Supporting information

The Total Synthesis of (-)-Callystatin A

Markus Kalesse,* Monika Quitschalle, Chary P. Khandavalli and Aamer Saeed

Institut für Organische Chemie, Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany.

Vinyl iodide B:

The Schwartz reagent ($1.5 \mathrm{~g}, 5.84 \mathrm{mmol}$) was suspended in THF/benzene (20 mL) and acetylene $\mathbf{3}(700 \mathrm{mg}, 2.92 \mathrm{mmol})$ was added at room temperature. The reaction was monitored via TLC and after the starting material was consumed $\mathrm{I}_{2}(742 \mathrm{mg}, 2.92 \mathrm{mmol})$ was added. The reaction was allowed to stir for 1 h and was then quenched with water. The aqueous layer was extracted with MTB-ether ($3 \times 100 \mathrm{~mL}$) and the combined organic layers were washed with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution ($2 \times 100 \mathrm{~mL}$). The organic layer was washed once with 100 mL brine, dried over MgSO_{4}, concentrated under vacuum and purified via flash chromatography (hexanes) to yield the desired vinyl iodide \mathbf{B} in 60% yield ($645 \mathrm{mg}, 1.75 \mathrm{mmol}$).
${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)($ major isomer resonances): $6.05(\mathrm{dq}, \mathrm{J}=10.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44$ $(\mathrm{q}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{qdd}, \mathrm{J}=5.5,6.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.54$ $(\mathrm{m}, 2 \mathrm{H}), 0.93(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): 145.04, 92.97, 76.21, 39.76, 27.76, 27.40, 25.91, 18.14, 15.10, 9.14, -4.25 .

Alcohol 4:

[340.62]
$\operatorname{Pd}(\mathrm{OAc})_{2}(30 \mathrm{mg}, 0.13 \mathrm{mmol}), \mathrm{AgOAc}(300 \mathrm{mg}, 1.79 \mathrm{mmol})$ and alcohol $\mathbf{C}^{1}(190 \mathrm{mg}, 1.9$ mmol) were dissolved in DMF (5 mL). Vinyl iodide B ($500 \mathrm{mg}, 1.36 \mathrm{mmol}$), dissolved in DMF (0.5 mL) was added over 20 min at room temperature. The reaction was stirred for 2 h and then directly put on a silica gel column. The product was purified by flash chromatography (hexanes/ethyl acetate, $5: 1$) to yield $65 \% ~(300 \mathrm{mg}, 88.3 \mathrm{mmol}$) of the desired product.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (major isomer resonances): $6.05(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.54$ (dtlike, $\mathrm{J}=7.3,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.53(\mathrm{~m}, 3 \mathrm{H}), 3.07(\mathrm{dq}, \mathrm{J}=6.9,10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.54-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.37-1.52(\mathrm{~m}, 3 \mathrm{H}), 0.93(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}$), 0.02 (s, 6H).
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): 137.12, 135.25, 132.39, 125.56, 77.56, 77.46, 68.39, 37.21, $36.67,27.96,26.32,18.57,16.88,16.59,13.12,9.38,-4.11$.

Ester 5:

Alcohol $4(380 \mathrm{mg}, 1.12 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. At this temperature the Dess-Martin periodinane ($475 \mathrm{mg}, 1.12 \mathrm{mmol}$) was added and the reaction was stirred for 30 min . Then sat. NaHCO_{3} solution $(10 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 \mathrm{~g})$ were added. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$, dried over MgSO_{4} and concentrated under reduced pressure. The Dess-Martin reagent was precipitated by the addition of light petroleum and the crude product was directly used in the next transformation. Still-Gennari reagent ($581 \mathrm{mg}, 1.68 \mathrm{mmol}$) and $18-\mathrm{c}-6(1.48 \mathrm{~g}, 5.6 \mathrm{mmol})$ were dissolved in 20 mL THF. At $0{ }^{\circ} \mathrm{C}$ KHMDS (0.5 M in toluene, $2.24 \mathrm{~mL}, 1.12 \mathrm{mmol}$) was added and the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. After 15 min the crude aldehyde prepared above ($377 \mathrm{mg}, 1.12$ mmol) dissolved in THF (0.5 mL) was added and the reaction was stirred at that temperature for 15 min . The reaction was then allowed to warm to room temperature. After 1.5 h the

[^0]reaction was quenched with brine, extracted with MTB-ether ($3 \times 100 \mathrm{~mL}$) and dried over MgSO_{4}. After purification via flash chromatography (hexanes/ethyl acetate, 60:1) ester $\mathbf{5}$ was obtained in 65% yield ($307 \mathrm{mg}, 0.728 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)(major isomer resonances): $5.99(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, \mathrm{~J}=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ (dt-like, J = 7.0, $15.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.21(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.44$ (q-like, J = $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dq}, \mathrm{J}=6.9,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.01-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $0.99(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.02$ ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 169.12, 146.06, 136.07, 134.98, 132.64, 132.54, 125.42, 77.36, $51.45,40.83,37.20,34.20,27.97,27.95,26.33,20.47,18.57,16.52,14.16,13.07,9.36,-4.11$.

Alcohol:

Ester $5(200 \mathrm{mg}, 0.474 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. At this temperature Dibal-H ($948 \mu \mathrm{~L}, 948 \mathrm{mmol}$) was added drop-wise. The reaction was stirred for 1.5 h and then quenched with $\mathrm{MeOH}(10 \mathrm{~mL})$. The reaction mixture was warmed to room temperature and then diluted with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The organic layer was extracted with MTB-ether, the layers were separated and the organic layer was dried over MgSO_{4}. After flash chromatography (hexanes/ethyl acetate, 5:1) the alcohol was obtained in 96% yield (179 $\mathrm{mg}, 0.455 \mathrm{mmol}$).
${ }^{1} \mathrm{H}$ NMR: ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)(major isomer resonances): $5.98(\mathrm{dd}, \mathrm{J}=0.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.47$ (dt, J = 7.3, $15.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.23(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-4.18(\mathrm{~m}$, $2 \mathrm{H}), 3.43$ (q-like, J = $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.67(\mathrm{~m}, 2 \mathrm{H}), 1.90-2.20(\mathrm{~m}, 4 \mathrm{H}), 1.71(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.04-1.06(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}$, $3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H})$.

Wittig salt 6 :

a) Transformation into the bromide:

The alcohol ($158 \mathrm{mg}, 0.4 \mathrm{mmol}$) from the previous reaction was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ and PPh_{3} and CBr_{4} were added. The reaction was stirred for 15 min at room temperature and then quenched with water. After extraction with MTB-ether, drying over MgSO_{4} and concentration the product was directly used in the succeeding transformation. Any attempts at purifying the compound with the aid of chromatography resulted in decomposition of the material.
b) Transformation into the Wittig salt:

The crude material from the previous reaction was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ and tributylphosphine ($200 \mu \mathrm{~L}, 850 \mathrm{mmol}$) was added and stirred for 1.5 h at room temperature. The disappearance of the starting material could be monitored by TLC. After 1.5 h , the solvent was removed under reduced pressure to provide residue $\mathbf{6}$ which was used directly in the following reaction.

Fragment 7.

Residue $6(\sim 0.17 \mathrm{mmol})$ and aldehyde $\mathbf{D}^{2}(0.17 \mathrm{mmol})$ were dissolved in toluene $(2 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$. $\mathrm{KO} t \mathrm{Bu}(204 \mu \mathrm{~L}, 0.204 \mathrm{mmol}, 1 \mathrm{M}$ in THF) was added over a period of 15 min and stirred for 30 min . After completion the reaction was quenched with water (10 mL), extracted with

[^1]MTB-ether (3 x 50 mL), dried over MgSO_{4} and concentrated. Flash chromatography (hexanes/ethyl acetate, $5: 1$) gave $72 \%(64.98 \mathrm{mg}, 0.122 \mathrm{mmol})$ of the desired product.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)(major isomer resonances): $6.60(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.90-6.10 $(\mathrm{m}, 2 \mathrm{H}), 5.60-5.80(\mathrm{~m}, 2 \mathrm{H}), 5.35-5.55(\mathrm{~m}, 1 \mathrm{H}), 5.05-5.30(\mathrm{~m}, 3 \mathrm{H}), 4.40-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.05$ (heptet, $\mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{q}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.75(\mathrm{~m}, 2 \mathrm{H}), 1.90-2.30(\mathrm{~m}, 6 \mathrm{H}), 1.70$ (d, J = $1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-1.05(\mathrm{~m}, 2 \mathrm{H}), 1.04$ $(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H})$.

Ketone 8:

Fragment $7(65 \mathrm{mg}, 0.123 \mathrm{mmol})$ was dissolved in THF (1 mL) and TBAF ($615 \mu \mathrm{~L}, 0.615$ mmol) was added at room temperature. The reaction was stirred for 24 h and then quenched with water and extracted with MTB-ether (3 x 50 mL). After drying over MgSO_{4} and concentration under reduced pressure the material was directly used in the succeeding transformation.

To a solution of oxalyl chloride ($0.07 \mathrm{~mL}, 0.135 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added at -78 ${ }^{\circ} \mathrm{C}$ dimethylsulfoxide ($0.02 \mathrm{~mL}, 0.27 \mathrm{mmol}$). The reaction was stirred for 10 min and then the alcohol from the previous transformation dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added over 10 min . The mixture was stirred for additional 10 min and $\mathrm{Et}_{3} \mathrm{~N}(0.085 \mathrm{~mL}, 0.616 \mathrm{mmol})$ was added. After 5 min , the reaction was warmed to room temperature and concentrated under reduced pressure. Purification with flash chromatography (hexanes/ethyl acetate, 5:1) gave 73 \% (37 $\mathrm{mg}, 0.09 \mathrm{mmol}$) of ketone $\mathbf{8}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D} 4-\mathrm{MeOH}$): 6.64 (dt-like, $\mathrm{J}=1.0,15.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.02-6.10 (m, 2H), 5.78 (ddd, J = 0.7, 6.0, $15.9 \mathrm{~Hz}, 1 \mathrm{H}$), $5.70-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{dt}-\mathrm{like}, \mathrm{J}=7.0,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-$ $5.27(\mathrm{~m}, 2 \mathrm{H}), 5.14-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.46-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.03$ (heptet, J = 6.2 Hz, 1H), $3.62(\mathrm{dq}, \mathrm{J}$ $=6.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.29(\mathrm{~m}, 6 \mathrm{H}), 1.83(\mathrm{~d}, \mathrm{~J}=1.4$
$\mathrm{Hz}, 3 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=6.3,3 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{t}, \mathrm{J}=7.25,3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, D4-MeOH): 214.96, 137. 98, 137.34, 136.86, 136.68, 130.48, 130.24, $129.73,128.97,128.59,127.53,95.22,71.54,68.83,47.48,42.33,35.11,33.72,32.31,27.99$, $24.55,22.82,21.65,17.25,14.51,13.39,8.45$.

19,20-Syn-9:

[500.75]
LiHMDS ($80 \mu \mathrm{~L}, 0.08 \mathrm{mmol}$) was dissolved in THF (0.3 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. Ethyl ketone 8 ($22 \mathrm{mg}, 0.053 \mathrm{mmol}$, in 0.2 mL THF) was added over 5 min and stirred for additional 15 min . Then aldehyde $\mathbf{A}(9 \mathrm{mg}, 0.106 \mathrm{mmol})$ was added and the reaction was quenched after 15 min with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution at $-78{ }^{\circ} \mathrm{C}$. The aqueous layer was extracted with MTB-ether (50 mL), the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. After purification via flash chromatography (hexanes/ethyl acetate, 5:1) all$\operatorname{syn} 9(17 \mathrm{mg}, 0.033 \mathrm{mmol})$ was obtained in 63% yield.
${ }^{1}$ H-NMR ($500 \mathrm{MHz}, \mathrm{D} 4-\mathrm{MeOH}$): $6.65(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-6.10(\mathrm{~m}, 2 \mathrm{H}), 5.62-5.82(\mathrm{~m}$, $3 \mathrm{H}), 5.09-5.25(\mathrm{~m}, 3 \mathrm{H}), 4.50(\mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.05($ heptet, $\mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, \mathrm{J}=$ $10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, \mathrm{J}=7.65,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, \mathrm{J}=7.0,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.79$ (m, 1H), 2.20-2.28 (m, 2H), 2.06-2.19 (m, 5H), $1.89(\mathrm{~d}, 1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.21(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 0.95-1.06(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}$, 3 H).
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{D} 4-\mathrm{MeOH}$): 216.68, 137.88, 137.75, 136.94, 136.72, 130.26, 129.99, $129.79,129.19,128.40,127.50,95.23,75.56,71.59,68.83,47.23,42.32,39.43,33.5332 .32$, 28.56, 27.97, 25.75, 24.57, 22.83, 21.47, 16.99, 14.94, 14.50, 13.72, 13.60, 12.33.

(-)-Callystatin A:

Acetal $19,20-\operatorname{syn} 9(12 \mathrm{mg}, 0.02 \mathrm{mmol})$ was dissolved in a $3: 1$ mixture of acetone and water $(0.5 \mathrm{~mL})$. Pyridinium p-toluenesulfonate (PPTS) (5 mg) was added and the reaction mixture was stirred for 2 h at room temperature. The reaction was then quenched with sat. NaHCO_{3} solution and the aqueous layer was extracted with MTB-ether ($3 \times 20 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Activated $\mathrm{MnO}_{2}(100 \mathrm{mg})$ was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ containing pyridine ($10 \mu \mathrm{~L}$) and the crude lactol (dissolved in $0.5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added at room temperature. After the reaction was allowed to stir for 30 min the MnO_{2} was removed by filtration through a short plug of celite. After concentration the product was purified by flash chromatography (hexanes/ethyl acetate, 3:1) to yield $7 \mathrm{mg}(0.015 \mathrm{mmol}, 81 \%)$ of synthetic callystatin A.
$[\alpha]^{24}{ }_{\mathrm{D}}-105^{\circ}(\mathrm{c}=0.1, \mathrm{MeOH}) ;(\mathrm{Lit})-107^{\circ}(\mathrm{c}=0.1, \mathrm{MeOH})$;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $6.90(\mathrm{dt}, \mathrm{J}=9.74,4.25 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=15.78 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$ (dt, J = 9.88, $1.85 \mathrm{~Hz}, 1 \mathrm{H}$), $6.01(\mathrm{~d}, \mathrm{~J}=15.55 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{dd}, \mathrm{J}=15.85,6.77 \mathrm{~Hz}, 1 \mathrm{H}), 5.58$ (dt, J = 15.51, 7.6 Hz, 1H), 5.25 (d, J = $9.74 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (q-like, J $=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dq}, \mathrm{J}=10.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{ddd}, \mathrm{J}=6.6,4.3,3.43 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dq}$, $\mathrm{J}=7.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~d}, \mathrm{~J}=3.43 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.14-$ $2.23(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{t}-\mathrm{like}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.14$ $(\mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=7.13 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}$, 3 H), 0.89 (d, J = $6.6 \mathrm{~Hz}, 3 \mathrm{H}$), 0.85 (t, J = $7.4 \mathrm{~Hz}, 3 \mathrm{H}$);
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D} 4-\mathrm{MeOH}$): 215.26, 165.79, 148.27, 138.43, 137.43, 137.31, 137.04, $130.98,130.63,129.02,126.93,121.85,80.75,76.99,46.49,42.26,41.75,39.66,33.67$, $31.25,27.87,25.74,21.61,16.93,16.52,14.43,13.54,11.94,10.95$.

(+)-epi-Callystatin A:

Prepared from 19,20-anti 9.
$[\alpha]^{24}{ }_{\mathrm{D}}+410^{\circ}(\mathrm{c}=0.1, \mathrm{MeOH}) ;$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $6.89(\mathrm{dt}, \mathrm{J}=9.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=15.78 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$ (dt, J = 9.88, 1.85 Hz, 1H), $6.02(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{ddd}, \mathrm{J}=15.85,7.0,0.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.58(\mathrm{dt}, \mathrm{J}=15.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.26(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{q}-\mathrm{like}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dq}, \mathrm{J}=$ $9.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.52(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{dq}, \mathrm{J}=7.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.64-2.70 (m, 1H), 2.45-2.48 (m, 2H), 2.14-2.24 (m, 2H), 2.08 (t-like, J = 6.8 Hz, 2H), 1.79 $(\mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.04$ $(\mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D} 4-\mathrm{MeOH}$): 215.26, 165.79, 148.27, 138.43, 137.43, 137.31, 137.04, 130.98, 130.63, 129.02, 126.93, 121.85, 80.75, 76.99, 46.49, 42.26, 41.75, 39.66, 33.67, $31.25,27.87,25.74,21.61,16.93,16.52,14.43,13.54,11.94,10.95$.

[^0]: ${ }^{1}$ a) Overman, L. E; Robinson, L. A.; Zablocki, J. J. Am. Chem. Soc. 1992, 114, 368; b) Schinzer, D.; Bauer, A.; Schieber, J. Synlett 1998, 861.

[^1]: ${ }^{2}$ Quitschalle, M.; Christmann, M.; Bhatt, U.; Kalesse, M. Tetrahedron Lett. 2001, 42, 1263.

