Supporting Information Available for Org. Lett.

First Total Synthesis of Natural 6-Epiplakortolide E

Mankil Jung,* Jungyeob Ham and Jueun Song
Department of Chemistry, Yonsei University, Seoul 120-749, Korea
E-mail: mkjung@alchemy.yonsei.ac.kr; Fax: +82-2-364-7050; Tel: +82-2-2123-2648

Compd. 3
To 10-phenyldecane magnesium bromide, prepared from 1-bromo-10-phenyldecane ($2.0 \mathrm{~g}, 6.7 \mathrm{mmol}$) and Mg turning ($0.2 \mathrm{~g}, 8.7 \mathrm{mmol}$) in dry ether $(45 \mathrm{ml})$, was slowly added 4-methoxy pent-3-en-2-one ($0.77 \mathrm{~g}, 6.7$ mmol) in dry ether solution at room temperature. After 2 h vigorous stirring, the reaction mixture was quenched with water $(5 \mathrm{ml})$. A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ in water was added to dissolve the solid of magnesium salts. Extraction with ether $(2 \times 50 \mathrm{ml})$ and EtOAc $(2 \times 50 \mathrm{ml})$, drying the combined extract with MgSO_{4}, and removing solvent in vacuo gave the crude product. The crude product was purified by chromatography on silica gel using 20% EtOAc in hexane as eluant to obtain the compound 3 ($1.4 \mathrm{~g}, 69 \%$).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{2 5 0 M H z}, \mathbf{C D C l}_{3}\right): \delta 7.30 \sim 7.17(\mathrm{~m}, 5 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 2.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}$, $3 \mathrm{H}), 1.61(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~m}, 2 \mathrm{H}), 1.30 \sim 1.20(\mathrm{~m}$ and $\mathrm{bs}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(\mathbf{6 3 M H z}, \mathbf{C D C l}_{\mathbf{3}}\right.$) : $\delta 198,158,128.8,128.6,125.9,123.8,41.6,36.4,32.2,31.9,29.9,29.8$, 29.7, 29.6, 27.9, 25.8, 19.6.

FT-IR (cm $\left.{ }^{\mathbf{- 1}}\right): \quad 3022,2926,2849,1678,1627,1459,1368,1255,981,756,700$.
HRMS $m / z(\mathrm{M}+)$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}: 300.2455$. Found : 300.2452.

Compd. 4

To allymagnesium bromide, prepared from 3-bromopropene ($1.4 \mathrm{~g}, 11.6 \mathrm{mmol}$) and Mg turning ($0.5 \mathrm{~g}, 20.5$ $\mathrm{mmol})$ in dry ether (50 ml), was slowly added compound $3(1.4 \mathrm{~g}, 4.7 \mathrm{mmol})$ in dry ether solution at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 1.5 h , and quenched with water (5 ml). A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ in water was added to dissolve the solid of magnesium salts. Extraction with ether ($3 \times 50 \mathrm{ml}$), drying the combined extract with MgSO_{4} and removing solvent in vacuo gave the crude product. The crude product was purified by chromatography on silica gel using 5% EtOAc in hexane as eluant to obtain the compound 4 ($1.6 \mathrm{~g}, 60 \%$).
${ }^{1} \mathbf{H}$-NMR (250MHz, CDCl 3) : $\delta 7.29 \sim 7.13(\mathrm{~m}, 5 \mathrm{H}), 5.83(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~d}, 1 \mathrm{H}, J=1.1 \mathrm{~Hz}), 5.15(\mathrm{~s}, 1 \mathrm{H})$, $5.09(\mathrm{dd}, J=6.6 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H})$, $1.63(\mathrm{~m}, 2 \mathrm{H}), 1.40 \sim 1.15(\mathrm{~m}$ and $\mathrm{s}, 17 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(\mathbf{6 3 M H z}, \mathbf{C D C l}_{3}\right): \delta 143.3,138.6,134.6,130.7,128.7,128.6,125.9,119.1,72.7,48.8,41.4$, 36.4, 31.9, 30.0, 29.9, 29.8, 29.7, 29.6, 29.1, 28.4, 17.3.

FT-IR (cm ${ }^{\mathbf{- 1}}$): 3572, 3460, 3073, 3027, 2930, 2849, 1637, 1500, 1449, 1103, 1006, 914, 746, 711.
HRMS $m / z(M+)$ Calcd for for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}: 330.2924$. Found : 330.2952.

Compd. 5

To compound $4(1.4 \mathrm{~g}, 4.1 \mathrm{mmol})$ without solvent at $0^{\circ} \mathrm{C}$ under nitrogen was added 9-BBN $(0.5 \mathrm{M}$ in THF, 2 equiv.). The reaction mixture was warmed to room temperature and stirred for 1.5 h . After the reaction was completed, aq. $3 \mathrm{~N}-\mathrm{NaOH} / 30 \%-\mathrm{H}_{2} \mathrm{O}_{2}$ (vol./vol. $=1,5 \mathrm{ml}$) was very carefully added during 20 min at room temperature and the mixture was stirred vigorously for 0.5 h . The reaction mixture was diluted with EtOAc $(50 \mathrm{ml})$ and extracted with brine solution $(45 \mathrm{ml})$. The aqueous layer was re-extracted with ether $(45 \mathrm{ml})$ and the combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo to give the crude prodduct. The crude product was purified by chromatography on silica gel using $20 \% \mathrm{EtOAc}$ in hexane as eluant to obtain the diol compound 5 ($1.33 \mathrm{~g}, 90 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{2 5 0 M H z}, \mathbf{C D C l}_{3}\right): \delta 7.30 \sim 7.16(\mathrm{~m}, 5 \mathrm{H}), 5.22(\mathrm{bs}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.94(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~m}, 6 \mathrm{H}), 1.45 \sim 1.20(\mathrm{~m}$ and $\mathrm{s}, 17 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(\mathbf{6 3 M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \delta 143.3,138.3,131.2,128.8,128.6,125.9,73.5,63.8,41.5,40.9,36.4,31.9$,
30.0, 29.9, 29.8, 29.7, 29.6, 28.5, 27.9, 17.3.

FT-IR (cm $\left.{ }^{\mathbf{- 1}}\right): \quad 3358,3033,2926,2865,1668,1454,1378,1062,1026,930,756,711$.

Compd. 6
To a stirred solution of compound $5(1.3 \mathrm{~g}, 3.3 \mathrm{mmol})$ in DMF $(35 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added imidazole $(0.36 \mathrm{~g}$, $5.3 \mathrm{mmol})$ and TBDMS-Cl $(0.55 \mathrm{~g}, 3.6 \mathrm{mmol})$. The solution was warmed to room temperature and stirred for 4 h . The reaction mixture was added to brine $(50 \mathrm{ml})$ in a separatory funnel and extracted with EtOAc $(3 \times 30$ ml). The combined organic layers were dried over MgSO 4 , filtered and concentrated in vacuo to give the crude product. The crude product was purified by chromatography on silica gel using 20 \% EtOAc in hexane as eluant to obtain the mono TBDMS protected compound $\mathbf{5 a}(1.48 \mathrm{~g}, 98 \%)$. To a solution of $\mathbf{5 a}(0.31 \mathrm{~g}$, $0.65 \mathrm{mmol})$ in benzene, $\mathrm{CaCl}_{2}(200 \mathrm{mg})$ and $\mathrm{TsOH}(15 \mathrm{mg})$ was added and stirred vigorously for 2 h ., and heated to $50{ }^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was added to brine (15 ml) in a separatory funnel and extracted with EtOAc ($3 \times 10 \mathrm{ml}$). The combined organic layers were dried over MgSO 4 , filtered and concentrated in vacuo to give the crude product. The crude product was purified by chromatography on silica gel using 20% EtOAc in hexane as eluant to obtain the mono TBDMS protected compound $6(0.222 \mathrm{~g}, 80 \%$). ${ }^{1}$ H-NMR ($250 \mathrm{MHz}, \mathbf{C D C l}_{3}$) : $\delta 7.30 \sim 7.13(\mathrm{~m}, 5 \mathrm{H}), 5.60(\mathrm{bs}, 1 \mathrm{H}), 5.22(\mathrm{bs}, 1 \mathrm{H}), 3.61(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~m}, 2 \mathrm{H}), 1.75 \sim 1.56(\mathrm{~m}$ and s, 10 H$), 1.50 \sim 1.25(\mathrm{~m}$ and $\mathrm{bs}, 14 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(\mathbf{6 3 M H z}, \mathbf{C D C l}_{3}\right): \delta 143.3,137.9,136.4,135.4,133.2,129.4,128.8,128.0,125.9,125.0$, $124.4,123.4,63.3,40.0,36.4,33.4,32.5,31.9,30.1,29.9,28.4,26.4,18.7,18.1,-4.9$.
FT-IR ($\mathbf{c m}^{\mathbf{- 1}}$) : $\quad 3033,2936,2859,2727,1653,1627,1469,1377,1261,1113,950,843,782,700$.

Compd. 7a

General Method

A solution of compound $6(71 \mathrm{mg}, 0.155 \mathrm{mmol})$ in methylene chloride and $5 \% \mathrm{MeOH}(10 \mathrm{ml})$ containing Rose Bengal (0.5 mg) was stirred under oxygen bubbling at $0^{\circ} \mathrm{C}$, followed by irradiation with tungsten 500 W lamp. When a clean yellow solution was obtaineded after 4 hr ., the reaction was completed. The solvent was removed in vacuo, and the resulting crude product was purified by chromatography on silica gel using 5% EtOAc in hexane as eluant to obtain the compounds $7 \mathbf{a}(23 \mathrm{mg})$ and $7 \mathbf{b}$ (13 mg).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{2 5 0 M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \delta 7.30 \sim 7.14(\mathrm{~m}, 5 \mathrm{H}), 5.44(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{bd}, J=9.25 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~m}$, $16 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C-NMR (63MHz, $\mathbf{C D C l}_{\mathbf{3}}$) : $\delta 144,133.7,128.8,128.6,126.7,125.9,80.3,78.2,64,59.8,39.2,36.4$, $35.4,34.7,31.9,30.5,29.9,29.8,29.7,26.4,24.4,24.0,19.2,18.7,-4.94$.

Compd. 7b

${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{2 5 0 M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \delta 7.34 \sim 7.20(\mathrm{~m}, 5 \mathrm{H}), 5.50(\mathrm{bt}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{bd}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.61(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.63 \sim 1.56(\mathrm{~m}, 6 \mathrm{H}), 1.45 \sim 1.25(\mathrm{~m}$ and $\mathrm{bs}, 17 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H})$, $0.08(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(\mathbf{6 3 M H z}, \mathbf{C D C l}_{\mathbf{3}}\right.$) : $\delta 144,133.5,128.8,128.9,126.7,125.9,80.1,78.2,64,59.8,39.2,36.4$, $35.6,34.7,31.9,30.4,29.9,29.8,29.6,26.4,24.4,24.0,19.2,18.6,-4.95$.

Compd. 8

To a stirred solution of compound $7 \mathbf{a}(100 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{MeOH}(1: 1,35 \mathrm{ml})$ was added $10 \% \mathrm{aq}$. $\mathrm{HCl}(0.5 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred for 1 h . at room temperature. Solvent was removed in vacuo to give viscous crude product. It was again dissolved in EtOAc (30 ml). EtOAc layer was washed with brine $(2 \times 20 \mathrm{ml})$, dried over MgSO_{4}, filtered and concentrated in vacuo to give the crude product. The crud product
was purified by chromatography on silica gel using 35% EtOAc in hexane as eluant to obtain the compound 8 ($68.4 \mathrm{mg}, 87 \%$).
${ }^{1}$ H-NMR ($250 \mathrm{MHz}, \mathbf{C D C l}_{3}$) : $\delta 7.30 \sim 7.14(\mathrm{~m}, 5 \mathrm{H}), 5.49(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{bd}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~m}$, $2 \mathrm{H}), 2.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~m}, 4 \mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}), 1.35 \sim 1.20(\mathrm{~m}$ and s, 17 H$)$.
${ }^{13}$ C-NMR ($\mathbf{6 3 M H z}, \mathbf{C D C l}_{3}$) : δ 143, 133, 128.8, 128.6, 127.3, 125.9, 80.7, 80, 60.4, 39.1, 36.4, 34.1, 31.9, 31.3, 30.5, 29.9, 29.7, 24.1, 24, 19.2.

FT-IR (cm ${ }^{\mathbf{- 1}}$): 3435, 3033, 2926, 2859, 1739, 1668, 1459, 1373, 1250, 1052, 746, 711.
HRMS $m / z(\mathrm{M}+)$ Calcd for for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{3}: 374.2822$. Found : 374.2849.

Compd. 9
To a solution of compound $\mathbf{8}(60 \mathrm{mg}, 0.16 \mathrm{mmol})$ in acetone $(12 \mathrm{ml})$, a solution of $8 N$ Jones` reagent (1.5 ml) was slowly added at $0{ }^{\circ} \mathrm{C}$ and stirred for 1.5 h at $25^{\circ} \mathrm{C}$. The reaction mixture was diluted with chilled water $(15 \mathrm{ml})$. The solution was extracted with EtOAc $(3 \times 25 \mathrm{ml})$, dried over MgSO_{4}, filtered and concentrated in vacuo to give the crude product. The crud product was purified by chromatography on silica gel using 25% EtOAc in hexane as eluant to obtain the acid compound 9 ($48.5 \mathrm{mg}, 78 \%)$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{2 5 0 M H z}, \mathbf{C D C l}_{\mathbf{3}}\right): \delta 7.30 \sim 7.14(\mathrm{~m}, 5 \mathrm{H}), 5.51(\mathrm{t}, J=1.35 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{bd}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.90(\mathrm{dd}, \mathrm{J}=16.1 \mathrm{~Hz}, 9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, \mathrm{J}=16.1 \mathrm{~Hz}, 3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~m}$, $2 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~m}, 14 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(\mathbf{6 3 M H z}, \mathbf{C D C l}_{3}\right.$) : δ 175.6, 143.4, 131.8, 128.8, 128.6, 128.2, 125.9, 80.7, 78.6, 63.7, 38.9, 37, 36.4, 31.9, 30.4, 29.9, 29.7, 24.5, 23.9, 19.1.

HRMS $m / z(\mathrm{M}+)$ Calcd for for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{4}: 388.2615$. Found : 388.2673.

Compd. 10

General Method

A mixture of $25 \mathrm{mg}(0.064 \mathrm{mmol})$ of compound $9,40 \mathrm{mg}(0.5 \mathrm{mmol})$ of NaHCO_{3} and 5 ml of Distilledwater was placed 50 ml flask and stirred until a homogeneous solution was obtained. Chloroform(5 ml) was added, the mixture was cooled in an ice bath, and $150 \mathrm{mg}(1.2 \mathrm{mmol})$ of iodine was added at $0 \sim 5{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 days. The layers were separated, and the organic phase was washed with $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ until colorless solution was obtained and then with water (10 ml) and brine (10 $\mathrm{ml})$. The solution was dried over anhydrous MgSO_{4} and the solvent was removed in vacuo. The crude product was purified by chromatography on silica gel using $20 \% \mathrm{EtOAc}$ in hexane as eluant to obtain the compound 10 ($18 \mathrm{mg}, 55 \%$).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{2 5 0 M H z}, \mathbf{C D C l}_{3}\right): \delta 7.34 \sim 7.14(\mathrm{~m}, 5 \mathrm{H}), 4.86(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=8.9 \mathrm{~Hz}$, $3.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~m}, 4 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.35 \sim 1.20(\mathrm{~m}, 14 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(\mathbf{6 3 M H z}, \mathbf{C D C l}_{\mathbf{3}}\right.$) : δ 171.9, 143.3, 128.8, 128.6, 125.9, 84.7, 84.6, 82.8, 41.6, 39.4, 36.4, 32.8, $31.9,30.1,30.1,30.0,30.0,29.9,29.9,29.1,23.9,23.1$.
FT-IR (cm ${ }^{\mathbf{- 1}}$) : 3026, 2927, 2848, 1789, 1466, 1242, 1137, 1078, 959, 808, 703.
Mass : Low Resolution FAB ${ }^{+}=515(\mathrm{M}+\mathrm{H})^{+}$

Compd. 1a

To a stirred solution of compound $10(15 \mathrm{mg}, 0.03 \mathrm{mmol})$ in benzene $(15 \mathrm{ml})$ was added $\mathrm{Bu}_{3} \mathrm{SnH}(26.2 \mathrm{mg}$, $0.09 \mathrm{mmol})$ and AIBN ($5 \mathrm{mg}, 0.06 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$. The solution was refluxed at $80^{\circ} \mathrm{C}$ for 1 h . After solvent was removed in vacuo, the resultant crude product was purified by chromatography on silica gel using 35% EtOAc in hexane as eluant to obtain the acid compound 1a ($8.0 \mathrm{mg}, 68 \%$).
${ }^{1} \mathbf{H}-$ NMR ($250 \mathrm{MHz}, \mathbf{C D C l}_{3}$) : $\delta 7.36 \sim 7.16(\mathrm{~m}, 5 \mathrm{H}), 4.48(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.95 \sim 2.53(\mathrm{ABq}+\mathrm{d}$, $J=8.3 \mathrm{~Hz}, 18.5 \mathrm{~Hz}, 5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.30 \sim 1.64(\mathrm{ABq}, J=15.5 \mathrm{~Hz}, 15 \mathrm{~Hz}, 2 \mathrm{H}), 1.80 \sim 1.50(\mathrm{~m}$, $4 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.30 \sim 1.15(\mathrm{~m}, 14 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(\mathbf{6 3 M H z}, \mathbf{C D C l}_{\mathbf{3}}\right.$) : δ 174.5, 143, 128.8, 128.6, 125.9, 82.2, 80.9 80.3, 40.6, 36.9, 36.0, 34.1, 31.9, 29.9, 29.6, 29.6, 29.5, 29.4, 26.8, 25.3, 24.8, 23.6.

FT-IR (cm ${ }^{\mathbf{- 1}}$) : 3026, 2927, 2855, 1789, 1466, 1387, 1262, 1170, 1078, 953, 703.
HRMS $m / z(\mathrm{M}+)$ Calcd for for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{4}: 388.2615$. Found : 388.2644.
All spectral data of synthetic 1 a are identical to those of natural 6-epiplakortolide E of the literature. ${ }^{1 \mathrm{~g}}$

5β-iodo-6-epi-plakortolide E 10

Fig. S1: $250 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{1 0}$ at 300 K .
Fig. S2: $63 \mathrm{MHz}{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound 10 at 300 K .
Fig. S3: 500MHz NOESY spectrum of compound 10 at 300 K .
Fig. S4: 500MHz ROESY spectrum of compound 10 at 300 K .
Fig. S5: 500MHz TOCSY spectrum of compound 10 at 300 K .
Fig. S6: IR spectrum of compound $\mathbf{1 0}$ at 300 K .
Fig. S7: MS(FAB) spectrum of compound $\mathbf{1 0}$ at 300 K .

S1:

S2:

S3:

S5:

S6:

S7:

