General Methods. Melting points (uncorrected) were determined on a Stuart Scientific SMP3 apparatus. Infrared (IR) spectra were recorded with a Perkin-Elmer 1330 infrared spectrophotometer. 1 H and 13 C NMR: δ were recorded on a Bruker 300-AC instrument. Chemical shifts (δ) are expressed in parts per million relative to internal tetramethylsilane; coupling constants (J) are in hertz. Mass spectra were run on a HP 5989A spectrometer. Elemental analyses (C, H, N) were performed on a Perkin Elmer 2400 CHN apparatus at the Microanalyses Service of the University Complutense of Madrid; unless otherwise stated all reported values are within \pm 0.4% of the theoretical compositions. Thin-layer chromatography (TLC) was run on Merk silica gel 60 F-254 plates. Unless stated otherwise, starting materials used were high-grade commercial products.

N,N'-Bis[[(tert-butoxycarbonyl)amino]acetyl]-N,N'-dimethyl-1,3-propanediamine (16). To a solution of N-(tert-butoxycarbonyl)glycine (4 g, 0.023 mol) in anhydrous CH₂Cl₂ (60 mL), was added freshly distilled 1,3-dicyclohexylcarbodiimide (4.7 g, 0.023 mol) and 1-hydroxybenzotriazole hydrate (0.62 g, 4.6 mmol) at 0 °C. After the mixture was stirred at this temperature for 1 hour, a solution of N,N'-dimethyl-1,3-propanediamine (1.46 g, 0.011 mol) in anhydrous CH₂Cl₂ (30 mL) was added dropwise for 1 hour at 0 °C. The mixture was stirred for 14 hours at room temperature and the resulting solid was filtered off, washed with CH₂Cl₂ and the filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography using AcOEt/Hexane (9:1) as eluent until elution of apolar impurities and then CH₂Cl₂/MeOH (8:2) to give 16 (3.9 g, 83%) as a colorless oil. IR (KBr): 3410, 3330, 1710, 1650 cm⁻¹. ¹H-NMR (CDCl₃): δ 5.50 (br s, 2H, 2NH), 3.94 (m, 4H, 2COCH₂), 3.35 and 3.24 (2m, 4H, 2NCH₂), 2.98 and 2.95 (2s, 6H, 2NCH₃), 1.80 (m, 2H, CH₂), 1.45 (s, 18H, 2¹BuO).

¹³C-NMR (CDCl₃): δ168.6, 168.3, 167.9, 155.7, 79.5, 46.2, 45.5, 45.4, 42.3, 41.9, 34.1, 33.9, 33.3, 28.3, 25.9, 24.8.

N,N'-Bis(aminoacetyl)-N,N'-dimethyl-1,3-propanediamine Dihydrochloride (17). A

solution of 16 (3.8 g, 9.2 mmol) in EtOH (dried by distillation from Mg/I₂, 100 mL) was saturated with HCl (g) for 1 hour at 0 °C. The mixture was stirred at room temperature overnight, and then the solvent was removed in vacuo. The residue was washed with Et₂O to give 17 (2.7 g, 98%) as a white solid, mp > 300 °C. IR (KBr): 2610, 1640 cm⁻¹. ¹H-NMR (D₂O): δ 3.80 and 3.77 (2s, 4H, 2COCH₂), 3.20 and 3.09 (2m, 4H, 2NCH₂), 2.79, 2.78, 2.76 and 2.74 (4s, 6H, 2NCH₃), 1.66 (m, 2H, CH₂). 13 C-NMR (D₂O): δ 169.2, 169.1, 168.9, 49.1, 48.1, 48.0, 42.7, 42.6, 36.7, 36.6, 35.8, 27.1, 26.4 N,N'-Bis(2-aminoethyl)-N,N'-dimethyl-1,3-propanediamine (18). To a suspension of 17 (2.7 g, 9.3 mmol) in anhydrous THF (77 mL) under argon, was added an 1 M Borane-THF complex (187 mL, 187 mmol). The mixture was heated at reflux for 30 minutes and then stirred overnight at room temperature. MeOH (43 mL) was added, and the solution was saturated with HCl (g) for 1 hour at 0 °C. The resulting mixture was stirred overnight at room temperature and the solvent was evaporated. The solid residue was washed with Et2O under argon and the obtained hygroscopic white solid was added to a freshly prepared solution of sodium ethoxide in ethanol [sodium (1.0 g, 43.5 mmol) in 47 mL of EtOH]. After stirring mixture overnight at room temperature, the formed NaCl was removed by filtration and the solvent was evaporated, to give 18 (1.37 g, 78%) as a colorless oil which was further purified by Kugelrohr distillation, bp 120 °C/1.5 mmHg (lit. 1 bp 32/0.5 mmHg). IR (KBr): 3360, 3290 cm⁻¹. 1H-NMR (CDCl₃): δ 2.76 (t, 4H, J = 6.0 Hz, $2NCH_2$), 2.38 (m, 8H, $4NCH_2$), 2.21 (s, 6H, $2NCH_3$), 1.64 (m, 2H, CH₂), 1.52 (br s, 4H, 2NH₂). 13 C-NMR (CDCl₃): δ 60.5, 55.9, 42.2, 39.5, 25.1.

3-Acetylamino-4-nitronaphthalene-1,8-dicarboxylic Anhydride (13). To a suspension of 3-acetylaminonaphthalene-1,8-dicarboxylic anhydride² (2 g, 7.8 mmol) in concentrated H₂SO₄ (9 mL) at -8 °C (ice/NaCl bath) was added slowly a mixture of furning HNO₃ (7 mL) and concentrated H₂SO₄ (7 mL), keeping the temperature below 0 °C. The mixture was allowed to stand at room temperature for two hours, and the solution was poured into water and ice. The precipitate formed was filtered, washed with water and dried. Recrystallization from AcOEt gave 13 (1.46 g, 62%) as a yellow solid, mp 218-219 °C. IR (KBr): 3270, 1780, 1730, 1680 cm⁻¹. ¹H NMR (DMSO- d_6): δ 10.73 (s, 1H, NH), 8.66 (s, 1H, ArH), 8.57 (d, 1H, J = 7.3 Hz, ArH), 8.27 (d, 1H, J = 8.6 Hz, ArH), 8.04 (dd, 1H, J = 8.6 and 7.3 Hz, ArH), 2.16 (s, 3H, CH₃). ¹³C NMR (DMSO- d_6): δ 169.4, 160.1, 159.4, 141.7, 131.9, 130.5, 129.6, 129.3, 128.2, 127.1, 123.5, 122.6, 120.0, 23.3. MS (EI): m/z (%) 300 (M⁺, 1), 258 (62), 254 (100), 228 (27), 209 (95), 181 (40), 140 (36), 112 (32), 86 (24), 63 (15) 56 (11). Anal. (C₁₄H₈N₂O₆) C, H, N.

3-Acetylamino-4-aminonaphthalene-1,8-dicarboxylic Anhydride (14). A mixture of **13** (1.7 g, 5.7 mmol) and 10% Pd/C (121 mg) in DMF (120 mL) was shaken in a Parr hydrogenator under hydrogen at 50 PSI pressure for 24 hours. The catalyst was then filtered off and washed with DMF. The filtrate was concentrated, and water was added. The precipitate was then filtered and washed with water. Recrystallization from DMF gave **14** (1.15 g, 75%) as a red solid, mp >300 °C. IR (KBr): 3420, 3310, 3220, 1760, 1710, 1635 cm⁻¹. ¹H NMR (DMSO- d_6): δ 9.37 (br s, 1H, NH), 8.76 (d, 1H, J = 8.5 Hz, ArH), 8.42 (d, 1H, J = 6.7 Hz, ArH), 8.23 (s, 1H, ArH), 7.72 (m, 1H, ArH), 7.42 (br s, 2H, NH₂), 2.13 (s, 3H, CH₃). ¹³C NMR (DMSO- d_6): δ 169.4, 161.9, 160.3, 147.7, 133.5, 132.4, 130.8, 130.4, 124.8, 120.2, 118.4, 118.0, 102.2, 23.4. Anal. (C₁₄H₁₀N₂O₄) C, H, N.

2-Methyl-3*H*-naphtho[1,2-*d*]imidazole-5,6-dicarboxylic Anhydride (15). A suspension of 14 (1.20 g, 4.40 mmol) in AcOH (125 mL) was refluxed for 2 days. The hot suspension was filtered and the filtrate was left for crystallization. The precipitate was collected by filtration to give 15 (1.1 g, 98%) as a light brown solid, mp >300 °C (lit.³ mp 340-342 °C). IR (KBr): 3180, 1760, 1710 cm⁻¹. ¹H NMR (CF₃CO₂D): δ 9.20 (s, 1H, ArH), 8.99 (m, 2H, ArH), 8.27 (dd, 1H, J = 8.0 and 7.4 Hz, ArH), 3.23 (s, 3H, CH₃). ¹³C NMR (CF₃CO₂D): δ 164.59, 164.57, 156.0, 137.3, 134.0, 132.4, 132.0, 130.9, 130.4, 123.5, 121.7, 120.9, 119.5, 13.6. MS (EI): m/z (%) 253 (M⁺+1, 25), 252 (M⁺, 100), 208 (57), 180 (36), 90 (17), 76 (5).

General Procedure for the Preparation of Mononaphthalimides 4-5 and their Salts.

A suspension of anhydride 15 (1 equiv) in toluene was treated with the corresponding polyamine (1 equiv) in ethanol. The mixture was heated at reflux temperature until the reaction was completed (TLC). The precipitated solid was filtered and recrystallized from the appropriate solvent to provide the mononaphthalimide as a free base. This compound was suspended in ethanol and methanesulfonic acid (2.2 equiv) was added. The monoimide salt was isolated by filtration and washed with diethyl ether.

5-[2-(Dimethylamino)ethyl]-9-methyl-5,8-dihydrobenz[de]imidazo[4,5-

g|isoquinoline-4,6-dione (4). From 15 (200 mg, 0.79 mmol) in toluene (5 mL) and N.N-dimethylethylenediamine (69 mg, 0.79 mmol) in absolute EtOH (2 mL) yielded 4 (198 mg, 78%) as a yellow solid, mp 209-211 °C (AcOEt/hexane). The free base was converted into the corresponding dimethanesulfonate dihydrate (73%), mp 261-263 °C. IR (KBr): 3400, 2700, 1700, 1655 cm⁻¹. ¹H NMR (DMSO- d_6): δ 9.17 (s, 1H, NH⁺), 8.82 (d, 1H, J = 8.0 Hz, ArH), 8.74 (s, 1H, ArH), 8.56 (d, 1H, J = 7.3 Hz, ArH), 8.07 (dd, 1H, J = 8.0 and 7.3 Hz, ArH), 4.42 (t, 2H, J = 5.5 Hz, CH₂), 3.49 (m, 2H, CH₂), 2.94 (s, 3H, NCH₃), 2.92 (s, 3H, NCH₃), 2.89 (s, 3H, CH₃), 2.34 (s, 6H, 2CH₃SO₃). ¹³C

NMR (D₂O): δ 165.6, 165.1, 154.1, 132.9, 131.7, 129.4, 129.3, 128.9, 125.5, 122.2, 119.7, 119.4, 119.3, 56.2, 44.3, 39.4, 36.5, 13.1. Anal. (C₁₈H₁₈N₄O₂·2CH₃SO₃H·2H₂O) C, H, N, S.

9-Methyl-5-[2-(pyrrolidin-1-yl)ethyl]-5,8-dihydrobenz[de]imidazo[4,5-g]isoquinoline-4,6-dione (5). From 15 (113 mg, 0.45 mmol) in toluene (5 mL) and N-(2-aminoethyl)pyrrolidine (52 mg, 0.45 mmol) in absolute EtOH (2 mL) yielded 5 (153 mg, 97%) as a yellow solid, mp >300 °C (absolute EtOH). The free base was converted into the corresponding dihydromethanesulfonate monohydrate (62%), mp 216-220 °C. IR (KBr): 3380, 2700, 1690, 1650 cm⁻¹. ¹H NMR (DMSO- d_6): δ 9.39 (s, 1H, NH⁺), 8.84 (d, 1H, J = 8.0 Hz, ArH), 8.75 (s, 1H, ArH), 8.57 (d, 1H, J = 7.3 Hz, ArH), 8.07 (m, 1H, ArH), 4.42 (br s, 2H, NCH₂), 3.67 (m, 2H, NCH₂), 3.56 (m, 2H, NCH₂), 3.18 (m, 2H, NCH₂), 2.88 (s, 3H, CH₃), 2.35 (s, 6H, 2CH₃SO₃⁻¹), 2.03 (m, 2H, CH₂), 1.86 (m, 2H, CH₂). ¹³C NMR (D₂O): δ 165.6, 165.0, 154.2, 133.0, 131.6, 129.5, 129.2, 128.9, 125.4, 122.2, 119.7, 119.4, 119.2, 58.4, 55.7, 53.3, 39.3, 37.6, 23.7, 17.7, 13.1. Anal.

General Procedure for the Preparation of Bisnaphthalimides 6-12 and their Salts. A suspension of anhydride 15 (2 equiv) in toluene was treated with the corresponding polyamine (1 equiv) in ethanol. The mixture was heated at reflux temperature until the reaction was completed (TLC). The precipitated solid was filtered and recrystallized from the appropriate solvent to provide the bisnaphthalimide as a free base, except for 12, where column chromatography was used for purificaction. Bisimides were transformed into the corresponding methanesulphonate or hydrochloride salts N,N'-Bis[2-(4,6-dioxo-9-methyl-4,5,6,8-tetrahydrobenz[de]imidazo[4,5-g]isoquinolin-5-yl)ethyl]-1,2-ethanediamine (6). From 15 (200 mg, 0.79 mmol) in

toluene (5 mL) and N,N'-bis(2-aminoethyl)-1,2-ethanediamine (58 mg, 0.40 mmol) in

(C₂₀H₂₀N₄O₂·2CH₃SO₃H·H₂O) C, H, N, S.

absolute EtOH (2 mL) yielded 6 (196 mg, 80%) as a brown solid, mp >300 °C The free converted into the (EtOH/Et₂O). base was corresponding dihydromethanesulfonate monohydrate (72%), mp 287-290 °C. IR (KBr): 3400, 2650, 1700, 1655 cm⁻¹. ¹H NMR (D₂O): δ 7.83 (d, 2H, J = 6.6 Hz, ArH), 7.62 (br s, 2H, ArH), 7.26 (br s, 2H, ArH), 7.14 (br s, 2H, ArH), 4.11 (br s, 4H, 2CH₂), 3.30 (br s, 4H, 2CH₂), 3.38 (m, 4H, 2CH₂), 2.52 (s, 12H, 4CH₃SO₃), 2.39 (s, 6H, 2CH₃). 13 C NMR (D₂O): δ 165,8, 165,4, 154,0, 133,7, 131,1, 129,7, 129,1, 128,6, 128,1, 124,7, 121,5, 119,3, 119.2, 47.9, 44.7, 39.4, 38.5, 13.26. Anal. (C₃₄H₃₀N₈O₄·4CH₃SO₃H·H₂O) C, H, N, S. N,N'-Bis[2-(4,6-dioxo-9-methyl-4,5,6,8-tetrahydrobenz[de]imidazo[4,5glisoquinolin-5-yl)ethyl]-N,N'-dimethyl-1,2-ethanediamine (7). From 15 (150 mg. 0.60 mmol) in toluene (5 mL) and N,N'-bis(2-aminoethyl)-N,N'-dimethylethanediamine (55 mg, 0.32 mmol) in absolute EtOH (2 mL) yielded 7 (173 mg, 90%) as a brown solid, mp 192-195 °C (EtOH/Et₂O). The free base was converted into the corresponding tetrahydromethanesulfonate sesquihydrate (69%), mp >300 °C. IR (KBr): 3400, 2600, 1700, 1655 cm⁻¹, ¹H NMR (D₂O): δ 7.87 (d, 2H, J = 7.1 Hz, ArH), 7.46 (d, 2H, J = 8.3 Hz, ArH), 7.38 (s, 2H, ArH), 7.25 (m, 2H, ArH), 4.15 (br s, 4H, 2CH₂), 3.76 (br s, 4H, 2CH₂), 3.49 (m, 4H, 2CH₂), 2.99 (s, 6H, 2NCH₃), 2.55 (s, 12H, 4CH₃SO₃⁻), 2.38 (s, 6H, 2CH₃). ¹³C NMR (D₂O): δ 165.6, 165.1, 154.5, 134.4, 131.4, 129.7, 128.6, 128.4, 124.5, 121.4, 119.5, 119.0, 117.3, 60.0, 51.3, 42.8, 39.4, 36.6, 13.4. Anal. $(C_{36}H_{34}N_8O_4\cdot 4CH_3SO_3H\cdot 1.5H_2O)$ C, H, N, S.

N,N'-Bis[2-(4,6-dioxo-9-methyl-4,5,6,8-tetrahydrobenz[de]imidazo[4,5-

g|isoquinolin-5-yl)ethyl|-1,3-propanediamine (8). From 15 (94 mg, 0.37 mmol) in toluene (2.5 mL) and N.N'-bis(2-aminoethyl)-1,3-propanediamine (30 mg, 0.19 mmol) in absolute EtOH (1 mL) yielded 8 (101 mg, 85%) as a brown solid, mp 157-159 °C (EtOH/Et₂O). The free base was converted into the corresponding

tetrahydromethanesulfonate trihydrate (94%), mp >300 °C. IR (KBr): 3400, 2740, 1700, 1660 cm⁻¹. ¹H NMR (D₂O): δ 7.95 (d, 2H, J = 7.1 Hz, ArH), 7.65 (m, 4H, ArH), 7.35 (dd, 2H, J = 7.7 and 7.1 Hz, ArH), 4.17 (br s, 4H, 2NCH₂), 3.32 (m, 4H, 2NCH₂), 3.23 (m, 4H, 2NCH₂), 2.59 (s, 12H, 4CH₃SO₃), 2.53 (s, 6H, 2CH₃), 2.11 (m, 2H, CH₂). ¹³C NMR (D₂O): δ 165.6, 165.4, 154.3, 133.4, 131.4, 129.7, 129.0, 128.6, 124.9, 121.7, 119.4, 119.2, 118.3, 46.8, 44.8, 39.4, 37.5, 22.5, 13.2. Anal. (C₃₅H₃₂N₈O₄·4CH₃SO₃H·3H₂O) C, H, N, S.

N,N'-Bis[2-(4,6-dioxo-9-methyl-4,5,6,8-tetrahydrobenz[de]imidazo[4,5-

g|isoquinolin-5-yl)ethyl]-N,N'-dimethyl-1,3-propanediamine (9). From 15 (249 mg, 0.99 mmol) in toluene (5 mL) and N,N'-bis(2-aminoethyl)-N,N'-dimethyl-1,3-propanediamine (93 mg, 0.49 mmol) in absolute EtOH (2 mL) yielded 9 (280 mg, 87%) as a yellow solid, mp 172-175 °C (absolute EtOH). The free base was converted into the corresponding tetrahydromethanesulfonate trihydrate (61%), mp 236 °C (dec). IR (KBr): 3400, 2650, 1700, 1660 cm⁻¹. ¹H NMR (D₂O): δ 8.07 (d, 2H, J = 7.7 Hz, ArH), 7.87 (s, 2H, ArH), 7.74 (d, 2H, J = 7.7 Hz, ArH), 7.45 (t, 2H, J = 7.7 Hz, ArH), 4.28 (br s, 4H, 2NCH₂), 3.46 (br s, 8H, 4NCH₂), 2.93 (s, 6H, 2NCH₃), 2.62 (s, 6H, 2CH₃), 2.60 (s, 12H, 4CH₃SO₃'), 2.28 (br s, 2H, CH₂). ¹³C NMR (D₂O): δ 165.2, 164.9, 154.0, 132.0, 131.7, 129.3, 128.9, 128.5, 125.1, 121.9, 119.2, 119.1, 119.0, 53.1, 42.8, 41.0, 39.4, 35.9, 20.1, 13.0. Anal. (C₃₇H₃₆N₈O₄·4CH₃SO₃H·3H₂O) C, H, N, S.

N,N-Bis[2-(4,6-dioxo-9-methyl-4,5,6,8-tetrahydrobenz[de]imidazo[4,5-

g|isoquinolin-5-yl)ethyl|-N-methylamine (10). From 15 (100 mg, 0.40 mmol) in toluene (2.5 mL) and N^2 -methyldiethylenetriamine (23 mg, 0.20 mmol) in absolute EtOH (1 mL) yielded 10 (79 mg, 69%) as a yellow solid, mp >300 °C (DMF/AcOEt). The free base was converted into the corresponding trihydromethanesulfonate 2.75hydrate (74%), mp 284-285 °C. IR (KBr): 3400, 2580, 1700, 1660 cm⁻¹. ¹H NMR

(D₂O): δ 7.55 (m, 2H, ArH), 7.37 (br s, 2H, ArH), 7.28 (br s, 2H, ArH), 7.15 (m, 2H, ArH), 4.15 (m, 4H, 2CH₂), 3.51 (m, 4H, 2CH₂), 3.04 (s, 3H, NCH₃), 2.56 (s, 9H, 3CH₃SO₃⁻), 2.39 (s, 6H, 3CH₃). ¹³C NMR (D₂O): δ 165.2, 164.6, 154.4, 133.6, 130.8, 130.0, 128.7, 128.2, 124.3, 121.2, 119.5, 119.1, 117.4, 54.7, 42.4, 39.4, 36.0, 13.4. Anal. (C₃₃H₂₇N₇O₄·3CH₃SO₃H·2.75H₂O) C, H, N, S.

N, N-Bis[3-(4,6-dioxo-9-methyl-4,5,6,8-tetrahydrobenz[de]imidazo[4,5-

glisoquinolin-5-yl)propyl]-N-methylamine (11). From 15 (150 mg, 0.60 mmol) in toluene (3.7 mL) and 3,3'-diamino-N-methyldipropylamine(43 mg, 0.30 mmol) in absolute EtOH (1.5 mL) yielded 11 (61 mg, 33%) as a brown solid, mp 235-240 °C (DMF/AcOEt). The free base was converted into the corresponding trihydromethanesulfonate monohydrate (74%), mp 284-285 °C. IR (KBr): 3400, 2580, 1700, 1660 cm⁻¹. H NMR (D₂O): δ 7.49 (br s, 2H, ArH), 6.95 (br s, 4H, ArH), 6.68 (br s, 2H, ArH), 3.64 (m, 4H, 2NCH₂), 2.98 (s, 3H, NCH₃), 2.75 (m, 4H, 2NCH₂), 2.59 (s, 9H, 3CH₃SO₃), 2.23 (s, 6H, 2CH₃), 1.82 (m, 4H, 2CH₂). 13 C NMR (D₂O): δ 164.6, 163.8, 154.0, 133.6, 130.4, 129.2, 128.2, 127.4, 123.6, 121.2, 118.8, 117.5, 116.9, 54.4, 41.6, 39.5, 38.2, 23.9, 13.2. Anal. (C₃₅H₃₁N₇O₄·3CH₃SO₃H·H₂O) C, H, N, S.

N.N'-Bis[3-(4,6-dioxo-9-methyl-4,5,6,8-tetrahydrobenz[de]imidazo[4,5-

glisoquinolin-5-yl)propyl]-1,2-ethanediamine (12). To a hot suspension of compound 15 (250 mg, 1.0 mmol) in toluene (2 mL), was added dropwise N,N'-bis(3-aminopropyl)ethylenediamine (86 mg, 0.5 mmol) in absolute EtOH (4 mL). After the mixture was refluxed for 6 hours, an excess of anhydride 15 (50 mg, 0.2 mmol) was added. The reaction mixture was refluxed for 2 additional hours, and then the solvent was evaporated. The residue was purified by flash chromatography using CH₂Cl₂/MeOH/NH₃ (5:5:0.1) as eluent to give 12 (248 mg, 77%) as an unstable orange solid. To a suspension of free base (202 mg, 0.31 mmol) in AcOEt (9 mL), was added a

saturated solution of HCl in AcOEt (8.3 mL). The obtained solid was filtered to give the corresponding tetrahydrochloride monohydrate (218 mg, 88%), mp 290-292 °C. IR (KBr): 3400, 2740 1700, 1660 cm⁻¹. ¹H NMR (DMSO- d_6): δ 9.54 (br s, 4H, 2NH₂⁺), 8.81 (d, 2H, J = 7.9 Hz, ArH), 8.54 (s, 2H, ArH), 8.46 (d, 2H, J = 7.3 Hz, ArH), 7.95 (m, 2H, ArH), 4.15 (br s, 4H, 2NCH₂), 3.41 (br s, 4H, 2NCH₂), 3.18 (br s, 4H, 2NCH₂), 2.96 (s, 6H, 2CH₃), 2.14 (br s, 4H, 2CH₂). ¹³C NMR (D₂O): δ 163.9, 163.5, 153.4, 132.8, 130.1, 129.6, 128.4, 127.7, 124.4, 121.9, 119.2, 118.5, 118.3, 45.6, 43.0, 38.1, 25.0, 13.6. Anal. (C₃₆H₃₄N₈O₄·4HCl·H₂O) C, H, N.

Computational Methods

Model Building. Compounds 4, 8, 9 and 12 were model-built in Sybyl⁴ using standard geometries, which were fully optimized by means of the ab initio quantum mechanical program Gaussian 94⁵ and the 3-21G basis set. Atom-centered point charges for the optimized structures were derived⁶ which best reproduced the electrostatic potential of the molecule calculated by means of a single point calculation using the larger 6-31G^{*} basis set.⁷

The solution structure of the complex between d(ATGCAT)₂ and elinafide⁸ was used as a template for modeling both a DNA dimer containing a d(TpG) step and the DNA bisintercalation site. Models were constructed for the four possible orientations of 4, 8, 9 and 12 relative to the DNA dimer and hexamer, respectively, as shown in Figures 1 and 2. The AMBER all-atom force field parameters⁹ were used for the DNA dimer and hexamer, and covalent parameters for the intercalating chromophores and linking chains of the ligands were derived, by analogy or through interpolation, ¹⁰ from those already present in the AMBER database.

In order to achieve electrical neutrality in the complexes, an appropriate number of counterions (one for the dimers and six for the hexamers) resembling hexahydrated sodium

ions were placed in the bisector of the O-P-O groups located further from the positive charges of the ligand. 11

Energy Minimization. The initial dimer and hexamer complexes were refined by progressively minimizing their potential energy. The optimizations were carried out in a continuum medium of relative permittivitty $e=4r_{ij}$ for simulating the solvent environment. For the first 3000 steps of the minimization all hydrogen bonds between the DNA base pairs, were reinforced with distance and angle restraining functions with force constants of 10 kcal mol⁻¹ Å⁻² and 10 kcal mol⁻¹ rad⁻², respectively.

Molecular Dynamics Simulations. In order to sample a larger extent of the conformational space, the four lowest energy complexes of 4, 8, 9 and 12 were subjected to molecular dynamics simulations at 300 K for 50 ps. In a 5 ps heating phase, the temperature was raised in steps of 10 K over 0.1 ps blocks, and the velocities were reassigned at each new temperature according to a Maxwell-Boltzmann distribution. This was followed by an equilibration phase of 15 ps at 300 K, in which the velocities were reassigned in the same way every 0.2 ps and by 30 ps sampling period during which system coordinates were saved every 0.2 ps. The time step used was 1fs during the heating period and 2fs for the rest of the simulations. All bonds involving hydrogens were constrained to their equilibrium values by means of the SHAKE algorithm. 12 and lists of nonbonded pairs were updated every 25 ps. For the first 20 ps of simulation the atoms of the phosphate-sugar backbone were restrained to their reference positions at 0 ps by means of a harmonic potential with a force constant of 10 Kcal mol⁻¹ Å⁻². During the entire simulation time, the G:C and A:T hydrogen bonds were reinforced by means of an upper-bound harmonic restraining function with a force constant of 5 kcal mol⁻¹ Å⁻² and 5 Kcal mol⁻¹ rad⁻¹ for distances and angles, respectively.

Analysis of the Dynamics Trajectories. Three dimensional structures were visually inspected using the computer graphics program Sybyl. Trajectories were visualized by means of MDDISPLAY. Root-mean-square (rms) deviations from the initial structures, interatomic distances, and distribution functions were monitored using the CARNAL module of Amber suite of programs.

DNA Binding Experiments

DNA. Calf thymus DNA was purchased from Sigma Chemical Co. as the highly polymerized sodium salt. For viscometric experiments the DNA was sonicated to fragments of approx. 4.5×10^5 D determined as described by Eigner and Doty. The sonicated DNA sample displayed an A_{260}/A_{280} ratio of 1.92. This spectral data is consistent with published values. 16

Viscometric Titrations. The viscometric measurements were performed in an Ubbelohde Microviscometer at 25 ± 0.05 °C. Solutions of sonicated DNA and the selected compound were prepared in TRIS buffer (50 mM, pH = 6.9). These solutions had different molar ratio, r, of added compound to DNA nucleotides. Flow rates were measured with a Schott-Geräte Viscosystem AVS 350 to an accuracy of 0.01%. Time readings were recorded in triplicate to 0.01s.

UV-VIS. For spectrometric determinations was used an UV-1603 Schimadzu. The spectra of sonicated DNA, intercalator and DNA-intercalator complex were registered at different temperatures: 5, 10, 25 and 35 °C.

The UV-vis spectra of compound 4 were registered from pH 3 to 12 with ten different buffers, in order to find if the aliphatic nitrogen was protonated at physiological pH by recording the isosbestic point.

In Vitro Cytotoxicity Assays

The cell lines used were human colon carcinoma (HT-29) (ATCC, HTB 38), human cervical carcinoma (HeLa) (ATCC, CCL 2) and human prostate carcinoma (PC-3) (ECACC, 90112714). For each experiment, cultures were seeded from frozen stocks. Each cell line was maintained in its appropriated medium and was incubated at 37° C in a 5% CO₂ atmosphere.

All cell lines were in the logarithmic phase of growth when the assay of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was carried out. Cells were harvested and seeded into 96-well tissue culture plates at a density of 2.5 x 10⁴ cells/well in 150 μL aliquots of medium. The concentrations tested were serial dilutions of a stock solution (1 x 10⁻⁵ M in DMSO) with phosphate-buffered saline (PBS) and were added 24 h later. The assay was ended after 72 h of drug exposure and PBS was used as a negative control and doxorubicine as a positive control.

After a 72 h exposure period, cells were washed twice with PBS, and then 50 μ L/well of MTT reagent (1 mg/mL in PBS; Sigma) together with 150 μ L/well of prewarmed medium were added. The plates were returned to the incubator for 4 h. Subsequently, DMSO was added as solvent. Absorbance was determined at 570 nm with a Microplate reader (Opsys MR).

All experiments were performed at least three times, and the average of the percentage absorbance was plotted against concentration. Then, the concentration of drug required to inhibit 50% of cell growth (IC₅₀) was calculated for each compound.

Alkaline Single-Cell Gel Electrophoresis Assay.

The alkaline single-cell gel electrophoresis assay (comet assay) detects DNA damage in individual cells embedded in agarose. The test was performed on HT-29 cells following the method described by Moinet-Hedin et al. ¹⁷ After 1h of treatment with the drug, cells

were centrifuged and resuspended in low-melting-point (LMP) agarose at 37 °C. The cell suspension was put on a slide precoated with normal agarose and a glass cover slip was added. After solidification at 0 °C the glass cover slip was gently removed and a third layer of 0.5% of LMP agarose in PBS was added and run for solidification.

The slides were put in a lysis solution (2.5 M NaCl, 0.1 M EDTA, 10 mM Tris, pH 10, with freshly added 1% Triton X-100 and 10% DMSO) for 1h and were rinsed in the electrophoresis buffer (0.3 M NaOH, 1 mM EDTA, pH 13) for 40 min. Electrophoresis (300 mA, 0.7 V/cm) was then performed for 24 min in fresh buffer. The slides were washed twice in neutralization buffer (0.4 M Tris, pH 7.5) and stained with ethidium bromide (20 μg/mL). They were observed using a fluorescence microscope (Nikon) with an excitation filter of 515-560 nm and a barrier filter of 580 nm.

Scheme 2^a

BochN
$$\stackrel{\text{H}}{\longrightarrow}$$
 $\stackrel{\text{N}}{\longrightarrow}$ $\stackrel{\text{N}}{\longrightarrow}$

 a Reagents: (a) N-Boc-glycine, DCC, HOBT, CH $_2$ Cl $_2$; (b) HCl gas, MeOH; (c) BH $_3$ -THF, THF

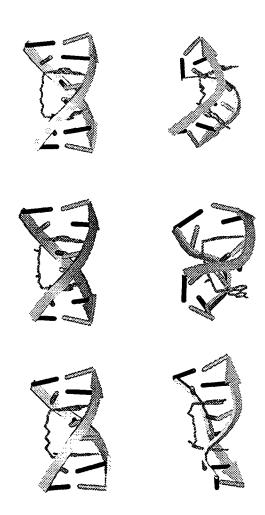


Figure 3. Side views of the energy-minimized initial (left) and average structure (right) of the last 10 ps of the molecular dynamics simulations for complexes 8b (top), 9b (center) and 12b (bottom).

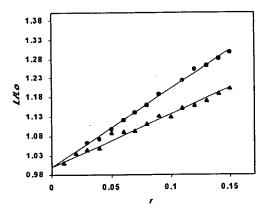


Figure 4. Relative length increase L/L_0 of 4 (\blacktriangle) and 8 (\bullet) DNA complexes as a function of the molar ratio of added compound to DNA nucleotides (r). The contour lengths in the presence (L) or absence (L_0) of the compounds were calculated from viscosity measurements on sonicated calf thymus DNA.

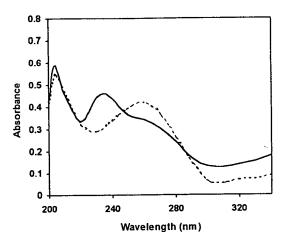


Figure 5. Effect of calf thymus on ultraviolet absorption spectrum of 4 in Tris·HCl (pH = 7.5). The solid line indicates the spectrum of 4 alone at a concentration of 5.25×10^{-6} M, and the dashed line represents the spectrum of 4 at the same concentration in the presence of 1.80×10^{-4} M DNA (nucleotide molarity).

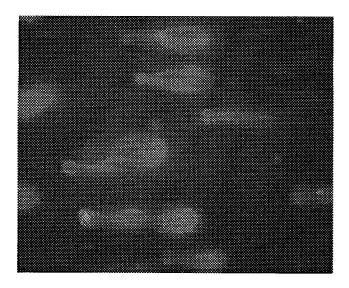


Figure 6. Single-cell gel electrophoresis assay for compound 5

Table 2

Chromophore			21G Electrostatic Potencial Linker compound 4			[[int	ter con	npound 9	Link	ter com	pound 12	
		, 8, 9 y 12		nci co	mpound 4	Ditte	aci con	npound >	Dim	ter com	ipounu 12	
tm	Atm	·	Atm	Atm	• • •	Atm	Atm		Atm	Atm		
Nº	type		Nº	type		Nº	type		N⁰	type		
Cl	CT	-0.19001	Cl	CT	-0.36567	Cl	CT	-0.04099	Cl	CT	-0.26943	
12	HC	0.18156	1	HC	0.28071	H2	HC	0.16774	H2	HC	0:15497	
13	HC	0.18156	Н3	HC	0.28071	Н3	HC	0.16774	H3	HC	0.15497	
N 4	N6	-0.51202	N4	N3	0.11807	N4	N3	-0.18194	C4	CT	0.09890	
C 5	CO	0.88780	H5	H	0.29478	H5	Н	0.32021	H5	HC	0.09751	
D 6	O	-0.60347	C6	CT	-0.36568	C6	CT	0.32021	H6	HC	0.09815	
C7	61	-0.53658	H7	HC	0.18340	Н7	HC	-0.06653	N7	N3	-0.15329	
C8	C6	0.13310	H8	HC	0.18340	H8	HC	0.14408	H8	Н	0.34931	
19	HC	0.13548	H9	HC	0.19458	H9	HC	0.14408	H9	Н	0.34944	
10	C6	-0.36914	C10	CT	-0.36568	C10	CT	-0.14409	C10	CT	0.05677	
[1]	HC	0.18990	HII	HC	0.18340	HII	HC	0.09745	1	HC	0.06674	
12	C6	0.08230	H12	HC	0.19458		HC		4	HC	0.07373	
[13	HC	0.13683	H13	HC	0.18340		CŢ	-0.06653	C13	CT	0.00292	
14	66	-0.32954	Lin	ker co	mpound 8	H14	HĈ	0.14408	H14	HC	0.08103	
15	CN	0.49315	CI	CT	-0.04099	H15	HC	0.14408	H15	HC	0.08573	
116	NB	-0.71679	H2	HC	0.16774	C16	CT	-0.18194	N16	N3	-0.13407	
17	CR	0.63227	Н3	HC	0.16774	H17	HC	0.32021	H17	Н	0.34931	
18	CN	-0.42887	N4	N3	-0.18194	H18	HC	0.32021	H18	Н	0.34944	
[19	HC	0.15964	H5	Н	0.32021	N19	N3	-0.04099	C19	CT	0.07515	
[20	HC	0.12474	Н6	Н	0.32021	H20	H	0.16774	H20	HC	0.09889	
[2]	HC	0.12491	C7	CT	-0.06653	C21	CT	0.16774	H21	HC	0.10136	
122	NA	-0.54326	H8	HC	0.14408	H22	HC	0.14016	C22	CT	-0.37113	
[23]	Н	0.39044	Н9	HC	0.14408	H23	HC	0.14016		HC	0.14180	
24	CN	-0.03785	C10	CT	-0.14408	H24	HC	0.14016	H24	HC	0.14180	
25	C6	0.07904	HII	HC	0.09745	C25	CT	-0.08601				
[26	HC	0.18448	H12	HC	0.09745	H26	HC	0.16176				
27	61	-0.79997	C13	CT	-0.06653	H27	HC	0.16176				
28	66	0.52524	H14	HC	0.14408							
29	CO	1.08212	H15	HC	0.14408							
30	О	-0.65706	NI6	N3	-0.18194							
			H17	Н	0.32021							
			H18	H	0.32021							
			C19	CT	-0.04099							
			H20	HC	0.16774	H	2 H3		H2 H		н	
H19			H21	HC	0.16774	ч	ζ ^{'''}		H H		١	
8							1 N4 J	4n/	CI	⊢ HS		
N 1	NI6 H	H13		H2	нз		H-N-C-	J ten	N4j	A, H	##0 I.I	
/c17 \				۳,	∕ ^H	HIIH	X C10	Н8 Н8	$H \searrow_{C}$	Н6 7	ня н н9 н	
	ੑੑੑੑੑੑੑੑੑਫ਼ਸ਼ੑੑ੶ੑ	C12 H H11		C1 [H12 H	ا _{ال} ے (رر	H14 H9	H. /	H (1) H11		
Ĺ.,		Ciò		N4 N	→H H3		''3\'\'H	H15	CI	≺ ^н н н₁₂	. ни н	
Tun.	C28	C8		% / `` C. CI	O CE H HI3	H17 H	C16	H14	H /c	· · · · · · 12	ни н	
Ī	C27 C7	*H H9	H7 H	JY H	ј н _{н12}	H18 H	(21)		H	_н ні7	,	
	₹, cy	0.00	H		H KII	H20	H-N-C-	-H H23	NI6	N(H20 H	
0	N N4	` 0 06			1111	C2:	ر '''' ا	1 H24	C19 c	H H18	H21 H	
	, cı					H	``H	· ·	~ ``,U`			

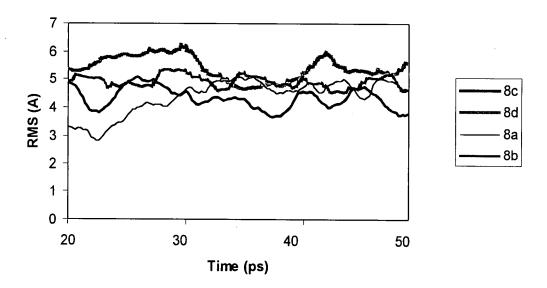


Figure 7. Time evolution of the root-mean-square deviations from the initial structures for 8:(ATGCAT)₂ calculated for all non-hydrogen atoms after least-square fitting of the structures using the same atoms, from the dynamics simulations along the 50 ps sampling time.

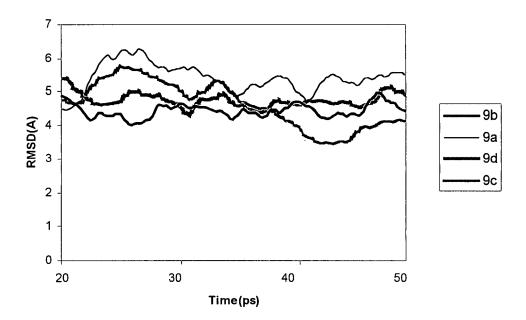


Figure 8. Time evolution of the root-mean-square deviations from the initial structures for 9:(ATGCAT)₂ calculated for all non-hydrogen atoms after least-square fitting of the structures using the same atoms, from the dynamics simulations along the 50 ps sampling time.

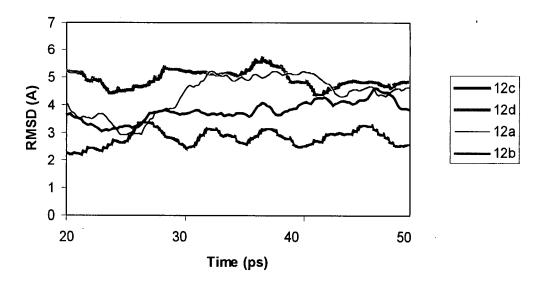


Figure 9. Time evolution of the root-mean-square deviations from the initial structures for 12:(ATGCAT)₂ calculated for all non-hydrogen atoms after least-square fitting of the structures using the same atoms, from the dynamics simulations along the 50 ps sampling time.

Table 3

Additional Force Field Parameters

A Manifestation of the Annual												
Bond	Kr(kcal	req	HC		HC	HC	HC	нс				
	mol ⁻¹	(A)	H H EC		н	н	H 👡 -	н				
	A-2)		. нс н——— ст		ct C		ст С	нс				
C6-C6	469.0	1.40	<u></u>	INB H HC	נא	∖ _Н н	cr	≻" _{H HC}				
C6-HC	340.0	1.08	NA CR	\	HC	^N ~н _Н	H H -N/	, ,, ,,c ,,				
CO-N6	415.0	1.39	/N	MHC WHEC	" ★	т	н н 🗥 🔾	_H HC				
66-66 C6-66	460.0 446.0	1.41 1.42	E H CN		HC H	, HC	ст	>< " "				
C6-61	520.0	1.42	ļø	اره ا	CT	H HC	HC H	CT HC				
CO-61	342.0	1.49	EC H	66 61 H HC	HC H	T IIIC	HC H	н н				
61-66	460.0	1.49		l"	HC H	н н	N3	N				
CO-O	570.0	1.20	۰ 🍆		ัชเ	N. T	HC H	- н н				
N6-CT	337.0	1.47	0 0	N N6 00	ст /	'н н	HC H	СТ				
C6-CN	447.0	1.4		, Cer				,c、				
CR-CT	317.0	1.504	нс	H H BC		H HC	HC HC	H HC				
66-CN	447.0	1.419	nc	· · · · · ·	iic.	iic	nc	nc				
H-N3	434.0	1.010										
Angle	K¢(kcal	фец	Angle	Kø(kcal mol ⁻¹ rad	φ _{eq} (deg)	Angle	Kø(keal	φ _{eq} (deg)	-			
Ū	mol ⁻¹	(deg)		2)	144 (=-8)		mol ⁻¹ rad ⁻²)	+aq (6)				
	rad ⁻²)		İ	,			,					
C6-C6-C6	85.	120.	66-C6-HC	35.	120.	C6-61-CO	85.	119.7	_			
C6-C6-66	85.	120.	61-C6-HC	35.	120.	66-61-CO	85.	120.				
C6-C6-61	85.	120.	C6-66-C6	85.	123.	C6-61-66	85.	120.3				
C6-C6-HC	35.	120.	C6-66-66	85.	118.5	CO-N6-CO	70.	125.				
61-66-61	85.	120.3	61-66-66	85.	119.85	CO-N6-CT	70.	117.5				
N6-CO-O	80.	120.9	61-CO-O	80.	121.8	61-CO-N6	70. `	117.3				
N6-CT-CT	50.	112.4	N6-CT-HC	35.	109.5	C6-66-CN	85.	123.4				
66-CN-NB C6-CN-NA	70. 70.	132.8 132.8	66-CN-CN CN-C6-HC	85. 35.	116.2 120.	CN-66-66	85. 70	120.				
CR-CT-HC	70. 35.	109.5	CR-NA-CN	70,	120. 120.	CN-NB-CR CT-CR-NA	70. 70.	120. 120.				
NB-CR-CT	70.	120.	66-CN-NB	70.	132.8	CN-CN-NB	70. 70.	110.4				
CN-CN-NA	70.	104.4	CN-CN-C6	85.	117.3	C6-C6-CN	63.	120.				
HC-C6-CN	35.	120.	CN-C6-61	85.	120.	HC-CT-N3	50.	109.5				
CT-N3-H	50.	109.5	H -N3-H	35.	109.5							
Dihedral Angle	idivf	v_/2	γ (deg)	n	Dihedral	idivf	v _e /2 (kcal	γ (deg)	n			
_		(kcal			Angle		mol ⁻¹)					
		mol										
V 0/ 0/ V		1)	100									
X-C6-C6-X	4	16.3	180.	2.	X-CR-CT-	6	0.0	0.	2.			
X-C6-66-X	4	4.4	180.	2.	X X-CN-NB-	2	5.1	180.	2.			
11 00 00 1L	•	4.4	100.	۷.	X	4	5.1	100.	2.			
X-C6-61-X	4	16.3	180.	2.	X-CN-CN-	4	16.3	180.	2.			
					х							
X-CO-61-X	. 4	0.9	180.	2.	X-C6-CN-	4	14.5	180.	2.			
					X							
X-66-66-X	4	4.9	180.	2.	C6-N6-CT-	1	0.	0.	3.			
******				_	HC							
X-66-61-X	4	4.9	180.	2.	CO-N6-	1	0.	0.	2.			
X-CO-N6-X	2	5.2	180.	2.	CT-CT		•					
A-CO-NO-A	-	3.2	160.	۷.	CO-N6- CT-HC	1	0.	0.	3.			
X-66-CN-X	4	16.3	180.	2.	C6-N6-CT-	1	0.5	0.	2			
	-				CT	•	0.5	v.	2.			
Imp. Tor. Angles	v _s /2	γ	n				van der	R* (A)	ε			
	(kcal	(deg)					Waals	(,	(kcal			
	mol ⁻¹)	. •							mol.			
									1)			
X-X-66-66	4.9	180.	2.				N6	1.75	0.16			
X-X-C6-C6	4.9	180.	2.				C6	1.85	0.12			
X-X-61-66	4.9	180.	2.				66	1.85	0.12			
X-X-C6-61 X-X-CO-O	4.9 10.5	180. 180.	2. 2.				61 CO	1.85	0.12			
X-X-N6-CO	10.5	180.	2. 2.				CO	1.85	0.12			
X-X-N6-CO X-X-CN-CN	4.9	180.	2. 2.									
X-X-66-61	4.9	180.	2.									

References

- (1) Braña, M. F.; Pérez de Vega, M. J.; Perron, D.; Conlon, D.; Bousquet, P. F.; Robinson, S. P. Benzimididazo[1,2-c]quinazoline Dimers as Potential Antitumor Agents. J. Heterocyclic Chem. 1997, 34, 807-812.
- (2) Jandkowski, Z.; Stolarski, R. Synthesis and Properties of some Naphthalimido-1,2,3-benzotriazole Derivatives. *Rocz. Chem.* **1976**, *50*, 1257-1265.
- (3) Podrezora, T. N. 2-Methylnaphtho[1,2-d]imidazole-5,6-dicarboxylic Acid Anhydride. *Khim. Geterotsikl. Soedin.* 1973, 566-567.
- (4) SYBYL version 6.6. Tripos. 1699 South Hanley Road, St. Louis, Missouri 63144. http://www.tripos.com 1999.
- (5) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R..; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challamcombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, revision C. 3; Gaussian Inc.: Pittsburgh, PA, 1995.
- (6) Singh, U. C.; Kollman, P. A. An Approach to Computing Electrostatic Charges for Molecules. J. Comput. Chem. 1984, 5, 129-145.
- (7) Bayly, C. I.; Cieplack, P.; Kollman, P. A. A Well-behaved Electrostatic Potential Basic Method Using Charge Restraints for Deriving Atomic-Chargesthe RESP Model. J. Phys. Chem. 1993, 97, 10269-10280.

- (8) Gallego, J.; Reid, B. R. Solution Structure and Dynamics of a Complex between DNA and the Antitumor Bisnaphthalimide LU-79553: Intercalated Ring Flipping on the Millisecond Time Scale. *Biochemistry* 1999, 38, 15104-15114.
- (9) Weiner, S. J.; Kollman, P. A.; Nguyen, D. T.; Case, D. A. An All Atom Force Field for Simulations of Proteins and Nucleic Acids. J. Comput. Chem. 1986, 7, 230-252.
- (10) Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P. A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins. J. Am. Chem. Soc. 1984, 106, 765-784.
- (11) Gago, F.; Reynolds, C.; Richards, W. G. The Binding of Non Intercalative

 Drugs to Alternating DNA Sequences. *Mol. Pharmacol.* 1989, 35, 232-241.
- (12) Ryckaert, J. P.; Ciccoti, G.; Berendsen, H. J. C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327-341.
- (13) Callahan, T.; Swanson, E.; Lybrand, T. MDDISPLAY; Version 2.1 ed.
- (14) Case, D. A.; Pearlman, D. A.; Caldwell, J. W.; Cheatham III, T. E.; Ross, W. S.; Simmerling, C. L.; Darden, T. A.; Merz, K. M.; Stanton, R. V.; Cheng, A. L.; Vicent, J. J.; Crowly, M.; Ferguson, D. M.; Radmer, R. J.; Seibel, G. L.; Singh, U. C.; Weiner, P. K.; Kollman, P. A. AMBER 5: University of California, San Francisco.
- (15) Eigner, J.; Doty, P. The Native, Denatured and Renatured States of Deoxyribonucleic Acid. J. Mol. Biol. 1965, 12, 549-580.
- (16) Müller, W.; Crothers, D. M.; Ihara, T. Interactions of HeteroaromaticCompounds with Nucleic Acids. 1. Influence of Heteroatoms and Polarizability

- © 2002 American Chemical Society, J. Med. Chem., Brana jm020950q Supporting Info Page 26
 - on the Base Specificity of Intercalating Ligands. Eur. J. Biochem. 1975, 54, 267-277.
 - Moinet-Hedin, V.; Tabka, T.; Poulain, L.; Godard, T.; Lechevrel, M.; Saturnino,
 C.; Lancelot, J. C.; Le Talaër, J. Y.; Gauduchon, P. Biological Properties of
 5,11-Dimethyl-6H-pyrido[3,2-b]carbazoles: A New Class of Potent Antitumor
 Drugs. Anti-Cancer Drug Des. 2000, 15, 109-118.