Journal of Medicinal Chemistry

J. Med. Chem., 1998, 41(24), 4861-4872, DOI:10.1021/jm9803471

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Copyright © 1998 American Chemical Society

Table A1. Acyl Backbone Torsion Angles for Representative Structures of the Two Most Highly Populated Conformational Families of Arachidonic Acid

ARACHIDONIC ACID

	in vacuo		CHCl ₃		H,O	
· · · · ·	cls1	cls2	cls1	cls2	cls1	cls2
Torsion Angle	(deg)	(deg)	(deg)	(deg)	(deg)	(deg)
$\omega_1 = C1 - C2 - C3 - C4$	178.04	-173.98	-170.50	164.93	170.00	-154.03
$\omega_2 = C2 - C3 - C4 - C5$	67.56	74.37	-174.34	-62.59	-60.83	174.17
$\omega_3 = C3-C4-C5-C6$	-114.84	-131.17	-146.26	110.86	133.76	146.40
ω ₄ = C4-C5-C6-C7	1.14	1.13	0.75	0.78	1.02	1.12
$\omega_{s} = C5 - C6 - C7 - C8$	-140.71	-106.70	97.67	131.29	125.23	111.97
$\omega_{6} = C6 - C7 - C8 - C9$	114.06	107.59	102.98	100.05	153.33	104.14
$\omega_7 = C7 - C8 - C9 - C10$	0.00	0.05	1.63	1.55	-0.07	0.12
$\omega_{\rm s} = C8-C9-C10-C11$	- 95.19	-132.02	106.40	-129.62	-88.42	109.36
ω ₉ = C9-C10-C11-C12	-127.27	-126.15	-115.48	109.81	145.75	69.82
$\omega_{10} = C10-C11-C12-C13$	0.03	0.07	0.17	0.13	0.00	0.09
ω ₁₁ = C11-C12-C13-C14	116.40	-128.49	107.26	126.04	109.39	123.96
$\omega_{12} = C12 - C13 - C14 - C15$	91.02	130.99	137.72	136.79	121.05	107.63
$\omega_{_{13}} = C13 - C14 - C15 - C16$	1.10	1.18	0.26	0.23	1.14	1.10
ω ₁₄ = C14-C15-C16-C17	93.18	-117.84	127.88	-122.30	121.36	74.11
$\omega_{15} = C15 - C16 - C17 - C18$	174.25	61.89	73.83	-161.22	173.43	168.52
ω ₁₆ = C16-C17-C18-C19	-168.34	179.17	-164.84	-68.77	179.26	-68.59
ω ₁₇ = C17-C18-C19-C20	-172.79	75.79	-177.35	172.20	-176.28	166.15

*See Figure 3

1

Table A2. Acyl Backbone Torsion Angles for Representative Structures of the Two Most Highly Populated Conformational Families of Anandamide

	ANANDAM	IDE (AEA)		
	CHCI		H₂O	
	cis1	cls2	cls1	cls2
Torsion Angle	(deg)	(deg)	(deg)	(deg)
$\omega_1 = C1 - C2 - C3 - C4$	167.90	150.13	175.58	172.47
$\omega_2 = C2 - C3 - C4 - C5$	54.95	160.04	61.94	174.25
$\omega_3 = C3-C4-C5-C6$	-127.46	91.94	-112.83	130.41
$\omega_4 = C4-C5-C6-C7$	-0.28	-0.26	-0.44	-0.34
$\omega_{5} = C5 - C6 - C7 - C8$	-133.95	-131.60	-89.54	-117.92
$\omega_{e} = C6-C7-C8-C9$	-106.72	-109.56	-117.85	93.32
$\omega_{7} = C7 - C8 - C9 - C10$	1.58	1.53	1.42	1.44
$\omega_{s} = C8-C9-C10-C11$	125.95	118.77	109.76	104.66
ω _a = C9-C10-C11-C12	115.10	-111.91	137.51	-144.53
$\omega_{10} = C10 - C11 - C12 - C13$	1.53	1.56	1.45	1.43 ک
$\omega_{1} = C11 - C12 - C13 - C14$	121.60	-109.88	94.13	-148.81
ω ₁₂ = C12-C13-C14-C15	130.68	-155.43	-130.70	-84.98
ω ₁₃ = C13-C14-C15-C16	-1.13	-1.26	-1.11	-1.11
ω ₄ = C14-C15-C16-C17	139.94	-148.09	-123.96	-129.71
$\omega_{15} = C15 - C16 - C17 - C18$	-68.24	-179.17	67.34	-173.86
ω _s = C16-C17-C18-C19	177.52	-178.76	-165.04	172.54
ω. = C17-C18-C19-C20	-172.01	167.53	67.76	178.22

*See Figure 4

© 1998 American Chemical Society, J. Med. Chem., Barnett-Norris jm9803471 Supporting Info Page 2

2

Table A3. Acyl Backbone Torsion Angles for Representative Structures of the Two Most HighlyPopulated Conformational Families of 2-AG

	CHCl		H₂O	
Torsion Angle	cls1 (deg)	cls2 (deg)	cls1 (deg)	cls2 (deg)
$\omega = C1 - C2 - C3 - C4$	-178.83	176.33	166.35	-170.07
$\omega_1 = C2 - C3 - C4 - C5$	54.11	-69.73	-161.83	-58.12
$\omega_{2} = C3-C4-C5-C6$	-121.12	140.50	146.26	-110.54
$\omega_{3} = C4-C5-C6-C7$	0.96	1.03	1.05	1.06
$\omega_{-} = C5 - C6 - C7 - C8$	-109.56	-101.47	108.64	107.11
$\omega_{s} = C6-C7-C8-C9$	-151.84	113.34	111.21	124.35
$\omega_{\rm e} = C7 - C8 - C9 - C10$	-0.28	-0.22	-0.68	-0.60
$\omega_{\rm r} = C8-C9-C10-C11$	-135.31	116.10	112.50	-89.14
$\omega_{\rm s} = C9 - C10 - C11 - C12$	-131.47	169.19	-92.62	-114.20
$\omega_{-} = C10 - C11 - C12 - C13$	-1.90	-1.88	-1.63	-1.60
$\omega_{10} = C11 - C12 - C13 - C14$	118.33	83.24	-103.46	-121.49
$\omega_{11} = C12 - C13 - C14 - C15$	176.25	-139.46	-162.88	108.39
$\omega_{12} = C13 - C14 - C15 - C16$	1.46	1.46	1.24	1.25
$\omega_{13} = C14 - C15 - C16 - C17$	-102.33	-116.13	-126.47	133.39
$\omega_{14} = C15 - C16 - C17 - C18$	155.40	-162.59	-172.35	178.51
$\omega_{15} = C16 \cdot C17 \cdot C18 \cdot C19$	165.89	-177.23	-168.78	175.39
$\omega_{16} = C17 - C18 - C19 - C20$	72.76	-73.02	-160.61	167.45

*See Figure 5

© 1998 American Chemical Society, J. Med. Chem., Barnett-Norris jm9803471 Supporting Info Page 3

Table A4. Acyl Backbone Torsion Angles for Representative Structures of the Two Most HighlyPopulated Conformational Families of DMH-AEA

· · · · · ·	DMH-AEA				
	CHCI		F	H₂O	
	cls1	cls2	cls1	cls2	
Torsion Angle	(deg)	(deg)	(deg)	(deg)	
$\omega_1 = C1-C2-C3-C4$	169.53	176.05	-177.92	178.88	
$\omega_2 = C2-C3-C4-C5$	56.35	-57.50	170.21	-73.71	
$\omega_3 = C3-C4-C5-C6$	99.29	107.74	-111.12	-121.20	
$\omega_{4} = C4-C5-C6-C7$	0.53	0.46	-1.31	-1.32	
$\omega_{\rm s} = C5 - C6 - C7 - C8$	95.58	111.24	-101.59	118.32	
$\omega_{6} = C6-C7-C8-C9$	-136.72	-164.74	145.36	-136.14	
$\omega_7 = C7 - C8 - C9 - C10$	-0.49	-0.60	0.62	0.61	
$\omega_{\rm s} = C8 - C9 - C10 - C11$	-77.54	91.84	92.52	-97.28	
ω _a = C9-C10-C11-C12	-145.43	120.91	162.89	-95.91	
$\omega_{10} = C10-C11-C12-C13$	0.07	0.03	-0.11	-0.07	
ω, = C11-C12-C13-C14	137.10	116.41	-112.41	-111.90	
$\omega_{12} = C12 - C13 - C14 - C15$	134.88	170.28	-142.04	-113.99	
ω ₁₂ = C13-C14-C15-C16	0.64	0.62	-0.34	-0.31	
ω, = C14-C15-C16-C17	-67.66	-53.49	-53.88	-56.76	
ω _{is} = C15-C16-C17-C18	-51.13	-57.99	-60.92	-58.91	
ω _w = C16-C17-C18-C19	167.32	163.26	-170.19	-177.72	
$\omega_{,7} = C17 - C18 - C19 - C20$	161.73	167.05	-56.54	-167.02	
ω _w = C18-C19-C20-C21	-169.60	161.60	-178.17	168.77	
$\omega_{19} = C19 - C20 - C21 - C22$	-168.80	172.14	-176.56	-159.17	

* See Figure 6

© 1998 American Chemical Society, J. Med. Chem., Barnett-Norris jm9803471 Supporting Info Page 4

Table A5. Acyl Backbone Torsion Angles for Representative Structures of the Most Highly Populated Conformational Families of PGB2-EA

PGB -EA

	CHCL		H ₂ O
	cls1	cls1	cls2
Torsion Angle	(deg)	(deg)	(deg)
	177.70	-154.86	-172.67
	68.63	-59.15	-169.92
	-135.86	-109.59	136.06
	0.00	0.33	0.37
	-142 24	-112.28	-145.87
C5-C6-C7-C8	80.73	113.59	90.63
C6-C7-C8-C9	0.42	0.65	0.58
C7-C8-C9-C10	172.00	144.37	-178.07
C8-C9-C10-C11	-1/3.90	170 1/	179.17
C9-C10-C11-C12	1/9.42	1/5.14	-117.28
C10-C11-C12-C13	-116.87		57 75
C11-C12-C13-C14	55.23	65.35	174.60
C12-C13-C14-C15	172.78	163.17	174.02
C13-C14-C15-C16	173.22	131.03	179.09
C14-C15-C16-C17	-164.47	177.79	177.28

*See Figure 7

5