© 2000 American Chemical Society, Macromolecules, Angot ma0011690 Supporting Info Page 1

Supplementary Information

S1

¹H NMR of final copolymer PMMA-*block*-P(BzMA-*co*-MMA).

Derivation of Equation to calculate average number molar mass of poly(MMA-b-(MMA-co-BzMA) grown of modified Wang resin:

The $M_{n,\ lst\ block}$ is calculated experimentally from the empirical equation. For the $M_{n,\ 2nd\ block}$ we need the molar masses of the two monomers, i.e. MW_{MMA} and MW_{BzMA} , the mole fraction of MMA in the 2^{nd} stage feed, i.e., f_{MMA} , and the degree of polymerization of the second block, i.e. $DP_{2nd\ block}$:

Eq.1
$$M_{n} = M_{n,exp} + DP_{2ndblock} \left(f_{MMA} MW_{MMA} + (1 - f_{MMA}) MW_{BzMA} \right)$$

DP_{2nd block} is calculated from the cumulative mole fraction of MMA in the copolymer, using, thereby assuming the absence of monomer composition drift:

Eq.2
$$F_{MMA} = \frac{DP_{1st block} + f_{MMA} DP_{2nd block}}{DP_{1st block} + DP_{2nd block}}$$

This can be rearranged to:

Eq.3

$$DP_{2 \text{nd block}} = \frac{DP_{1 \text{st block}} \left(1 - F_{\text{MMA}}\right)}{F_{\text{MMA}} - f_{\text{MMA}}}$$

 $DP_{1st\;block}$ equals $M_{n,\;exp}/MW_{MMA}$ and substitution in the above equation yields:

Eq.4

$$DP_{2nd \, block} = \frac{\frac{M_{n, exp}}{MW_{MMA}} (1 - F_{MMA})}{F_{MMA} - f_{MMA}}$$

Substitution of Eq.4 in Eq.1 finally yields:

$$M_{n} = M_{n,exp} + \frac{\frac{M_{n,exp}}{MW_{MMA}} \left(1 - F_{MMA}\right)}{F_{MMA} - f_{MMA}} \left(f_{MMA} MW_{MMA} + \left(1 - f_{MMA}\right)MW_{BzMA}\right)$$