Conjugated co-polymers of vinylene flanked naphthalene diimide

Zhuping Fei^{\dagger}, Yang $\mathrm{Han}^{\dagger, \not, \neq,}$, Jaime Martin ${ }^{\S}$, Fiona H. Scholes ${ }^{ \pm}$, Mohammed Al-Hashimill, Siham Y. AlQaradawi ${ }^{\perp}$, Natalie Stingelin ${ }^{\S}$, Thomas D. Anthopoulos ${ }^{\ddagger}$, Martin Heeney ${ }^{\dagger}{ }^{\dagger, *}$

${ }^{\dagger}$ Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London SW7
2AZ, UK
${ }^{\ddagger}$ Department of Physics and Centre for Plastic Electronics, Imperial College London, London SW7
2AZ, UK
${ }^{\text {s D Department of Materials and Centre for Plastic Electronics, Imperial College London, London SW7 }}$
2AZ, UK
${ }^{ \pm}$CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
${ }^{1}$ Department of Chemistry \& Earth Sciences, Qatar University, P.O. Box 2713 Doha, Qatar
"Department of Chemistry, Texas A\&M University at Qatar, P.O. Box 23874, Doha, Qatar

Figure S1. TGA plot of PNDIV-TT with a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under nitrogen.

Figure S2. TGA plot of PNDIV-BT with a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under nitrogen.

Figure S3. TGA plot of PNDIV-BS with a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under nitrogen.

Figure S4. TGA plot of PNDIV-TVT with a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under nitrogen.

Figure S5. TGA plot of PNDIV-DTT with a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under nitrogen.

Figure S6. Flash DSC trace of PNDIV-BT with a heating and cooling rate of $500 \mathrm{~K} \mathrm{~s}^{-1}$. (Endo up)

Figure S7. Annealing temperature-dependent transfer characteristics ($\mathrm{V}_{\mathrm{D}}=60 \mathrm{~V}$) of PNDIV-BT based
$\mathrm{BG} / \mathrm{TC}$ configuration OTFT device with $\mathrm{Ba}(\mathrm{OH})_{2}$ layer between polymer and Au electrode.

Figure S 8 . Annealing temperature-dependent device parameters of PNDIV-BT based BG/TC configuration OTFT device with $\mathrm{Ba}(\mathrm{OH})_{2}$ layer between polymer and Au electrode. Saturation mobility at $\mathrm{VD}=60 \mathrm{~V}$ (triangle); linear mobility at $\mathrm{VD}=10 \mathrm{~V}$ (circle); and threshold voltage (crossed square).

Figure S9. Transfer (a, c) and output (b, d) characteristics of PNDIV-TT-based BG/TC configuration OFET device under positive and negative bias. The width and length of the transistor channels are $W=$ $1000 \mu \mathrm{~m}$ and $L=40 \mu \mathrm{~m}$, respectively.

Figure S10. Transfer (a, c) and output (b, d) characteristics of PNDIV-BS-based BG/TC configuration OFET device under positive and negative bias. The width and length of the transistor channels are $W=$ $1000 \mu \mathrm{~m}$ and $L=40 \mu \mathrm{~m}$, respectively.

Figure S11. Transfer (a, c) and output (b, d) characteristics of PNDIV-TVT-based BG/TC
configuration OFET device under positive and negative bias. The width and length of the transistor
channels are $W=1000 \mu \mathrm{~m}$ and $L=40 \mu \mathrm{~m}$, respectively.

Figure S12. Transfer (a, c) and output (b, d) characteristics of PNDIV-DTT-based BG/TC
configuration OFET device under positive and negative bias. The width and length of the transistor
channels are $W=1000 \mu \mathrm{~m}$ and $L=40 \mu \mathrm{~m}$, respectively.

Figure S13. Transfer (a) and output (b) characteristics of PNDIV-TT-based BG/TC configuration OFET device with $\mathrm{Ba}(\mathrm{OH})_{2}$ layer between polymer and Au electrode. (c) Mobility calculation based on first derivative of the linear regime transfer curve and first derivative of the square root of the saturation regime transfer curve. The width and length of the transistor channels are $W=1000 \mu \mathrm{~m}$ and

$$
L=40 \mu \mathrm{~m}, \text { respectively. }
$$

Figure S14. Transfer (a) and output (b) characteristics of PNDIV-BS-based BG/TC configuration OFET device with $\mathrm{Ba}(\mathrm{OH})_{2}$ layer between polymer and Au electrode. (c) Mobility calculation based on first derivative of the linear regime transfer curve and first derivative of the square root of the saturation regime transfer curve. The width and length of the transistor channels are $W=1000 \mu \mathrm{~m}$ and

$$
L=40 \mu \mathrm{~m}, \text { respectively } .
$$

Figure S15. Transfer (a) and output (b) characteristics of PNDIV-TVT-based BG/TC configuration OFET device with $\mathrm{Ba}(\mathrm{OH})_{2}$ layer between polymer and Au electrode. (c) Mobility calculation based on first derivative of the linear regime transfer curve and first derivative of the square root of the saturation regime transfer curve. The width and length of the transistor channels are $W=1000 \mu \mathrm{~m}$ and $L=40 \mu \mathrm{~m}$, respectively.

Figure S16. Transfer (a) and output (b) characteristics of PNDIV-DTT-based BG/TC configuration OFET device with $\mathrm{Ba}(\mathrm{OH})_{2}$ layer between polymer and Au electrode. (c) Mobility calculation based on first derivative of the linear regime transfer curve and first derivative of the square root of the saturation regime transfer curve. The width and length of the transistor channels are $W=1000 \mu \mathrm{~m}$ and

$$
L=40 \mu \mathrm{~m}, \text { respectively. }
$$

Figure S17. Transfer (a, c) and output (b, d) characteristics of PNDIV-BT-based BG/TC configuration OTFT device under positive and negative bias. The polymer film was annealed at $300^{\circ} \mathrm{C}$ then treated with drop cast methanol instead of methanolic $\mathrm{Ba}(\mathrm{OH})_{2}$.

Figure S18. Phase images of PNDIV-TT, PNDIV-BT, PNDIV-BS, PNDIV-TVT and PNDIV-DTT in bottom-gate top-contact configuration without $\mathrm{Ba}(\mathrm{OH})_{2}$ layer (a-e), and with $\mathrm{Ba}(\mathrm{OH})_{2}$ layer (f-j) between polymer and Au electrode.

Figure S19. AFM topography (a) and phase (b) images of PNDIV-DTT film annealed at $100^{\circ} \mathrm{C}$ for
1-2 min. Pin holes were already developed at this relatively low annealing temperature.

Figure S20. The ${ }^{1} \mathrm{H}$ NMR spectrum of monomer $\mathbf{2}$ in CDCl 3 at RT.

Figure S21. The ${ }^{1} \mathrm{H}$ NMR spectrum of 2,5-dibromothieno[3,2-b]thiophene in CDCl 3 at RT.

Figure S22. The ${ }^{1} \mathrm{H}$ NMR spectrum of 5,5'-dibromo-2,2'-bithiophene in CDCl 3 at RT.

Figure S23. The ${ }^{1} \mathrm{H}$ NMR spectrum of 5,5'-dibromo-2,2'-biselenophene in CDCl 3 at RT.

Figure S24. The ${ }^{1} \mathrm{H}$ NMR spectrum of (E)-1,2-bis(5-bromothiophen-2-yl)ethane in CDCl 3 at RT.

Figure S25. The ${ }^{1} \mathrm{H}$ NMR spectrum of 2,6-dibromodithieno[3,2-b:2', 3^{\prime}-d]thiophene in CDCl3 at RT.

Figure S26. The ${ }^{1} \mathrm{H}$ NMR spectrum of PNDIV-TT in d-1,1,2,2-tetrachloroethane at $130{ }^{\circ} \mathrm{C}$.

Figure S27. The ${ }^{1} \mathrm{H}$ NMR spectrum of PNDIV-BT in $d-1,1,2,2$-tetrachloroethane at $130{ }^{\circ} \mathrm{C}$.

Figure S28. The ${ }^{1} \mathrm{H}$ NMR spectrum of PNDIV-BS in $d-1,1,2,2$-tetrachloroethane at $130{ }^{\circ} \mathrm{C}$.

Figure S29. The ${ }^{1} \mathrm{H}$ NMR spectrum of PNDIV-TVT in d - $1,1,2,2$-tetrachloroethane at $130{ }^{\circ} \mathrm{C}$.

Figure S30. The ${ }^{1} \mathrm{H}$ NMR spectrum of PNDIV-DTT in d - $1,1,2,2$-tetrachloroethane at $130{ }^{\circ} \mathrm{C}$.

