SUPPORTING INFORMATION

The Effect of Fatty Acid Esterification on the Thermal Properties of Softwood Kraft Lignin

Klaus A. Y. Koivu, Hasan Sadeghifar, Paula A. Nousiainen, Dimitris S. Argyropoulos, and Jussi Sipilä

Number of pages: 6

Number of schemes: 1

Number of figures: 2

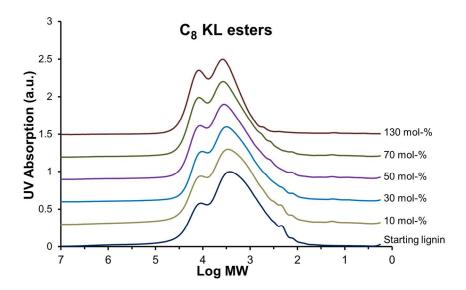
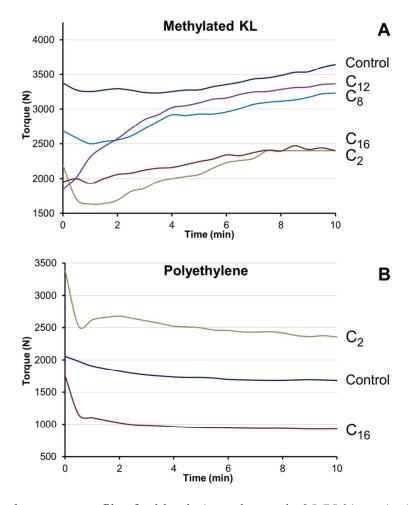

Number of tables: 3

Table of contents:

Scheme S1. An early tentative structure of SWKL (Marton 1971).

Hydroxyl group	Amount
	mmol/g
Aliphatic	2.3
Biphenyl	0.9
Diphenylether	0.6
Other condensed	0.7
Total condensed phenolic	2.1
Guaiacyl	2.2
p - Hydroxyphenyl	0.1
Total noncondensed phenolic	2.3
СООН	0.4
Total OH	6.7

Table S1. Total hydroxyl contents of SWKL (quantitative ³¹P NMR).


Figure S1. Molecular weight distributions of SWKL and 10-130 mol-% loaded C₈ KL esters. All GPC samples treated with acetobromination.

Sample	AcylCl loaded	M_n	$M_{\rm w}$	PDI
	mol-%	g/mol	g/mol	-
SWKL	-	2 100	19 000	8.9
C ₂ KL esters	10	2 200	15 000	7.0
	30	2 100	10 000	4.9
	50	2 200	11 000	5.2
	70	2 300	16 000	6.9
	130	2 400	11 000	4.8
C ₈ KL esters	10	2 200	13 000	5.8
	30	2 200	7 000	3.2
	49	2 400	11 000	4.4
	69	2 600	9 000	3.5
	130	3 000	7 000	2.3
C ₁₂ KL esters	10	2 100	11 000	5.5
	30	2 600	14 000	5.6
	49	2 800	11 000	4.0
	69	3 000	13 000	4.3
	130	4 100	11 000	2.6
C ₁₆ KL esters	10	2 400	12 000	5.0
	30	2 800	13 000	4.6
	49	3 000	10 000	3.4
	69	2 800	10 000	3.6

Table S2. GPC data of SWKL and C_2 - C_{16} KL esters after acetobromination treatment. The 69 mol-% substituted C_{16} KL ester caused steep pressure buildup in the system and the data is unreliable, and the 130 mol-% substituted ester was not tested due to this issue. The problem on the GPC setup could have affected the M_w (and thus PDI) values of the other higher loaded KL esters too.

Sample	AcylCl loaded mol-%	Aliphatic OH esterified mol-%	Condensed phenolic OH esterified mol-%	Noncondensed phenolic OH esterified mol-%	Total phenolic OH esterified mol-%
C ₂ KL esters	30	36	34	24	29
	50	55	47	39	43
	70	68	61	58	59
C ₈ KL esters	30	34	29	17	23
	49	58	40	31	36
	69	73	57	52	55
C ₁₂ KL esters	30	34	28	19	23
	49	55	36	32	34
	69	73	53	54	54
C ₁₆ KL esters	30	31	28	18	23
	49	54	42	33	37
	69	73	58	57	57

Table S3. Hydroxyl group selectivity data of SWKL esterified with 30-70 mol-% C_2 - C_{16} fatty acid chlorides (derived via quantitative ³¹P NMR). 10 mol-% loaded samples were not considered for selectivity studies due to lower MW fraction of product washed away during purification.

Figure S2. Extruder torque profiles for blends (sample:matrix 25:75 % w:w) of (A) methylated KL matrix with samples of methylated KL (control) and methylated C_2 - C_{16} KL esters and (B) polyethylene matrix with samples of methylated KL (control) and methylated C_2 and C_{16} KL esters.