## Preventing Structural Rearrangements on Battery Cycling: A First Principles Investigation of the Effect of Dopants on the Migration Barriers in Layered Li<sub>0.5</sub>MnO<sub>2</sub>

Ieuan D. Seymour, David J. Wales and Clare P. Grey\*

Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom

## SUPPLEMENTARY INFORMATION

The changes in the local bonding around a  $Mn^{4+}$  ion in a  $MnO_6$  octahedral environment with a  $M^{3+}$  dopant (Al<sup>3+</sup>, Cr<sup>3+</sup>, Ga<sup>3+</sup>, Fe<sup>3+</sup>, Sc<sup>3+</sup> and In<sup>3+</sup>) in the first cation coordination sphere was investigated. The variation in the local  $Mn^{4+}$ -O bond lengths are shown in Table S1 for the doped cells and the undoped,  $Li_{0.5}MnO_2$  (Mn) cell.

Table S1: Variation in local bond length with the inclusion of a metal,  $M^{3+}$ , dopant in the ordered Li and vacancy chain structure of  $Li_{0.5}MnO_2$ . The  $Mn^{4+}$ -O bond length of the 1<sup>st</sup> nearest neighbor octahedral  $Mn^{4+}$  site are shown. The positive Jahn Teller distortion of the neighboring  $Mn^{3+}$  species results in 4 shortened bonds and 2 lengthened bonds for all species. Average bond length =  $1/3 \times long + 2/3 \times short$ 

|        |                  | 1 <sup>st</sup> nn Mn <sup>4+</sup> -O Bond Length (Å) |       |         |
|--------|------------------|--------------------------------------------------------|-------|---------|
| Dopant | Ionic Radius (Å) | Short                                                  | Long  | Average |
| Mn     | 0.645            | 1.921                                                  | 1.949 | 1.931   |
| Al     | 0.535            | 1.922                                                  | 1.958 | 1.934   |
| Cr     | 0.615            | 1.920                                                  | 1.957 | 1.933   |
| Ga     | 0.62             | 1.922                                                  | 1.954 | 1.933   |
| Fe     | 0.645            | 1.921                                                  | 1.955 | 1.933   |
| Sc     | 0.745            | 1.922                                                  | 1.953 | 1.932   |
| In     | 0.8              | 1.923                                                  | 1.951 | 1.932   |

The volume of the Li tetrahedral site in configuration b for all the first nearest neighbor doped structures was found to be inversely proportional to the ionic radius of the  $M^{3+}$  dopant, as is shown in Figure S1.



Figure S1: The variation in the Li tetrahedral volume with the ionic radius of a dopant in the 1<sup>st</sup> nearest neighbor coordination to  $Mn^{3+}$  dopant in the vacancy ordered structure of  $Li_{0.5}MnO_2$  with one tetrahedral Li (configuration *b*), is shown with filled triangles. The tetrahedral volume for Li in undoped  $Li_{0.5}MnO_2$  (Mn) reproduced from ref 1 is shown with a square.

The migration of Cr in the  $Li_{0.5}MnO_2$  structure was found to occur in a two stage process involving the migration of Cr from an octahedral (CrO<sub>6</sub>) to a square pyramidal (CrO<sub>5</sub>) site, followed by migration from the square pyramidal site to a tetrahedral (CrO<sub>4</sub>) site. The transition state for the square pyramidal to tetrahedral migration is shown in Figure S2.



Figure S2: A schematic representation of the transition state structure for  $Cr^{3+}$  diffusion between an square pyramidal,  $CrO_5$  site and a tetrahedral,  $CrO_4$ , site in the structure of  $Li_{0.5}MnO_2$ . The diffusing species are enlarged for clarity.

The oxidation state of Cr during the octahedral  $\rightarrow$  square pyramidal  $\rightarrow$  tetrahedral migration process was monitored from the integrated differential spin density around Cr, as is shown in Figure S3. A sphere radius of 1.8 Å was used around the Cr site for the integration.



Figure S3: (Bottom) Energy along the migration pathway of a  $Cr^{3+}$  dopants from the octahedral  $\rightarrow$  square pyramidal  $\rightarrow$  tetrahedral sites within the structure of Li<sub>0.5</sub>MnO<sub>2</sub>. (Top) Integrated spin density on the diffusing Cr species.

In Figure S3, the diffusing Cr ion maintains a spin of approximately 2.9  $\mu_B$  throughout the migration process, corresponding to a charge state of Cr<sup>3+</sup>.

The diffusion of  $In^{3+}$  and  $Sc^{3+}$  from octahedral sites in the Mn layer (configuration c in Figure 1 of the main text) to tetrahedral sites in the Li layer (configuration f in Figure 1 of the main text), was found to occur simultaneously with the migration of an octahedral Li from the ordered chain to a tetrahedral site above the dopant. The local minima and transition state structures are shown in Figure S4.



Figure S4: A schematic representation of cooperative migration pathway for  $M^{3+}$  (Sc and In) dopants and Li from octahedral sites (configuration c) to tetrahedral sites (configuration f) in the structure of  $Li_{0.5}MnO_2$ . The diffusing species are enlarged for clarity.

## REFERENCES

 Seymour, I. D.; Chakraborty, S.; Middlemiss, D. S.; Wales, D. J.; Grey, C. P. Mapping Structural Changes In Electrode Materials: Application Of The Hybrid Eigenvector-Following Density Functional Theory (DFT) Method To Layered Li<sub>0.5</sub>MnO<sub>2</sub>. Chem. Mater. 2015, 27, 5550–5561.