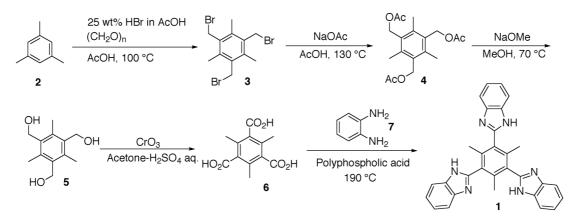
Supporting Information

Triangular and Tetrahedral Array of Silver(I) lons by a Novel Disk-Shaped Tridentate Ligand: Dynamic Control of Coordination Equilibrium of the Silver(I) Complexes

Shuichi Hiraoka,[†] Tao, Yi,[†] Motoo Shiro,[‡] and Mitsuhiko Shionoya*,[†]

 [†] Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
[‡] Rigaku Corporation, 3-9-12 Matsubaracho, Akishima, Tokyo 196-8666, Japan


Contents

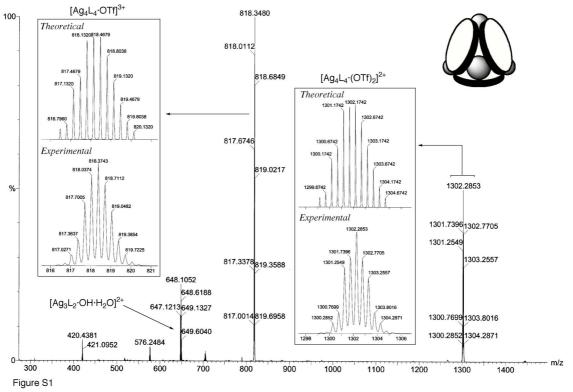
• Preparation of 1	·····page S2
• Formation of the Ag_41_4 ·(OTf) ₄ and Ag_31_2 ·(OTf) ₃ complexes	·····page S3
• ESI mass spectrum of the $Ag_4 1_4$ complex (Figure S1)	·····page S3
• ESI mass spectrum of the $Ag_3 1_2$ complex (Figure S2)	·····page S4
• ¹⁹ F NMR spectrum of silver(I) complexes (Figure S3)	·····page S4

Preparation of 1,3,5-Tribenzimidazolyl-2,4,6-trimethyl benzene (1)

Tridentate ligand **1** was prepared starting from mesitylene **2** in 5 steps (Scheme S1). Synthetic details of **6** from **2** are reported in the following literature: Kolotuchin, S. V., Thiessen, P. A., Fenlon, E. E., Wilson, S. R., Loweth, Colin J., Zimmerman, S. C. *Chem. Eur. J.* **1999**, *5*, 2537-2547.

Scheme S1

Preparation of 1 from 6


2,4,6-Trimethylbenzene-1,3,5-tricarboxylic acid 6 (2.5 g, 10 mmol) and 1,2diaminobenzene (3.7 g, 34 mmol) were added to polyphosphoric acid (30 mL), and the mixture was stirred at 190 °C for 16 h. The resulting gray solution was allowed to cool down to 100 °C and then poured into ice with vigorous stirring. The gray solid formed was collected, then was neutralized by stirring in a saturated solution of sodium bicarbonate overnight. The raw solid product was collected and washed with water, acetone, and chloroform, respectively. The solid was dissolved in 1 N HCl (50 mL) and filtered, and then the acidic solution was neutralized with 1 N NaOH. The precipitation was collected, washed with water and dried in vacuo, to obtain a light gray solid of 3.02 g (yield 64.5%). Mp > 240 °C. ¹H NMR (500 MHz, DMSO- d_6) δ 12.70 (s, 3 H), 7.69 (d, J = 7.7 Hz, 3H), 7.54 (d, J = 7.7 Hz, 3H), 7.24 (dd, J = 7.7, 7.7) Hz, 3H), 7.21 (dd, J = 7.7, 7.7 Hz, 3H), 1.88 (s, 9H). ¹³C NMR (125 MHz, DMSO- d_6) δ 150.6, 143.5, 138.5, 134.2, 130.6, 122.3, 121.3, 119.0, 111.3. IR (KBr) v 3175, 3050, 1410, 1270, 740 cm⁻¹. MS (FAB) *m*/*z* exact mass M⁺ 469.2164, C₃₀H₂₅N₆ requires 469.2141.

Formation of $Ag_4 \mathbf{1}_4 \cdot (OTf)_4$

AgOTf (0.021 mmol, 5.4 mg) was added to CDCl₃ and CD₃OD (0.5 mL, 1/1, v/v) solution of **1** (0.021 mmol, 10.0 mg) and the mixture was stand at room temperature for 5 min. ¹H NMR spectrum showed the quantitative formation of the Ag₄**1**₄ complex. ¹H NMR (500 MHz, CDCl₃ and CD₃OD, 1/1, v/v) δ 7.52 (d, *J* = 8.8 Hz, 12H), 7.23 (dd, *J* = 8.8, 8.8 Hz, 12H), 7.09 (d, *J* = 8.8 Hz, 12H), 6.77 (dd, *J* = 8.8, 8.8 Hz, 12H), 1.87 (s, 36H). ¹³C NMR (125 MHz, CDCl₃ and CD₃OD, 1/1, v/v) δ 156.1, 145.9, 144.4, 137.5, 132.7, 127.5, 126.5, 124.1 (q, *J* = 316.6 Hz), 122.5, 115.8, 21.9. ESI-MS (CH₃OH) *m*/*z* = 818.4 [Ag₄**1**₄·(OTf)]³⁺, 1302.3 [Ag₄**1**₄·(OTf)₂]²⁺.

Formation of $Ag_3 \mathbf{1}_2 \cdot (OTf)_3$

AgOTf (0.021 mmol, 8.2 mg) was added to CDCl₃ and CD₃OD (0.5 mL, 1/1, v/v) solution of **1** (0.021 mmol, 10.0 mg) and the mixture was stand at room temperature for 5 min. ¹H NMR spectrum showed the quantitative formation of the Ag₃**1**₂ complex. ¹H NMR (500 MHz, CDCl₃ and CD₃OD, 1/1, v/v) δ 8.09 (d, *J* = 8.8 Hz, 6H), 7.76 (d, *J* = 8.8 Hz, 6H), 7.64 (dd, *J* = 8.8, 8.8 Hz, 6H), 7.57 (dd, *J* = 8.8, 8.8 Hz, 6H), 2.09 (s, 18H). ¹³C NMR (125 MHz, CDCl₃ and CD₃OD, 1/1, v/v) δ 154.8, 145.9, 145.0, 136.9, 132.5, 128.7, 124.1 (q, *J* = 316.6 Hz), 121.8, 116.9, 21.7. ESI-MS (CH₃OH) *m*/*z* = 420.3 [Ag₃**1**₂]³⁺, 648.1 [Ag₃**1**₂·OH·H₂O]²⁺, 705.0 [Ag₃**1**₂·(OTf)]²⁺, 1559.0 [Ag₃**1**₂·(OTf)₂]⁺.

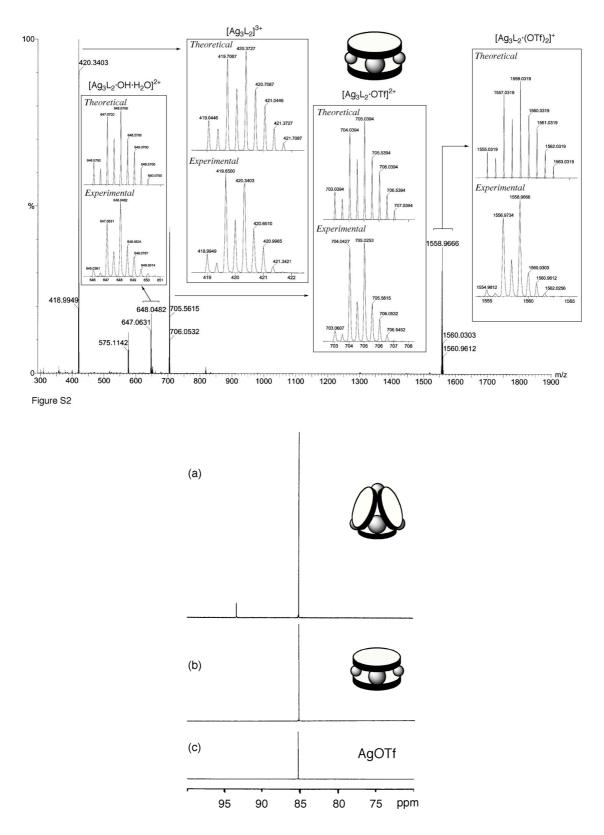


Figure S3. Comparison of ¹⁹F NMR spectra for silver complexes in CD₃OD; (a) $Ag_4\mathbf{1}_4$ ·(OTf)₄, (b) $Ag_3\mathbf{1}_2$ ·(OTf)₃, and (c) AgOTf. The Chemical shifts were measured as downfield shifts from C₆F₆ that was used as an internal standard.