Experimental Section

General Methods: NMR spectra were recorded using Varian Unity Plus 500 MHz , Bruker AMX-400 MHz , and GE QE Plus 300 MHz spectrometers and chemical shift values are reported in parts per million (ppm) downfield from tetramethylsilane. The infrared spectra were recorded using a Perkin Elmer Spectrum 1000 FT-IR spectrometer. The mass spectral data were obtained using a Finnigan SSQ700 DCI/MS and a Finnigan SSQ7000 APCI/MS and ESI/MS. All reactions were run under an atmosphere of N_{2}. All reagents and solvents were used as purchased from commercial suppliers. All reactions were monitored by TLC ($250 \mu \mathrm{~m}$ Merck Silica Gel $60 \mathrm{~F}_{254}$) and HPLC (Hewlett-Packard 1100 series, Zorbax SB $\mathrm{C} 84.6 \mathrm{~mm} \times 7.5 \mathrm{~mm}$ column, Flow rate $1.5 \mathrm{~mL} / \mathrm{min}$., UV detection, gradient elution $0.1 \mathrm{v} / \mathrm{v} \% \mathrm{H}_{3} \mathrm{PO}_{4}$ in $\mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{3} \mathrm{CN}$). Elemental analysis and optical rotations were performed by Robertson Microlit Laboratories, Inc., 29 Samson Avenue, PO Box 927, Madison, NJ 07940.

3S,4S)-4-[(tert-Butyloxycarbonyl)-amino]-6-methyl-1-hepten-3-ol (7) To a solution of N-Boc-Lleucinol, 5 , ($2.00 \mathrm{Kg}, 9.126$ moles) and 2,2,6,6-tetramethyl-1-piperidinyloxy, free radical ($14.5 \mathrm{~g}, 92.7$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(36.6 \mathrm{Kg})$ and $\mathrm{H}_{2} \mathrm{O}(5.54 \mathrm{Kg})$ at $0{ }^{\circ} \mathrm{C}$ was added $7 \% \mathrm{NaHCO}_{3}$ solution (28.9 Kg) and $12.6 \% \mathrm{NaOCl}$ solution $(6.62 \mathrm{Kg})$ over 2 h with vigorous stirring. The biphasic mixture was stirred for 20 min. then the layers were separated. The organic layer was washed sequentially with $10 \% \mathrm{NaHSO}_{4}$ solution (25.7 Kg) containing $\mathrm{NaI}(151 \mathrm{~g}), 10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(28.7 \mathrm{Kg}), 7 \% \mathrm{NaHCO}_{3}(28.5 \mathrm{Kg})$ and brine (21.7 Kg). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to 3.80 Kg of $\mathbf{6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (a small portion was concentrated to dryness for characterization $[\alpha]^{25}{ }_{D}-32.4$ (c 1.0, MeOH); IR (neat) 3346, $2955,1731,1713,1694,1515,1363,1249,1166,1054,1017 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.43(\mathrm{~s}$, $1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (ddd, $J=11.0, J=7.8, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.65$ (sept., $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.48$ $(\mathrm{m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 202.0$, $155.7,78.2,57.8,36.5,28.1,24.0,22.9,21.3$; Analytical calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{3}$: C, 61.37; H, 9.83; N, 6.51 Found: C, $61.16 ; \mathrm{H}, 9.77$; N, 6.43 . The ee of $\mathbf{6}$ was determined see below in supplementary addendum.

To a solution of vinyl magnesium chloride in THF ($17.5 \mathrm{wt} \%, 13.8 \mathrm{Kg}, 27.9$ moles) was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(18.8 \mathrm{Kg})$. The resulting solution was cooled to $10^{\circ} \mathrm{C}$ and treated with N-Boc-L-leucinal $6 / \mathrm{CH}_{2} \mathrm{Cl}_{2}(3.80$ Kg) while maintaining an internal temperature $<30^{\circ} \mathrm{C}$. The reaction was stirred for 25 min . then poured into a stirring solution of $15 \% \mathrm{NH}_{4} \mathrm{Cl}(51.9 \mathrm{Kg})$ and diluted with MTBE $(25.6 \mathrm{Kg})$. Layers were separated and the organic layer washed with brine $(26.9 \mathrm{Kg})$. The organic layer was concentrated to approximately 6 liters, whereupon heptane 20 Kg was added and concentrated to 3.65 kg , cooled to $-20^{\circ} \mathrm{C}$ (overnight), filtered and washed with cold heptane $(1.2 \mathrm{Kg})$ to afford 1.48 Kg of off-white solid as a mixture of 7 (1.28 $\mathrm{Kg} 58 \%$ overall) and the undesired isomer $\mathbf{1 3}(0.20 \mathrm{Kg}, 9.0 \%)$. ($\mathbf{3 S}, \mathbf{4 S}$)-4-[(tert-Butyloxycarbonyl)-amino]-6-methyl-1-hepten-3-ol (7). TLC: $2: 1$ heptane:EtOAc; $\mathrm{R}_{\mathrm{f}}=0.42 ;[\alpha]_{\mathrm{D}}^{25}-0.27 .3$ (c 1.01, MeOH); IR (neat) $3383,2955,2868,1688,1506,1367,1169,919 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.89$ (ddd, $J=17.3,10.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (ddd, $J=17.3,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.18 (ddd, $J=10.7,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.68$ (br d, 1H), $4.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.66(\mathrm{brm}, 1 \mathrm{H}), 2.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.68(\mathrm{hept}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.71-$ $1.35(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 156.3,138.2,116.1,75.1,52.9,40.7$, 28.3, 24.8, 23.3, 21.9; $\mathrm{MS} \mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~m} / \mathrm{z} 243$, DCI/NH3 ${ }^{+}$[M+1] 244, $\mathrm{ESI}^{+}[\mathrm{M}+1] 244$, ESI ${ }^{-}$[M-1] 242; Analytical calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NO}_{3}$: C, 64.16; H, 10.36; N, 5.76 Found: C,64.00; H,10.25; N,5.65. For the determination of the ee $\%$ of 7 see the supplementary material addendum.
(3R,4S)-4-[(tert-Butyloxycarbonyl)-amino]-6-methyl-1-hepten-3-ol (8). TLC: 2:1 heptane:EtOAc; $\mathrm{R}_{\mathrm{f}}=0.33 ;[\alpha]^{25}{ }_{\mathrm{D}}-37.9$ (c 9.54, MeOH); IR (neat) $3358,2949,1682,1527 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 5.82$ (ddd, $J=17.3,10.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.31 (ddd, $J=17.3,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.21 (ddd, $J=10.6,1.5,1.5 \mathrm{~Hz}$, 1 H), 4.53-4.58 (br m, 1H), $4.17(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.85-3.74(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}$, $9 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $156.8,136.7,116.5,75.9,53.5,39.1,28.3,24.7,23.4,21.7$; $\mathrm{MS}\left(\mathrm{APCI}^{+}\right) \mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~m} / \mathrm{z} 243$ (relative intensity), $244(\mathrm{M}+1,85) 244$, (100) 188, (47) 170, 144 (90); Analytical calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NO}_{3}$: C, 64.16; H , 10.36; N, 5.76 Found: C, 63.91; H, 10.36; N, 5.85.
(4S,5S)-3-(tert-Butyloxycarbonyl)-2,2-dimethyl-5-ethenyl-4-(2-methylpropyl)oxazolidine (9). To a solution of allylic alcohols $\mathbf{1 2}$ and $\mathbf{1 3}(20.5 \mathrm{~g}, 84.4 \mathrm{mmol}, \mathbf{7 : 8}, 6: 1$; Assay for 7, $17.6 \mathrm{~g}, 72.3 \mathrm{mmol}$) in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was added pTSA $(0.64 \mathrm{~g}, 3.4 \mathrm{mmol})$. The resulting mixture was cooled to $-20^{\circ} \mathrm{C}$ then added 2,2-dimethoxypropane ($35.4 \mathrm{~g}, 340 \mathrm{mmol}$). The reaction was stirred at $-20^{\circ} \mathrm{C}$ for 4 h . While maintaining temperature at $-20^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}(30.4 \mathrm{~g}, 300 \mathrm{mmol})$, succinic anhydride ($25.1 \mathrm{~g}, 251 \mathrm{mmol}$), and DMAP ($15.8 \mathrm{~g}, 129 \mathrm{mmol}$) were added to the reaction mixture. The reaction was then allowed to warm to ambient temperature. The reaction was quenched with $\mathrm{MeOH}(10.8 \mathrm{~mL})$ and stirred for 30 min . The volatiles were removed by concentration and then diluted with heptane (210 mL), MTBE (55 mL), and a $5 \% \mathrm{NaH}_{2} \mathrm{PO}_{4}$ solution (500 mL). The layers were separated and the organic layer was washed with a mixture of $5 \% \mathrm{NaHCO}_{3}$ solution $(450 \mathrm{~mL})$ and methanol $(75 \mathrm{~mL})$. The layers were separated and the remaining organic layer was washed with brine $(50 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give $9(18.6 \mathrm{~g}, 91 \%$ yield based on starting alcohol 7) as a viscous oil. TLC: 2:1 heptane:EtOAc; 9, $\mathrm{R}_{\mathrm{f}}=0.56 ;[\alpha]^{25}{ }_{\mathrm{D}}+17.8\left(\mathrm{c} 6.09, \mathrm{MeOH}\right.$); IR (neat) 2950, 1702, 1460, 1385, $1178 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right) \delta 5.97(\mathrm{ddd}, J=17.3,10.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dt}, J=17.3,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.19 (dt, $J=10.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=7.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{br} \mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.53(\mathrm{~m}, 2 \mathrm{H})$, $1.50(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.40-1.35(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{dd}, J=9.7,6.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO$\left.\mathrm{d}_{6}, 75 \mathrm{MHz}\right) \delta 150.8,138.8,117.2,93.7,81.2,79.3,59.8,28.3,27.5,24.8,23.9,21.4$; MS (APCI^{+}) $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~m} / \mathrm{z}$ (relative intensity) $284(\mathrm{M}+1,11), 184$ (100); Analytical calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{3}$: C, 67.90; H , 10.33; N, 4.95. Found: C, 67.66; H, 10.33; N, 4.83.
(4S,5R)-3-(tert-Butyloxycarbonyl)-2,2-dimethyl-4-(2-methylpropyl)- oxazolidine-5-carboxylic acid (4). To a suspension of $\mathrm{RuO}_{2} \mathrm{xH}_{2} \mathrm{O}(0.42 \mathrm{~g}, 3.1 \mathrm{mmol})$, acetone $(17 \mathrm{~mL})$ and water $(17 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaIO}_{4}(2.90 \mathrm{~g}, 13.6 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. After 5 min . the vinyl oxazolidine $9(12.0 \mathrm{~g}, 41.6 \mathrm{mmol})$ in acetone (375 mL) was added. Next $\mathrm{NaIO}_{4}(55.2 \mathrm{~g}, 256 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(355 \mathrm{~mL})$ was added dropwise over 3 h keeping the temperature below $15^{\circ} \mathrm{C}$. After 1 h of additional stirring the reaction was cautiously quenched with iso-propanol (21 mL) and stirred for 30 minutes while the reaction warmed to ambient temperature. The reaction was then filtered though Celite and the resulting filter cake washed with a $1: 1$ acetone:water solution $(300 \mathrm{~mL}) . \mathrm{NaCl}(20 \mathrm{~g}, 342 \mathrm{mmol})$ was added to the combined filtrates and then extracted with MTBE (500 mL). The organic extract was washed with a $1: 1$ mixture of $1 \mathrm{M} \mathrm{NaHSO}_{4}$ and 1 $\mathrm{M} \mathrm{NaHSO}_{3}$ (190 mL total). The organic layer was then extracted with $0.5 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3} \mathrm{aq}$. solution (380 mL). The alkaline aqueous layer was pH adjusted to pH 5 with portion wise addition of a concentrated citric acid solution (47 g in $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$). The acidic aqueous layer was extracted with MTBE (360 mL) and the organic layer was washed with brine $(90 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give $4(10.6 \mathrm{~g}, 85 \%)$. TLC: $2: 1$ heptane:EtOAc; $\mathrm{R}_{\mathrm{f}}=0.12 ; \mathrm{mp} 91-93.5^{\circ} \mathrm{C},[\alpha]^{25}{ }_{\mathrm{D}}-7.4$ (c $10.61, \mathrm{CHCl}_{3}$); IR (neat) 3500 (br), 1704, $1381 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 300 \mathrm{MHz}$) $\delta 13.0(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.35(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.06(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 1.80-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H})$, $1.40-1.32(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75 \mathrm{MHz}\right) \delta 172.9,150.3,94.8,79.2,77.9$, 58.2, 43.4, 28.1, 25.9, 25.0, 23.6, 21.1; MS (ESI $) \mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~m} / \mathrm{z} 301$ (relative intensity) 301 (M, 15), 300 (M-1, 100); Analytical calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NO}_{5}$: C, 59.77; H, 9.03; N, 4.65. Found: C, 59.46; H, 8.99; N, 4.66.

Iso-propyl (2R,3S)-3-amino-2-hydroxy-5-methylhexanoate (13). To a solution of the oxazolidine acid $16(16.0 \mathrm{~g}, 53 \mathrm{mmol})$ in iso-propanol (95 mL) was added $\mathrm{MeSO}_{3} \mathrm{H}(6.5 \mathrm{~g}, 68 \mathrm{mmol})$ and the resulting solution was heated to $73^{\circ} \mathrm{C}$ for 4 h . The reaction was then cooled to ambient temperature and stirred for 1 h. Water (27 mL) was added to the reaction which was stirred for an additional 3 h . The reaction mixture was concentrated to a low volume then diluted with isopropyl acetate $(350 \mathrm{~mL})$. The isopropyl acetate solution was washed with $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ solution (45 mL). The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give $13(10.3 \mathrm{~g}, 96 \%)$. mp 54.6-55.8 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}-13.6\left(\mathrm{c} 5.27, \mathrm{CHCl}_{3}\right)$; IR (neat) 3085 (br), 1731, 1592, 1462, 1378, 1208; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.20(\mathrm{hept}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.07 (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{td}, J=7.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.81$ (hept, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.46$ (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 175.3,75.1,70.8,52.9,44.9,26.1,24.5,23.5,23.2 ; \mathrm{MS}\left(\mathrm{APCI}^{+}\right) \mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~m} / \mathrm{z} 245$ $(\mathrm{M}+42,32) 204(\mathrm{M}+1,100)$; Analytical calcd for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{5}: \mathrm{C}, 59.08 ; \mathrm{H}, 10.41$; N, 6.89. Found: C, 58.70; H, 10.32; N, 6.80 .
(3R, 4S)-bis-N,O-triethylsilyl-4-(2-methylpropyl)-3-hydroxy-azetidin-2-one (15b). To a solution of isopropyl ($2 R, 3 S$)-3-amino-2-hydroxy-5-methylhexanoate (13) ($10.0 \mathrm{~g}, 49.3 \mathrm{mmol}$) in MTBE (200 mL) was added $\mathrm{NEt}_{3}(13.3 \mathrm{~g}, 131 \mathrm{mmol})$. The mixture then was cooled to $0^{\circ} \mathrm{C}$ and treated with TESCl (17.1
$\mathrm{g}, 113 \mathrm{mmol}$). The resulting white slurry was stirred at $23^{\circ} \mathrm{C}$ for 1.5 h . The mixture was cooled to $0^{\circ} \mathrm{C}$ and treated dropwise with t-butylmagnesium chloride ($197 \mathrm{~mL}, 1 \mathrm{M}$ solution in THF, 197 mmol). The reaction was stirred at $23^{\circ} \mathrm{C}$ for 1 h during which it became thick slurry. The reaction mixture was poured into $15 \% \mathrm{NH}_{4} \mathrm{Cl}$ solution $(735 \mathrm{~mL})$ and diluted with MTBE (375 mL). The layers were separated and the organic layer washed with brine (212 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford the crude bis-TES lactam $\mathbf{1 5 b}$ as a brown oil ($23.4 \mathrm{~g}, 78 \%$ pure by HPLC which indicates $18.3 \mathrm{~g}, 49.3 \mathrm{mmol}$). The crude $\mathbf{1 5 b}$ was used directly in the next step. TLC: EtOAc/hexane (1:4), $\mathrm{R}_{\mathrm{f}}=0.82 ;[\alpha]_{\mathrm{D}}^{25}+83.14$ (c 10.021, CHCl_{3}); IR (neat) 2956, 1749, 1194, $1017 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 4.82(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{ddd}, J=10.5,5.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{ddd}, J=13.2,10.2,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.67-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{ddd}, J=13.2,9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.98-0.91(\mathrm{~m}, 18 \mathrm{H}), 0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $0.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.76-0.61(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(\mathrm{CDCl} 3,75 \mathrm{MHz}) \delta 176.8,79.0,57.1,41.8,27.2$, 25.6, 23.9, 8.64, 8.56, 6.7, 5.6; $\mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{C}_{19} \mathrm{H}_{41} \mathrm{NO}_{2} \mathrm{Si}_{2} \mathrm{~m} / \mathrm{z}$ (relative intensity) $372\left(\mathrm{MH}^{+}, 100\right), 342(5)$; Analytical calcd for $\mathrm{C}_{19} \mathrm{H}_{41} \mathrm{NO}_{2} \mathrm{Si}_{2}$: C, 61.39, H, 11.12; Found: C, $61.27, \mathrm{H}, 11.28$.
(3R, 4S)-3-triethylsilyloxy-4-(2-methylpropyl)-azetidin-2-one (16b). To a solution of crude bis-TES lactam 15 b (23.4 g crude at 78% purity gives $18.3 \mathrm{~g}, 49.3 \mathrm{mmol}$) in EtOAc (250 mL) at $-10^{\circ} \mathrm{C}$ was added $0.7 \% \mathrm{KF}$ in $\mathrm{EtOH}(16 \mathrm{~mL})$ then the reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was diluted with $2 \% \mathrm{NaCl}$ solution $(100 \mathrm{~mL})$ and the layers separated. The organic layer was diluted with hexane (130 mL) and washed sequentially with $5 \% \mathrm{NaH}_{2} \mathrm{PO}_{4}(50 \mathrm{~mL}), 7 \% \mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine (50 $\mathrm{mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford 21.0 g of the crude mono-TES lactam 16b $(21.0 \mathrm{~g}, 60 \%$ pure by HPLC (contaminated with ethoxytriethylsilane) which indicates $12.7 \mathrm{~g}, 49.3 \mathrm{mmol}$). The crude $\mathbf{1 6 b}$ was used directly in the next step. TLC EtOAc/hexane (1:4), $\mathrm{R}_{\mathrm{f}}=0.15 ;[\alpha]^{25}{ }_{\mathrm{D}}+33.60$ (c 10.93, CHCl_{3}); IR (neat) 3228, 2957, 1760, $1182 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}) \delta 6.77(\mathrm{bs}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=4.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (ddd, $J=7.6,5.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.57(\mathrm{~m}, 1 \mathrm{H})$, $1.37-1.34(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.92(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.68-0.59(\mathrm{~m}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl} 3,75 \mathrm{MHz}\right) \delta 170.3,77.2,54.1,38.7,25.3,23.0,22.3,6.5,4.6 ; \mathrm{MS}\left(\mathrm{ESI}^{-}\right)$ $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{Si} \mathrm{m} / \mathrm{z}$ (relative intensity) $256\left(\mathrm{M}^{+}-\mathrm{H}, 100\right)$; Analytical calcd for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{Si}: \mathrm{C}, 60.65, \mathrm{H}$, 10.57; Found: C, $60.45, H, 10.59$.
(3R,4S)-1-(tert-Butyloxycarbonyl)-3-triethylsilyloxy-4-(2-methylpropyl)azetidin-2-one (2b). To а solution of mono-TES lactam $16 \mathrm{~b}(21.0 \mathrm{~g}, 60 \%$ pure by HPLC indicates $12.7 \mathrm{~g}, 49.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80$ $\mathrm{mL})$ at $23{ }^{\circ} \mathrm{C}$ was added $\mathrm{NEt}_{3}(14.6 \mathrm{~g}, 144 \mathrm{mmol})$, a solution of di-tert-butyl dicarbonate $(16.1 \mathrm{~g}, 73.9$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and DMAP $(3.31 \mathrm{~g}, 27.1 \mathrm{mmol})$. The reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 1.5 h . The reaction was diluted with hexane $(90 \mathrm{~mL})$ and washed sequentially with $5 \% \mathrm{NaH}_{2} \mathrm{PO}_{4}(3 \times 255$ $\mathrm{mL}), 7 \% \mathrm{NaHCO}_{3}(120 \mathrm{~mL})$ and brine (180 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude Boc lactam $\mathbf{2 b}$ (22.0 g crude oil, 74% pure by HPLC indicates $16.3 \mathrm{~g}, 91 \%$ yield over 3 steps). The major impurity ($\sim 20 \mathrm{wt}$. \%) is the by-product ethoxytriethylsilane carried over from the previous desilylation step. TLC EtOAc/hexane (1:4), $\mathrm{R}_{\mathrm{f}}=0.67 ;[\alpha]_{\mathrm{D}}^{25}+79.19$ (c 10.07, CHCl_{3}); IR (neat) 2957, 1805, 1731, $1330 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.83(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{q}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.78-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.94(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 3 \mathrm{H}), 0.70-0.62(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 166.4,148.4,83.1,75.7,57.0,36.5,28.3,28.0$, 25.1, 23.0, 6.5, 4.6; MS (ESI $\left.{ }^{+}\right) \mathrm{C}_{18} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{Si} \mathrm{m} / \mathrm{z}$ (relative intensity) $375\left(\mathrm{M}^{+}+\mathrm{NH}_{4}, 100\right)$; Analytical calcd for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{Si}$: C, 60.46, H, 9.87; Found: C, 60.57, H, 10.10.

SUPPLEMENTAL MATERIAL ADDENDUM:

Determination of ee $\%$ of $\mathbf{6}$. To a solution of aldehyde $\mathbf{6}(100 \mathrm{mg}, 0.465 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of lithium aluminum hydride in THF ($1 \mathrm{M}, 0.51 \mathrm{~mL}, 0.51 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 1 h , then quenched slowly with MeOH followed by the addition of $15 \% \mathrm{NH}_{4} \mathrm{Cl}$ solution and the dilution with $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated and the organic layer washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration of the organic layer in vacuo gave 95 mg of the corresponding alcohol. The alcohol ($95 \mathrm{mg}, 0.438 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. Pyridine ($0.071 \mathrm{~mL}, 0.876 \mathrm{mmol}$) was added followed by 3,5 -dinitrobenzoyl chloride ($121 \mathrm{mg}, 0.525 \mathrm{mmol}$). The mixture was stirred at room temperature for 3 h , then quenched with unsym. dimethylethylenediamine (0.2 mL) and diluted with $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$. The mixture was washed with $10 \% \mathrm{KHSO}_{4}(3 \mathrm{~mL}), 7 \% \mathrm{NaHCO}_{3}(3$ mL) and brine (3 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give an oil
which was purified using column chromatography on silica gel eluting with EtOAc/hexane (1:9) solvent system to give 142 mg of pure 3,5-dinitrobenzoate. Chiral HPLC assay of the dinitrobenzoate indicates $>99 \%$ ee.

Chiral HPLC assay: Pirkle Covalent D-naphthylalanine HiChrom HPLC Column, $25 \mathrm{~cm} x 4.6 \mathrm{~mm}$; UV detection at $210 \mathrm{~nm}, 35^{\circ} \mathrm{C}$; Solvents: 90% hexane $/ 10 \%$ IPA, $1.5 \mathrm{~mL} / \mathrm{min}$. run time: 17.5 min , Retention time: desired enantiomer 15.3 min , undesired enantiomer 12.5 min .

$90 / 10$ hex / ipa 1.5 ml min chiral assay

Customized Report:

Colon

$$
\begin{aligned}
& D \text { - Napthalamine } \quad \text { Slow }=1.5 \mathrm{me} / \mathrm{min} \\
& \lambda=210 / 230 \\
& \text { col tamp }=35.0^{\circ} \mathrm{C} \quad 1 \mathrm{mg} \text { 隹 injection } @ \text { Jul injection }
\end{aligned}
$$

90/10 hexane / ipA


```
Signal 1: DAD1 A, Sig=230,8 Ref=off
    Compound Peak RT Height Width Amount Area Area %
    --------------------------- ------- ------- ------- -----------------------
```

Signal 2: DADI C, Sig=210,8 Ref=off

- Compound Peak RT Height Width Amount Area Area \%
 *** End of Report ***

Determination of ee\% of 7. To a solution of $7(0.06 \mathrm{~g}, 0.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added pyridine $(0.05 \mathrm{~mL}, 0.62 \mathrm{mmol})$, followed by 3,5-dinitrobenzoyl chloride $(0.085 \mathrm{~g}, 0.37 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h , then quenched with unsym. dimethylethylenediamine (0.1 mL) and diluted with $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$. The mixture was washed with $10 \% \mathrm{KHSO}_{4}(5 \mathrm{~mL})$, followed by $5 \% \mathrm{KH}_{2} \mathrm{PO}_{4}(5$ mL) and brine (5 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give 105 mg of 3,5dinitrobenzoate of 12 . Chiral HPLC assay of the dinitrobenzoate indicates $>99 \%$ ee.

Chiral HPLC assay: Pirkle Covalent D-naphthylalanine HiChrom HPLC Column, $25 \mathrm{~cm} \times 4.6 \mathrm{~mm}$; UV detection at $235 \mathrm{~nm}, 35^{\circ} \mathrm{C}$; Solvents: 90% heptane $/ 10 \%$ IPA, $1.5 \mathrm{~mL} / \mathrm{min}$. Retention time: 8.8 min .

Print of window 38: Current Chromatogram(s)

63842-096B IN DMSO \$2 BARCODE \#5257 nmr681132.fid

abnmr version 4.4

64248-018B IN DMSO \$3 BARCODE \#5266
nmv681508.fid

61125-163 IN CDCL3 \$2 BARCODE \#5261 nmr681146.fid

61125-165 IN CDCL3 \$2 BARCODE \#5262 nmr681151.fid
 abnmi version 4.4

61125-166 IN CDCL3 \$9 BARCODE \#5205 nmr682869.fid

