Supporting Information

Formation of a Macrobicyclic Tris(disulfide) by Molecular Self-Assembly

Suk-Wah Tam-Chang*, Jeffrey S. Stehouwer, and Jinsong Hao

Department of Chemistry

University of Nevada,

Reno, NV 89557

General Procedure

¹H and ¹³C-NMR spectra were obtained on a General Electric QE-300 300 MHz spectrometer. Equilibrium studies were performed on a Varian Unity Plus 500 MHz spectrometer. Chemical shift values are reported in ppm using known chemical shift values of solvent peaks as reference. High resolution mass spectrometric data were determined by the University of California, Riverside Mass Spectrometry Facility.

Tris(disulfide) (1)

¹H-NMR (DMSO-d₆): ∂ 1.08 (t, 18H, CH₂CH₃), 2.67 (q, 12H, CH₂CH₃), 3.58 (d, 12H, CH₂S), 4.29 (d, 12H, ArCH₂NH), 7.82 (s, 6H NH); ¹H-NMR (CDCl₃): ∂ 1.19 (t, 18H, CH₂CH₃), 2.58 (q, 12H, CH₂CH₃), 3.53 (s, 12H, CH₂S), 4.44 (d, 12H, ArCH₂NH), 6.22 (s, 6H, NH); ¹³C-NMR (CDCl₃): ∂ 166.35, 144.42, 132.20, 41.55, 38.69, 23.26, 16.58; HRMS-FAB [MH⁺] calcd for C₄₂H₆₁N₆O₆S₆ m/z 937.227, found m/z 937.2973

$\textbf{2,4,6-Triethyl-1,3,5-tri} ((2-mercap to a cetamido) methyl) benzene \quad \textbf{(2)}$

¹H-NMR (DMSO-d₆): ∂ 1.08 (t, 9H, CH₂CH₃), 2.66 (q, 6H, CH₂CH₃), 2.75 (t, 3H, SH), 3.10 (d, 6H, CH₂SH), 4.30 (d, 6H, ArCH₂NH), 8.02 (s, 3H, NH); ¹H-NMR (CDCl₃): ∂ 1.23 (t, 9H, CH₂CH₃), 1.86 (t, 3H, SH), 2.71 (q, 6H, CH₂CH₃), 3.29 (d, 6H, CH₂SH), 4.52 (d, 6H, ArCH₂NH), 6.51 (s, 3H, NH); ¹³C-NMR (CDCl₃): ∂ 168.88, 144.44, 131.93, 38.46, 27.99, 23.01, 16.41; HRMS-FAB [MH⁺] calcd for C₂₁H₃₄N₃O₃S₃ m/z 472.1762, found m/z 472.1751.

© 1998 American Chemical Society, J. Org. Chem., Tam-Chang jo982166c Supporting Info Page 2

Oligomer (3)

¹H-NMR (DMSO-d₆): ∂ 1.07 (broad, 18H, CH₂CH₃), 2.74 (broad, 12H, CH₂CH₃), 3.60 (broad, 12H, CH₂S), 4.40 (broad, 12H, ArCH₂NH), 8.10 (broad, 6H, NH).

Equilibration of trithiol 2 with 2-hydroxyethyl disulfide (ME°x)

A 2 mM solution of ME^{ox} in DMSO-d₆ was prepared and purged with $Ar_{(g)}$ for 30 minutes. In a 5 mm NMR tube was placed 0.5 ml of a 2 mM solution of trithiol 2 in DMSO-d₆. This solution was purged with $Ar_{(g)}$ for 30 minutes followed by placing the NMR tube in a $CO_{2(s)}$ /acetone bath. On top of the solid trithiol solution was layered 0.5 ml of the 2 mM ME^{ox} solution followed by flame sealing the NMR tube. The solidified solutions were allowed to thaw and mix to give 1 ml of a solution 1 mM in each component. The reaction was then monitored periodically by 1 H-NMR.

This procedure was repeated to give solutions containing 1.5 and 3 mM of ME^{ox}.

Equilibration of tris(disulfide) 1 with 2-mercaptoethanol (ME)

A DMSO-d₆ solution 1 mM in tris(disulfide) 1 and 1 mM in ME was prepared and monitored by ¹H-NMR as above.

Equilibration of oligomer 3 with 2-mercaptoethanol (ME)

A DMSO-d₆ solution 0.5 mM in oligomer 3 and 1 mM in ME was prepared and monitored by ¹H-NMR as above.