hz, 1H), 4.04 (dq, *J*=6.8, 9.3 Hz, 1H), 4.13-4.23 (m, 3H), 4.28-4.33 (m,1H), 4.69-4.75 (m, 1H), 7.22-7.36 (m, 5H); ¹³C-NMR (75 MHz, CDCl₃) δ 13.7, 27.1, 29.9, 37.5, 42.7, 55.2, 64.7, 65.7, 79.4, 81.6, 127.3, 128.9, 129.6, 135.4, 153.4, 176.0; IR (film) 3467, 1693, 1776 cm⁻¹; LRMS (EI) *m/z* 101 (100%, $[C_5H_9O_2]^+$), 333 (43, $[M]^+$); HRMS (EI) *m/z* calcd for $C_{18}H_{23}NO_5$ $[M]^+$ 333.15762, found 333.15714; $[\alpha]_D$ –50.3 (*c* 1.10, CH₂Cl₂); m.p.: 151.5-152.5°C.

(4*S*)-4-Benzyl-3-{(2'*R*)-2-[(2*S*,5*S*)-5-hydroxymethyltetrahydro-2-furanyl]-propanoyl}-1,3-oxazolan-2-one (4c). ¹H-NMR (300 MHz, CDCl₃) δ 1.27 (d, *J*=6.8 Hz, 3H), 1.66-1.85 (m, 2H), 1.94-2.08 (m, 1H), 2.09-2.18 (m, 1H), 2.33 (br s, 1H), 2.74 (dd, *J*=9.5, 13.2 Hz, 1H), 3.28 (dd, *J*=2.9, 13.2 Hz, 1H), 3.51 (dd, *J*=6.2, 11.7 Hz, 1H), 3.67 (dd, *J*=3.7, 11.7 Hz, 1H), 3.98 (quint, *J*=6.8 Hz, 1H), 4.08-4.23 (m, 3H), 4.27 (q, *J*=6.8 Hz, 1H), 4.66-4.73 (m, 1H), 7.22-7.37 (m, 5H); ¹³C-NMR (75 MHz, CDCl₃) δ 13.3, 27.2, 29.8, 37.8, 41.9, 55.2, 64.8, 65.9, 79.7, 80.3, 127.4, 128.9, 129.5, 135.3, 153.3, 175.4; IR (film) 3467, 1693, 1776 cm⁻¹; LRMS (EI) *m*/*z* 302 (100%, [M-CH₃O]⁺), 333 (10, [M]⁺); HRMS (EI) *m*/*z* calcd for $C_{18}H_{23}NO_5$ [M]⁺ 333.15762, found 333.15752; [α]_D +57.3 (*c* 0.52, CH₂Cl₂); m.p.: 91.4-93.2°C.

(4*S*)-4-Benzyl-3-{(2'*R*)-2-[(2*R*,5*S*)-5-hydroxymethyltetrahydro-2-furanyl]-propanoyl}-1,3-oxazolan-2-one (6c). ¹H-NMR (500 MHz, CDCl₃) δ 1.17 (d, *J*=6.8 Hz, 3H), 1.71-1.79 (m, 1H), 1.83 (br s, 1H), 1.90-2.03 (m, 2H), 2.08-2.15 (m, 1H), 2.84 (dd, *J*=9.0, 13.4 Hz, 1H), 3.27 (dd, *J*=3.4, 13.4 Hz, 1H), 3.47 (dd, *J*=3.9, 12.0 Hz, 1H), 3.73 (dd, *J*=2.9, 12.0 Hz, 1H), 4.02 (dq, *J*=6.8, 9.3 Hz, 1H), 4.08-4.15 (m, 2H), 4.16-4.22 (m, 2H), 4.70-4.74 (m, 1H), 7.26-7.35 (m, 5H); ¹³C-NMR (75 MHz, CDCl₃) δ 14.0, 27.0, 30.5, 37.4, 42.6, 55.6, 65.1, 65.7, 79.9, 83.0, 127.4, 129.0, 129.5, 135.4, 154.0, 176.1; IR (film) 3467, 1693, 1776 cm⁻¹; LRMS (EI) *m*/*z* 302 (100%, [M-CH₃O]⁺), 333 (08, [M]⁺); HRMS (EI) *m*/*z* calcd for $C_{18}H_{23}NO_5$ [M]⁺ 333.15762, found 333.15775; [α]_D +62.3 (*c* 0.41, CH₂Cl₂); m.p.: 105.2-106.3°C.

(4*R*)-4-Benzyl-3-{2-[(2*S*,5*S*)-5-hydroxymethyltetrahydro-2-furanyl]-acetyl}-1,3-

oxazolan-2-one (4/5d). To a solution of a 10:1 mixture of 5e/7e (0.398 g, 1.00 mmol) in CH₂Cl₂ (2.0 mL) was added a catalitic amount (0.100 mmol) of AIBN. The reaction was stirred for 1 h at 80°C and Bu₃SnH (0.323 mL, 1.20 mmol) was added. After 1 h at 80°C it was cooled at room temperature and was added satd. aq. NH₄Cl (2 mL) and 10% KF aq. (2 mL). The mixture was stirred 1 h and 5 mL of Et₂O was added.. The layers were separated, the aqueous phase was extracted with Et₂O (3 x 3 mL), the combined organic phase was dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was diluted with AcOEt (5 mL), filtered and the solvent was removed under reduced pressure. Silica gel chromatography (50% AcOEt in hexanes, v/v) of the crude product afforded a 10:1 mixture of 4/5d:6/7d (0.267 g, 0.84 mmol) in 84% yield, as a colorless oil. The major diastereoisomer 4/5d was isolated and characterized. ¹H-NMR (300 MHz, CDCl₃) § 1.55-1.76 (m, 3H), 1.85-2.04 (m, 1H), 2.09-2.18 (m, 1H), 2.73 (dd, J=9.2, 13.5 Hz, 1H), 2.96 (dd, J=5.1, 16.5 Hz, 1H), 3.24 (dd, J=2.9, 13.5 Hz, 1H), 3.30 (dd, J=8.1, 16.5 Hz, 1H), 3.45 (dd, J=5.9, 11.7 Hz, 1H), 3.62 (dd, J=3.3, 11.7 Hz, 1H), 4.08-4.18 (m, 3H), 4.45-4.53 (m, 1H), 4.59-4.67 (m, 1H), 7.13-7.29 (m, 5H); ¹³C-NMR (75 MHz, CDCl₃)δ 27.1, 32.0, 37.8, 41.5, 55.1, 64.8, 66.1, 75.1, 79.2, 127.3, 128.9, 129.5, 135.1, 153.5, 170.9; IR (film) 3444, 1778, 1699 cm⁻¹; LRMS (EI) *m/z* 288 (100%, [M-CH₃O]⁺), 319 (06, [M]⁺); HRMS (EI) m/z calcd for C₁₇H₂₁NO₅ [M]⁺ 319.14197, found 319.14191; $[\alpha]_D$ -41.2 (c 1.65, CH₂Cl₂).

(4*R*)-4-Benzyl-3-{(2'*S*)-2'-bromo-2-[(2*S*,5*S*)-5-hydroxymethyltetrahydro-2-furanyl]propanoyl}-1,3-oxazolan-2-one (5e). ¹H-NMR (300 MHz, CDCl₃) δ 1.79-1.89 (m, 2H), 2.01-2.11 (m, 2H), 2.30-2.38 (m, 1H), 2.93 (dd, *J*=8.4, 13.6 Hz, 1H), 3.24 (dd, *J*=2.9, 13.6 Hz, 1H), 3.52 (dd, *J*=5.5, 11.7 Hz, 1H), 3.69 (dd, *J*=3.3, 11.7 Hz, 1H), 4.14-4.32 (m, 3H), 4.70-4.77 (m, 2H), 5.61 (d, *J*=9,5 Hz, 1H), 7.23-7.36 (m, 5H); ¹³C-NMR (75 MHz, CDCl₃) δ 26.9, 30.2, 37.4, 43.7, 55.5, 64.6, 66.1, 79.7, 80.9, 127.6, 129.1, 129.6, 134.8, 152.9, 168.6; IR (film) 3448, 1778, 1603 cm⁻¹; LRMS (EI) *m/z* 91 (100%, [C₇H₇]⁺), 397 (06, [M]⁺); HRMS (EI) *m/z* calcd for C₁₇H₂₀BrNO₅ [M]⁺ 397.05248, found 397.05240; [α]_D –121.5 (*c* 1.05, CH₂Cl₂); m.p.: 150.1-150.7°C.

General Procedure for the Reduction of N-Acyloxazolidinones. To a suspension of LiBH₄ (5.0 mmol) in THF (10.0 mL) at 0°C under argon, was added dropwise a solution of acyloxazolidinone (1.0 mmol) in THF (2.0 mL) and MeOH (4.0 mmol). The cooling bath was removed and the reaction was let to stir 3 h at room temperature. The reaction was then quenched with 1M aqueous solution of sodium potassium tartarate (5 mL) and stirred until both layers were clear. The mixture was poured into ether and water, the layers were separated and the aqueous phase was extracted with Et_2O (3 x 1 mL). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude products was purified by flash chromatography on silica gel to afford the diols and the oxazolidinones.

(2'*R*)-2-[(2*S*,5*S*)-5-Hydroxymethyltetrahydro-2-furanyl]-propan-1-ol [(2'*R*, 2*S*, 5*S*)-8]. ¹H-NMR (500 MHz, CDCl₃) δ 0.82 (d, *J*=6.8 Hz, 3H), 1.61-1.79 (m, 3H), 1.94-1.99 (m, 1H), 2.10-2.15 (m, 1H), 2.40 (br s, 2H), 3.51 (dd, *J*=5.9, 11.7 Hz, 1H), 3.62-3.69 (m, 3H), 3.82 (dt, *J*=5.6, 8.8 Hz, 1H), 4.13-4.18 (m, 1H); ¹³C-NMR (75 MHz, CDCl₃) δ 13.2, 26.8, 31.5, 40.6, 64.7, 68.3, 79.8, 85.3; IR (film) 3363, 1036 cm⁻¹; LRMS (EI) *m*/*z* 57 (100%, $[C_3H_5O]^+$), 129 (76, $[M-CH_3O]^+$); HRMS (EI) *m*/*z* calcd for $C_7H_{13}O_2$ $[M-CH_3O]^+$ 129.09155, found 129.09182; $[\alpha]_D$ +12.2 (*c* 0.35, CH₂Cl₂).

(2'*S*)-2-[(2*S*,5*S*)-5-Hydroxymethyltetrahydro-2-furanyl]-propan-1-ol [(2'*S*, 2*S*, 5*S*)-8]. ¹H-NMR (300 MHz, CDCl₃) δ 0.92 (d, *J*=7.0 Hz, 3H), 1.63-1.83 (m, 2H), 1.88-2.02 (m, 3H), 2.55 (br s, 2H), 3.49 (dd, *J*=6.2, 11.7 Hz, 1H), 3.57 (dd, *J*=4.8, 11.0 Hz, 1H), 3.64 (dd, *J*=2.9, 11.7 Hz, 1H), 3.68 (dd, *J*=7.3, 11.0 Hz, 1H), 4.07-4.16 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃) δ 11.8, 27.3, 28.1, 38.3, 64.8, 65.9, 79.8, 82.1; IR (film) 3363, 1036 cm⁻¹; LRMS (EI) *m*/*z* 101 (100%, [C₅H₉O₂]⁺), 129 (75, [M-CH₃O]⁺); HRMS (EI) *m*/*z* calcd for C₇H₁₃O₂ [M-CH₃O]⁺ 129.09155, found 129.09137; [α]_D +22.4 (*c* 0.38, CH₂Cl₂). (2'S)-2-[(2*R*,5*S*)-5-Hydroxymethyltetrahydro-2-furanyl]-propan-1-ol [(2'*S*, 2*R*, 5*S*)-8]. ¹H-NMR (500 MHz, CDCl₃) δ 0.84 (d, *J*=7.1 Hz, 3H), 1.60-1.70 (m, 1H), 1.71-1.82 (m, 2H), 1.85-1.94 (m, 1H), 2.00-2.09 (m, 1H), 2.45 (br s, 2H), 3.50 (dd, *J*=5.1, 11.7 Hz, 1H), 3.58-3.67 (m, 2H), 3.70-3.79 (m, 2H), 4.03-4.10 (m, 1H); ¹³C-NMR (75 MHz, CDCl₃) δ 13.6, 26.1, 30.7, 40.6, 64.9, 68.3, 80.0, 86.0; IR (film) 3384, 1036 cm⁻¹; LRMS (EI) *m/z* 57 (100%, [C₃H₅O]⁺), 129 (71, [M-CH₃O]⁺); HRMS (EI) *m/z* calcd for C₇H₁₃O₂ [M-CH₃O]⁺ 129.09155, found 129.09181; [α]_D –21.3 (*c* 0.20, CH₂Cl₂).

2-[(2*S***,5***S***)-5-Hydroxymethyltetrahydro-2-furanyl]-ethan-1-ol [(2***S***,5***S***)-9]. ¹H-NMR (300 MHz, CDCl₃) \delta 1.50-1.76 (m, 6H), 1.88-2.06 (m, 2H), 3.43 (dd,** *J***=6.1, 11.4 Hz, 1H), 3.58 (dd,** *J***=3.3, 11.4 Hz, 1H), 3.73 (t,** *J***=5.5 Hz, 2H), 4.07-4.14 (m, 2H); ¹³C-NMR (75 MHz, CDCl₃) \delta 27.2, 32.4, 37.4, 61.5, 64.9, 79.2, 79.4; IR (film) 3363, 1053 cm⁻¹; LRMS (EI)** *m***/***z* **101 (100%, [M-C₂H₅O]⁺), 115 (03, [M-CH₃O]⁺); HRMS (EI)** *m***/***z* **calcd for C₆H₁₁O₂ [M-CH₃O]⁺ 115.07590, found 115.07421; [\alpha]_D -21.3 (***c* **0.20, CH₂Cl₂).**