Table S1. Electronic (g Tensor) Parameters for Ni(I) and Ni(III) Complexes Relevant to MCR.

Complex ^a	$\mathbf{g} = [g_1, g_2, g_3]^{\mathbf{b}}$	References and Notes
·		
MCRred1	2.2485(5), 2.070(1), 2.060(1) 2.260, 2.088, 2.088	This work, 35 GHz Ref. 43
MCRox1	2.229(2), 2.166(2), 2.148(2) 2.227, 2.159, 2.159	This work, 35 GHz Ref. 43
MCRox2	2.227(2), 2.140(5), 2.125(5)	This work, 35 GHz
Ni ¹ F ₄₃₀	2.244, 2.063, 2.063 2.224, 2.061, 2.061	Ref. 13, 35 GHz Ref. 26
$\mathrm{Ni}^{\mathrm{I}}\mathrm{F}_{430}\mathrm{Me}_{5}$	2.250, 2.074, 2.065	Ref. 44 °
Ni ^I OEiBC	2.204, 2.080, 2.063	Ref. 13, 35 GHz ^d Ref. 45 ^d
	2.2025, 2.083, 2.061	
Ni ¹ Me ₆ [14]1,4,8,11- tetraeneN ₄	2.195, 2.053, 2.053	Ref. 9 ^e
Ni ^I Me ₆ [14]4,11-dieneN ₄	2.226, 2.055, 2.055	Ref. 9 ^e
Ni ^I Me ₆ [14]aneN ₄	2.261, 2.060, 2.060	Ref. 9 ^e
Ni ^{III} F ₄₃₀	2.020, 2.211, 2.211	Ref. 8 ^e
Ni ^{III} Me ₆ [14]1,4,8,11- tetraeneN ₄	2.018, 2.186, 2.186	Ref. 9 ^e
Ni ^{III} Me ₆ [14]4,11-dieneN ₄	2.024, 2.199, 2.199 2.021, 2.232, 2.232	Ref. 9 ^e Ref. 46
Ni ^{III} Me ₆ [14]aneN ₄	2.029, 2.215, 2.215 2.028, 2.238, 2.238	Ref. 9 ^e Ref. 46
Ni ^{III} (Me ₂ [14]aneN ₄) (NCO) ₂	2.055, 2.169, 2.169	Ref. 24 ^f
Ni ^{III} [14]aneN ₄	2.0332, 2.2193, 2.2193	Ref. 23

Ni ^{III} [14]aneN ₄ (NCS) ₂	2.02(1), 2.14(1), 2.14(1)	Ref. 23 ^g
Ni ^{III} TPP(thf) ₂	2.093, 2.328, 2.305	Ref. 34 h
Ni ^{III} TPP(CN) ₂	2.178, 2.065, 2.045	Ref. 34 h
Ni ^{III} DAPA(SPh) ₂	2.03, 2.21, 2.21	Ref. 32 i
Ni ^I DAPA(SPh) ₂	2.26, 2.14, 2.09	Ref. 32 i

^aAbbreviations used: DAPA, 2,6-bis[(1-phenylimino)ethyl]pyridine; F₄₃₀, nickel tetrapyrrole pentacarboxylic acid cofactor; F₄₃₀Me₅, nickel tetrapyrrole pentamethyl ester cofactor; MCR, methyl-coenzyme M reductase; [14]aneN₄, 1,4,8,11-tetraazacyclotetradecane (commonly known as cyclam); Me₂[14]aneN₄, 2,3-dimethyl-1,4,8,11-tetraazacyclotetradecane; Me₆[14]1,4,8,11-tetraeneN₄, 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-1,4,8,11-tetraene; Me₆[14]4,11-dieneN₄, 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene; OEiBC, octaethylisobacteriochlorin (*tct*-2,3,7,8-tetrahydro-2,3,7,8,12,13,17,18-octaethylporphyrin dianion); thf, tetrahydrofuran; TPP, 5,10,15,20-tetraphenylporphyrin dianion.

^bAll g values were determined at X-band (~9 GHz), except as otherwise noted. The X-band studies reported axial EPR spectra in all cases. For comparison with the rhombic spectra resolved at Q-band (35 GHz), the g values are given in the order $[g_z, g_y, g_x]$, where $g_z = g_1$ and $g_x = g_y = g_{\parallel}$ for axial systems; and $g_y = g_{\text{mid}}$, $g_x = g_{\text{min}}$ for rhombic systems. All samples were in frozen aqueous solution, except as otherwise noted. X-band spectra were recorded at 60 - 100 K; 35 GHz spectra at 2 K.

^cIn tetrahydrofuran frozen solution.

^dIn 2-methyltetrahydrofuran frozen solution.

^eIn acetonitrile frozen solution.

^fPowder sample; similar g values obtain with other bisaxial ligands (Br, Cl, NO₃).

 ^{g}g values estimated here from Figure 5 in Ref. 23, which did not report the g values. Hyperfine coupling to two equivalent nitrogen ligands is resolved.

Table S2. Hyperfine and Quadrupole Couplings for Equatorial Nitrogen Ligands in $d^{9,7}$ Macrocyclic Complexes Relevant to F_{430} .

Complex ^a	$A(^{14}N) = [A_1, A_2, A_3] (MHz)^b$	$P(^{14}N) = [P_1, P_2, P_3] (MHz)^b$
MCRred1, N _{1.3} °	36(1), 27(1), 30.6(4)	-1.2(2), 0.8(2), 0.4(2)
MCRred1, N _{2,4} °	31.5(5), 22.5(5), 25.0(5)	-1.8(2), 1.5(2), 0.3(2)
MCRox1, N ₁ c	31(1), 22(1), 24(1)	-1.6(2), 1.0(2), 0.6(2)
MCRox1, N ₂ c	31.5(1.0), 24.5(1.0), 21(1)	-1.3(2), 0.7(2), 0.6(2)
MCRox1, N ₃ ^c	33(1), 24(1), 24.5(1.0)	-1.6(2), 1.0(2), 0.6(2)
MCRox1, N ₄ ^c	33.5(1.0), 26.5(1.0), 26.3(5)	-1.3(2), 0.7(2), 0.6(2)
MCRox2, N _{1,3} ^c	31.5(1.0), 25.0(1.0), 24.0(1.0)	-1.3(2), 1.0(2), 0.3(2)
MCRox2, N _{2,4} °	34.7(5), 27.7(5), 27.5(1.0)	-1.4(2), 1.0(2), 0.4(2)
Ni ^I OEiBC N _{1,3} ^d	33.0(5), 29.0(5), 25.0(0.2)	-1.50(10), 0.90(10), 0.60(5)
Ni ^I OEiBC N _{2,4} ^d	35.0(5), 27.0(5), 25.0(0.2)	-1.00(10), 0.40(10), 0.60(5)
Ni ^I F ₄₃₀ N _{1,3} e	31(1), 22(1), 26.5(0.5)	-1.85(20), 1.10(20), 0.75(5)
Ni ¹ F ₄₃₀ N _{2,4} ^e	34(1), 27(1), 26.5(0.5)	-1.35(20), 0.60(20), 0.75(5)
Cu ^{II} TPP ^f	54.213, 42.778, 44.065	-0.619, 0.926, -0.307
Ni ^{III} TPP(thf) ₂ ^g	0.0	not reported
Ni ^{III} TPP(CN) ₂ g	38, 41, 41	not reported
Co ^{II} TPP(py) ^g	4.07, 2.85, 2.43	-0.90, 0.70, 0.20
Co ^{II} (dmg) ₂ (py) h	2.61, 1.86, 1.84	-1.70, 1.45, 0.25
Ni ^{III} 14aneN ₄ i	≤ 6	not resolved
	:	

^aAbbreviations used: dmg, dimethylglyoxime anion; F₄₃₀, nickel tetrapyrrole pentacarboxylic acid cofactor; MCR, methyl-coenzyme M reductase; OEiBC, octaethylisobacteriochlorin (*tct*-2,3,7,8-tetrahydro-2,3,7,8,12,13,17,18-octaethylporphyrin dianion); py, pyridine; thf, tetrahydrofuran; TPP, 5,10,15,20-tetraphenylporphyrin dianion.

^bThe coordinate system is such that $A(^{14}N)$ and $P(^{14}N)$ are collinear and related to g by Euler angles $\alpha = 0$, $\beta = 90$, $\gamma = 45^{\circ}$, so that $(A, P)_1$ is along the metal-nitrogen bond, $(A, P)_2$ is in-plane, normal to the metal-nitrogen bond (so that $(A, P)_{1,2}$ lie exactly between g_2 and g_3), and $(A, P)_3$ is normal to the macrocycle plane (along g_1).

^cThis work; in aqueous ethylene glycol (~30% v/v) frozen solution.

^dIn 2-methyltetrahydrofuran frozen solution.¹³ The values reported here differ slightly from those originally reported due to more extensive examination of multiple data sets for Ni(I)OEiBC.

^eIn aqueous ethylene glycol (~55% v/v) frozen solution.¹³

^fDoped into Zn(II)TPP single-crystal; values determined by ENDOR.¹⁸

gIn dichloromethane frozen solution; values determined by EPR.34

gIn toluene frozen solution; values determined by ESEEM and ENDOR.20

^hIn methanol/toluene frozen solution; values determined by ESEEM.¹⁹

¹Generated by addition of $(NH_4)_2S_2O_8$ to aqueous Ni(II)[14]aneN₄Cl₂ (following Ref. 24). 35 GHz ENDOR showed only a roughly isotropic signal at 3 - 5 MHz, which would give a maximum coupling of $A(^{14}N) = 6$ MHz, based on an assignment to the v_+ partner of a pattern centered at $A(^{14}N)/2$.

A Ni(II)F₄₃₀, $S_1 = 1$, spin-coupled to a (thiyl) radical, $S_2 = 1/2$, to give a total spin, $S_1 = 1/2$, has $g' = (4/3)g_1 - (1/3)g_2$, where g' is the observed g matrix for the coupled system and g_1 and g_2 are those for the uncoupled species. For a nucleus with an intrinsic hfc given by a_1 (~30 MHz for ¹⁴N in an authentic $d_{x^2-y^2}$ species, such as Ni(I)OEiBC and Ni(I)F₄₃₀), the observed hfc in the coupled system is $A_1' = (4/3)A_1 = (4/3)(a_1/2S_1) = (4/3)(30/2) = 20$ MHz, where A_1 is the hfc in the $S_1 = 1$ uncoupled system.

Yet another suggestion, that the "ox" states are EPR-visible Ni(II), S = 1, is not credible: the EPR signals are not characteristic of S = 1 and the ligand field in F_{430} would in any case cause axial zero field splittings that are too large to allow observation of X-band EPR spectra.³⁵

Rospert, S.; Voges, M.; Berkessel, A.; Albracht, S. P. J.; Thauer, R. K. Eur. J. Biochem. 1992, 210, 101-107.

Jaun, B.; Pfaltz, A. J. Chem. Soc., Chem. Commun. 1986, 1327-1329.

Renner, M. W.; Furenlid, L. R.; Stolzenberg, A. M. J. Am. Chem. Soc. 1995, 117, 293-300.

Zeigerson, E.; Ginzburg, G. J. Chem. Soc., Chem. Commun. 1979, 241-243.

Figure Captions.

S1. Experimental (upper trace of pair) and simulated (lower trace of pair) 35 GHz EPR spectra of A) Ni(I)OEiBC; B) isolated Ni(I)F₄₃₀; C) MCRox2; D) MCRox1. The spectra were recorded using the dispersion mode under passage conditions; a digital first derivative is shown. The abscissa is in g value to facilitate comparison among spectra. The EPR spectrum of MCRred1 is not shown here, but is shown in Figure 2 and is almost identical to that of Ni(I)F₄₃₀. Experimental conditions: A) upper trace: tct-Ni(I)OEiBC, generated by reduction of Ni(II)OEiBC using Na(Hg) amalgam, 0.5 mM in 2-Me-THF; temperature, 2 K; microwave frequency, 35.422 GHz; microwave power, 2 mW; 100 kHz field modulation amplitude, 0.03 mT; time constant, 32 ms; lower trace: simulation using: $g_z = 2.204$, $g_y = 2.080$, $g_z = 2.063$; Gaussian linewidths (hwhm): W_z = 155 MHz, $W_{x,y}$ = 100 MHz. **B**) upper trace: Ni(I)F₄₃₀, generated by reduction of F₄₃₀ using Ti(III)citrate, 0.25 mM in 0.1 M, pH= 10.4 CAPS buffer with 55% (v/v) ethylene glycol; instrument parameters as in (A) except: microwave frequency, 35.035 GHz; microwave power, 2 μ W; modulation amplitude, 0.1 mT; lower trace: simulation using $g_{\parallel} = 2.244$, $g_{\perp} = 2.063$; $W_{\parallel} =$ 140 MHz, W_{\perp} = 90 MHz. For comparison, simulation of MCRred1 used: g_z = 2.2485, g_v = 2.070, $g_x = 2.060$; $W_{iso} = 80$ MHz. C) upper trace: MCRox2; 0.71 mM; 50 mM Tris-HCl, pH 7.6; instrument parameters as in (B) except: microwave frequency, 34.931 GHz; microwave power, 20 µW; lower trace: simulation using: $g_x = 2.125$, $g_y = 2.140$, $g_z = 2.227$; $W_{iso} = 90$ MHz. **D)** upper trace: MCRox1; 0.60 mM; 50 mM, pH 7.6 buffer; instrument parameters as in (C) except: microwave frequency, 34.968 GHz; lower trace: simulation using: $g_x = 2.148$, $g_y = 2.166$, $g_z = 2.229$; $W_{iso} = 75$ MHz.

S2. Qualitative d orbital scheme for d⁷ (low-spin) and d⁹ complexes. Electron occupancies common to both d⁷ and d⁹ are unmarked, while those exclusive to d⁷ are circled and those exclusive to d⁹ are boxed.

S3. Experimental (upper trace of pair) and simulated (lower trace of pair) field dependent 35 GHz CW ¹⁴N ENDOR spectra for MCRox1. Experimental conditions: protein concentration, 0.60 mM; 50 mM Tris-HCl, pH 7.6; A) temperature, 2 K; microwave frequency, 34.970 GHz; microwave power, 13 μ W (42 dBm); magnetic field, 1.1250 T (g = 2.221); 100 kHz field modulation amplitude, 0.3 mT; time constant, 64 ms; rf scan rate, -0.5MHz/s; average rf power, 5 W; 20 scans. B) same as (A) except: magnetic field, 1.1360 T (g = 2.199); C) same as (A) except: magnetic field, 1.1460 T (g = 2.180); **D**) same as (A) except: magnetic field, 1.1590 T (g =2.156; corresponding to $g = [(g_2^2 + g_3^2)/2]^{1/2}$; E) same as (A) except: magnetic field, 1.1620 T (g = 2.150); F) same as (A) except: magnetic field, 1.1650 T (g = 2.145); Simulation parameters: g =[2.229, 2.166, 2.148]; sum of equal weights of the following four types of nitrogen ligand, N_n , n =1, 4: $A(^{14}N_1) = [33.5, 26.5, 26.3]$ MHz, $P(^{14}N_1) = [-1.3, 0.7, 0.6]$ MHz; $A(^{14}N_2) = [33.0, 24.0, 1.3]$ 24.4] MHz, $P(^{14}N_2) = [-1.6, 1.0, 0.6]$ MHz; $A(^{14}N_3) = [31.5, 24.5, 21.0]$ MHz, $P(^{14}N_1) = [-1.3, 1.0, 0.6]$ MHz, $P(^{14}N_1) = [-1.3, 1.0, 0.6]$ MHz, $P(^{14}N_1) = [-1.3, 1.0, 0.6]$ 0.7, 0.6] MHz; $A(^{14}N_4) = [31.0, 22.0, 24.0]$ MHz, $P(^{14}N_4) = [-1.6, 1.0, 0.6]$ MHz. The $A(^{14}N_1)$ and $P(^{14}N_1)$ tensors are related to the g tensor by the following Euler angle rotations: $\alpha = 0^{\circ}$, $\beta =$ 90° , $\gamma = (45 + 90(n - 1))^{\circ}$, where n = 1, 4 (nitrogen ligand identifier). In all cases the following Gaussian linewidths (hwhh) are used: EPR, 75 MHz; ENDOR, 0.35 MHz.

S4. Experimental (upper trace of pair) and simulated (lower trace of pair) field dependent 35 GHz CW ¹⁴N ENDOR spectra for MCRox2. Experimental conditions: protein concentration, 0.71 mM; 50 mM Tris-HCl, pH 7.6; A) temperature, 2 K; microwave frequency, 34.958 GHz; microwave power, 20 μ W (40 dBm); magnetic field, 1.1250 T (g = 2.220); 100 kHz field modulation amplitude, 0.3 mT; time constant, 64 ms; rf scan rate, -1MHz/s; average rf power, 5 W; 30 scans. B) same as (A) except: magnetic field, 1.1350 T (g =2.200); C) same as (A) except: magnetic field, 1.1460 T (g = 2.179); D) same as (A) except: magnetic field, 1.1560 T (g = 2.161); E) same as (A) except: magnetic field, 1.1700 T (g = 2.135; corresponding to $g = [(g_2^2 + g_3^2)/2]^{1/2}$; **F**) same as (**A**) except: magnetic field, 1.1780 T (g =2.120); Simulation parameters: g = [2.227, 2.140, 2.125]; sum of equal weights of the following four nitrogen ligands in two distinct types, N_n , n = 1, 4: $A(^{14}N_{1.3}) = [34.7, 27.7, 28.5]$ MHz, $P(^{14}N_{1,3}) = [-1.3, 1.0, 0.3] \text{ MHz}; A(^{14}N_{2,4}) = [31.5, 25.0, 25.5] \text{ MHz}, P(^{14}N_{2,4}) = [-1.4, 1.0, 0.4]$ MHz. The $A(^{14}N_1)$ and $P(^{14}N_1)$ tensors are related to the g tensor by the following Euler angle rotations: $\alpha = 0^{\circ}$, $\beta = 90^{\circ}$, $\gamma = (45 + 90(n - 1))^{\circ}$, where n = 1, 4 (nitrogen ligand identifier). In all cases the following Gaussian linewidths (hwhh) are used: EPR, 75 MHz; ENDOR, 0.35 MHz.

S5. Experimental (upper trace of pair) and simulated (lower trace of pair) field dependent 35 GHz CW ¹⁴N ENDOR spectra for MCRred1. Experimental conditions: protein concentration, 0.48 mM; Ti(III)citrate, 40 mM; 0.5 M TAPS buffer, pH 10.0; A) temperature, 2 K; microwave frequency, 34.919 GHz; microwave power, 20 μ W (40 dBm); magnetic field, 1.1140 T (g =

2.240); 100 kHz field modulation amplitude, 0.3 mT; time constant, 32 ms; rf scan rate, -0.5 MHz/s; average rf power, 5 W; 40 scans. B) same as (A) except: magnetic field, 1.1660 T (g = 2.140); C) same as (A) except: magnetic field, 1.1770 T (g = 2.120); D) same as (A) except: magnetic field, 1.1880 T (g = 2.100); E) same as (A) except: magnetic field, 1.1990 T (g = 2.081; F) same as (A) except: magnetic field, 1.2050 T (g = 2.070); Simulation parameters: g = [2.2485, 2.070, 2.060]; sum of equal weights of the following four nitrogen ligands in two distinct types, N_m , n = 1, 4: $A(^{14}N_{1,3})$ = [36.0, 27.0, 30.6] MHz, $P(^{14}N_{1,3})$ = [-1.2, 0.8, 0.4] MHz; $A(^{14}N_{2,4})$ = [31.5, 22.5, 25.0] MHz, $P(^{14}N_{2,4})$ = [-1.8, 1.5, 0.3] MHz. The $A(^{14}N_1)$ and $P(^{14}N_1)$ tensors are related to the g tensor by the following Euler angle rotations: α = 0°, β = 90°, γ = (45 + 90(n - 1))°, where n = 1, 4 (nitrogen ligand identifier). In all cases the following Gaussian linewidths (hwhh) are used: EPR, 75 MHz; ENDOR, 0.35 MHz.

Experimental (top trace) and simulated (middle and bottom traces) 35 GHz EPR spectrum of MCR treated with excess Ti(III)citrate showing the simultaneous presence of MCRox1 and MCRred1. Experimental conditions are given in Figure 1 for MCRred1. EPR simulation parameters are given in Table 1. The EPR spectrum exhibits ox1 and red1 with comparable signal intensities; not shown is the vastly greater (~100x) signal at higher field due to unreacted Ti(III)citrate.

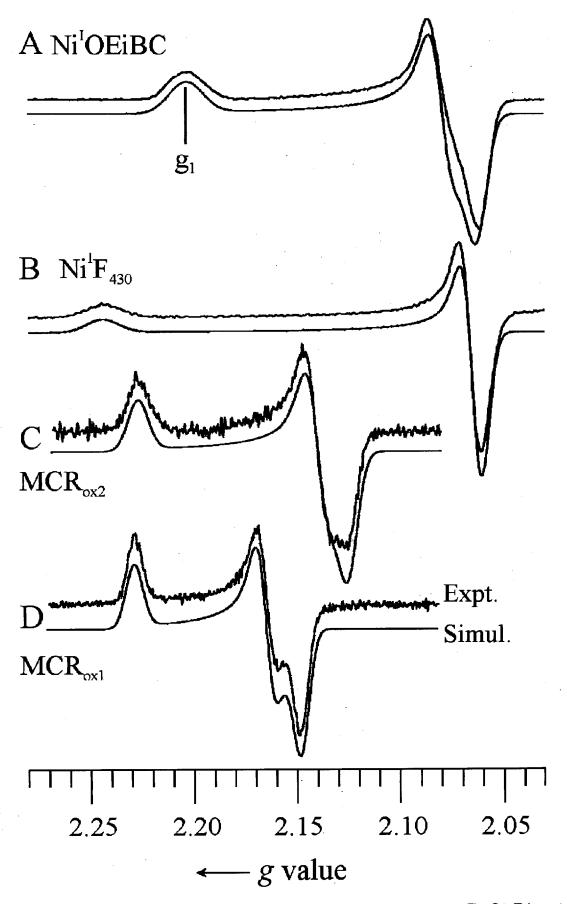


Fig. S1, Telser et al.

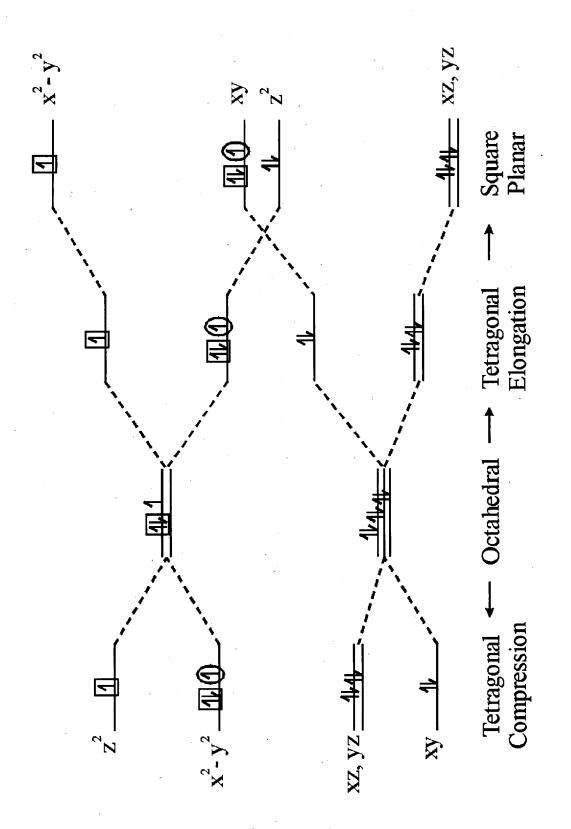


Fig. S2, Telser et al.

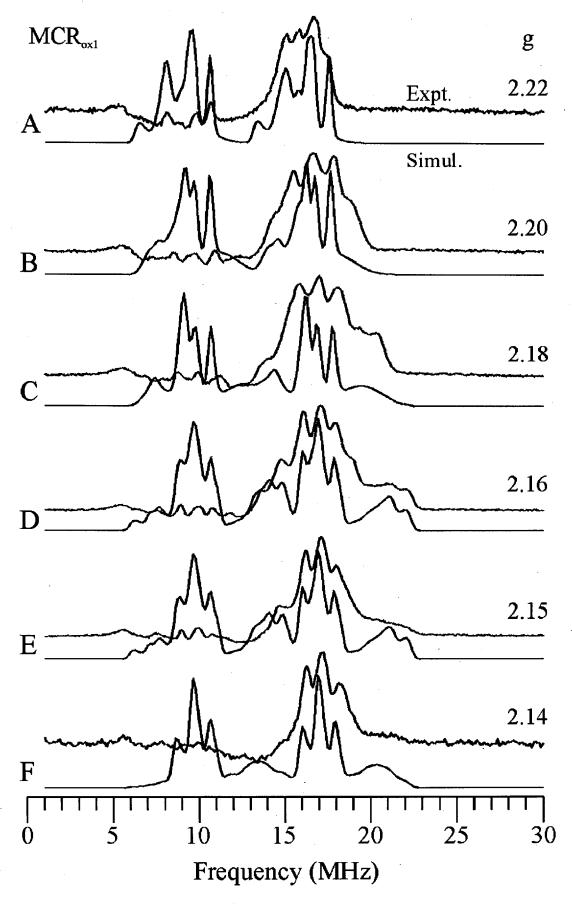


Fig. S3, Telser et al.

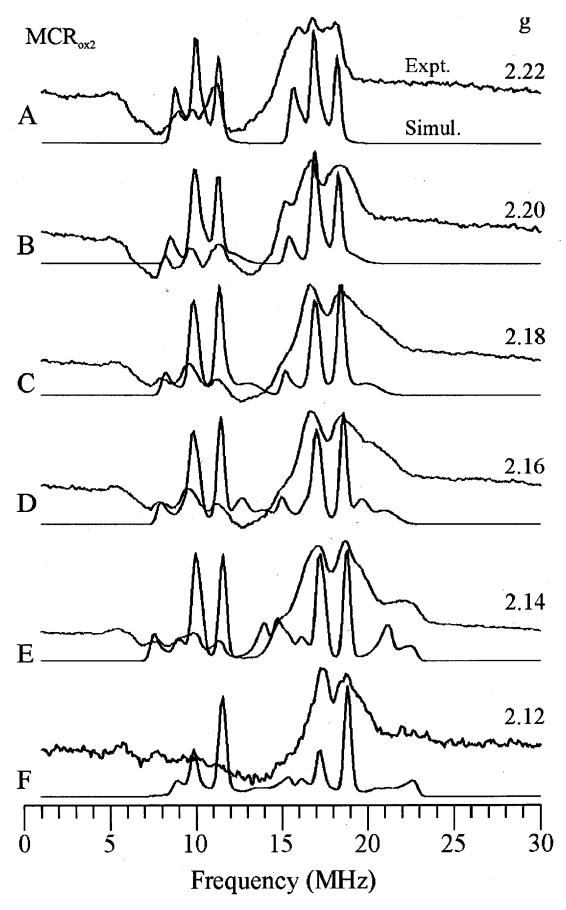
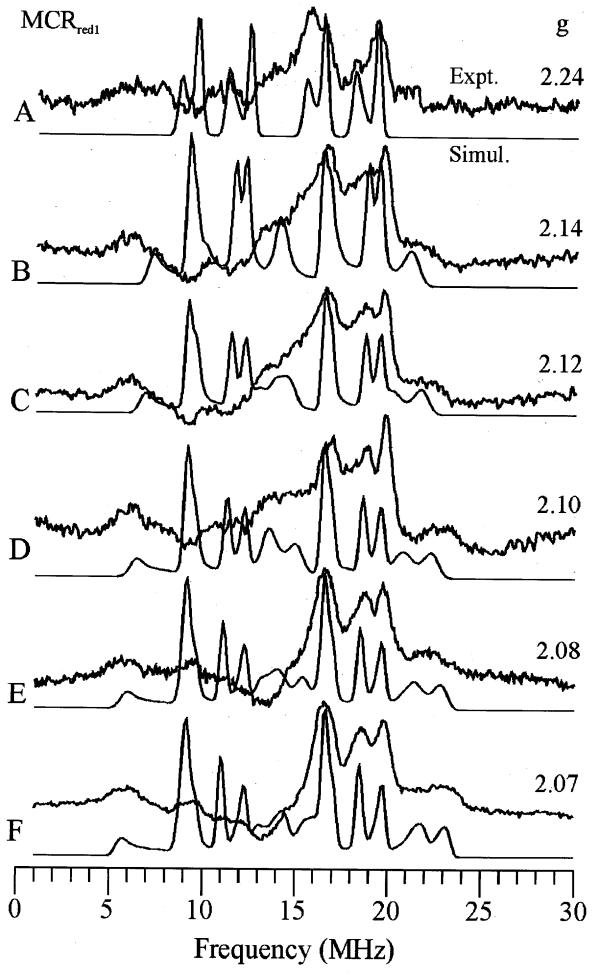
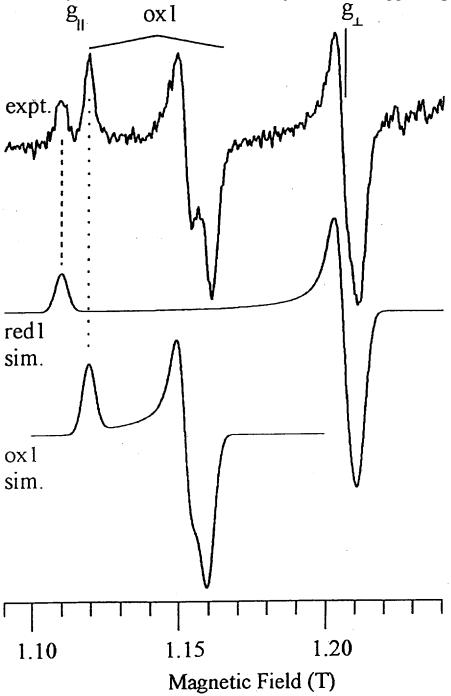




Fig. S4, Telser et al.

tig SS. Telson et al.

figur