Supporting Information

Total Synthesis of the NF-кB Inhibitor (-)-Cycloepoxydon: Utilization of Tartrate-Mediated Nucleophilic Epoxidation

Chaomin Li, ${ }^{\dagger}$ Emily A. Pace, ${ }^{\S}$ Mei-Chih Liang, ${ }^{\S}$ Emil Lobkovsky, ${ }^{\ddagger}$ Thomas D. Gilmore, ${ }^{8}$ and John A. Porco, Jr. ${ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry and Center for Streamlined, Synthesis and ${ }^{\S}$ Department of Biology, Boston University, Boston, Massachusetts 02215
${ }^{\ddagger}$ Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301

General Information: ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a 400 MHz spectrometer at ambient temperature with CDCl_{3} as the solvent unless otherwise stated. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 75.0 MHz spectrometer (unless otherwise stated) at ambient temperature. Chemical shifts are reported in parts per million relative to chloroform $\left({ }^{1} \mathrm{H}, \delta 7.24 ;{ }^{13} \mathrm{C}, \delta 77.23\right)$. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift, integration, multiplicity (app = apparent, par obsc = partially obscure, ovrlp $=$ overlapping, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $)$ and coupling constants. All ${ }^{13} \mathrm{C}$ NMR spectra were recorded with complete proton decoupling. Infrared spectra were recorded on a Nicolet Nexus 670 FT-IR spectrophotometer. Low and high-resolution mass spectra were obtained in the Boston University Mass Spectrometry Laboratory using a Finnegan MAT-90 spectrometer. Optical rotations were recorded on an AUTOPOL III digital polarimeter at 589 nm , and are recorded as $[\alpha]_{\mathrm{D}}$ (concentration in grams $/ 100 \mathrm{~mL}$ solvent). Chiral HPLC analysis was performed on an Agilent 1100 series (CHIRALCEL OD, Column No. OD00CE-AIO15). Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F plates. Flash chromatography was performed using 200-400 mesh silica gel (Scientific Absorbents, Inc.). Yields refer to chromatographically and spectroscopically pure materials, unless otherwise stated. Potassium hexamethyldisilazide (KHMDS, 0.66 M in toluene) was purchased from Callery Chemical (Pittsburgh, PA). All other reagents were used as supplied by Sigma-Aldrich, Fluka, and Strem Chemicals. Methylene chloride, toluene, hexane, and benzene and 1,2-dichloroethane were distilled from calcium hydride; tetrahydrofuran and diethyl ether were distilled from sodium/benzophenone ketyl prior to use. $\mathrm{Ph}_{3} \mathrm{COOH},{ }^{\mathrm{S} 1}(E)$-tributyl-1-pentenyl-stannane ${ }^{\mathrm{S} 2}$ were prepared according to literature procedures. All reactions were carried out in oven-dried glassware under an argon atmosphere unless otherwise noted.

Dimethoxy ketal 5. Compound $4(8 \mathrm{~g}, 17 \mathrm{mmol})$ was dissolved in 100 mL MeOH and cooled to $0^{\circ} \mathrm{C}, \operatorname{PhI}(\mathrm{OAc})_{2}(6 \mathrm{~g}, 18.6 \mathrm{mmol})$ was added over 5 min . The reaction was stirred at $0^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was quenched with sat. NaHCO_{3} and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layers were combined, washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. Purification on silica gel (15% EtOAc in hexane) provided $7.2 \mathrm{~g}(14.44 \mathrm{mmol}, 84 \%)$ of dimethoxy ketal 5 as a yellow solid. $\mathrm{mp} 98-100{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 6 \mathrm{H}), 6.76(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.4 \mathrm{~Hz}), 6.56(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 6 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.3,153.8$, $144.4,136.0,133.0,130.5,130.3,130.0,127.9,97.7,60.9,51.8,27.0,19.6,19.4$; IR (thin film) vmax 2934, 2857, 1682, 1482, 1274, 1113, $1071 \mathrm{~cm}^{-1}$; CILRMS [M- $\left.{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{MeO}\right]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrO}_{3} \mathrm{Si}$: 413.3, found: 413.0.

3

Cyclic ketal 3. A mixture of 5 ($600 \mathrm{mg}, 1.2 \mathrm{mmol}$), 2,2-diethyl-1,3-propanediol ($500 \mathrm{mg}, 3.8$ $\mathrm{mmol})$ and pyridinium p-toluenesulfonate ($45 \mathrm{mg}, 0.18 \mathrm{mmol}$) was placed in a round-bottomed flask fitted with a water condenser and 8 mL anhydrous benzene was added. After stirring at 70 ${ }^{\circ} \mathrm{C}$ for $80 \mathrm{~min}, \mathrm{pH} 7$ buffer was added at rt and the reaction mixture was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification on silica gel ($13 \% \mathrm{EtOAc}$ in hexane) provided $609 \mathrm{mg}(1.07$ mmol, 89%) of cyclic ketal $\mathbf{3}$ as a white solid. mp $131-133^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.74-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.61(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 7.41-7.34(\mathrm{~m}, 6 \mathrm{H}), 6.34(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~d}, 2 \mathrm{H}, J=$ $12.0 \mathrm{~Hz}), 3.59(\mathrm{~d}, 2 \mathrm{H}, J=12.0 \mathrm{~Hz}), 1.40(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.08(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.73(\mathrm{t}, 3 \mathrm{H}, J=7.6$ $\mathrm{Hz}), 0.57(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.4,153.8,137.5,136.2,133.7,129.8,129.0,127.7$, $126.6,92.8,68.9,61.8,34.5,27.1,25.2,23.2,19.8,7.5,6.6$; IR (thin film) $v \max 2965,2859,1680,1647,1145,1110$, $1070,1002 \mathrm{~cm}^{-1} ;$ CIHRMS $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{BrO}_{4} \mathrm{Si}: 569.1724$, found: 569.1698.

Monoepoxide 6. To $25 \mathrm{mg}(0.09 \mathrm{mmol})$ of $\mathrm{Ph}_{3} \mathrm{COOH}$ dissolved in 1 mL toluene was added $22 \mu \mathrm{~L}(0.048 \mathrm{mmol})$ of 2.2 M nBuLi in hexane at rt . After $20 \mathrm{~min}, 4.1 \mathrm{mg}(0.018$ mmol) L-DIPT in 0.2 mL toluene was added, and the mixture was stirred for 30 min at rt . Next, $10 \mathrm{mg}(0.018 \mathrm{mmol})$ cyclic ketal $\mathbf{3} \mathrm{in} 0.8 \mathrm{~mL}$ toluene was added and the reaction mixture stirred for 24 h at rt . The reaction mixture was quenched with water and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. 88% conversion (${ }^{1} \mathrm{H}$ NMR). Chiral HPLC showed 68% ee (HPLC conditions: hexane/2-propanol [85/15], $23{ }^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{R}}=10.0,22.2 \mathrm{~min}$ for major and minor enantiomers, respectively)

7

Monoepoxide 7. To 1.5 g (5.4 mmol) of $\mathrm{Ph}_{3} \mathrm{COOH}$ dissolved in 10 mL toluene was added $4.35 \mathrm{~mL}(4.35 \mathrm{mmol})$ of 1.0 M NaHMDS in THF at rt. After $20 \mathrm{~min}, 310 \mathrm{mg}$ (1.32 mmol) L-DIPT in 2 mL toluene was added, the mixture was stirred for 30 min at rt. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and 480 mg (0.84 mmol) of cyclic ketal 3 in 8 mL toluene was added and the reaction stirred at $-50^{\circ} \mathrm{C}$ for 30 h . The reaction was quenched with water and the mixture extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification on silica gel (10% EtOAc in hexane) provided $480 \mathrm{mg}(0.82 \mathrm{mmol}, 97 \%)$ of monoepoxide 7 as a white solid. 96% ee (chiral HPLC analysis). mp 105-107 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 6 \mathrm{H}), 4.54$ $(\mathrm{s}, 2 \mathrm{H}), 4.35(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 3.91(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 3.85(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 3.70(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 3.68(\mathrm{~d}, 1 \mathrm{H}, J=$ $12 \mathrm{~Hz}), 3.59(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 1.35(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.12(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.74(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $0.58(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.0,151.7,136.2,133.5,129.8,127.8,126.5,95.1,68.7,62.1$, $52.4,50.4,34.7,27.1,25.2,23.3,19.8,7.4,6.8$; IR (thin film) $v \max 3071,3049,2965,2860,1702,1427,1387,1304$, $1276,1127,1021 \mathrm{~cm}^{-1} ;$ CIHRMS $[\mathrm{M}+\mathrm{H}]^{+}$calculated for 585.1674 , found: $585.1719 ;[\alpha]_{\mathrm{D}}{ }^{23}=+39^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

8
α-Pentenyl enone 8. $30 \mathrm{mg}(0.029 \mathrm{mmol})$ of $\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}$ was placed in a 10 mL Schlenk tube, then $100 \mathrm{mg}(0.17 \mathrm{mmol})$ of 7 in 2 mL anhydrous $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$ was added, followed by addition of $100 \mathrm{mg}(0.28 \mathrm{mmol}) E$-tributyl-1-pentenylstannane. The reaction was stirred at $60^{\circ} \mathrm{C}$ for 20 h . After cooling to rt, a further 30 mg of $\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}$ was added and the reaction stirred for a further 20 h at $60^{\circ} \mathrm{C}$. After cooling to rt , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred with $20 \mathrm{~mL} 5 \% \mathrm{KF}$ solution for 20 min . The organic layer was separated and the aqueous solution extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification on silica gel ($12 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) provided $80 \mathrm{mg}(0.14 \mathrm{mmol}, 81 \%)$ of α-pentenyl enone $\mathbf{8}$ as a colorless oil and 10 mg of recovered 7. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 6 \mathrm{H}), 6.29(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 4.47(\mathrm{~d}$, $1 \mathrm{H}, J=12 \mathrm{~Hz}), 4.32(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 3.88(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 3.79(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 3.62(\mathrm{dd}, 1 \mathrm{H}, J=2.0,12 \mathrm{~Hz})$, $3.56(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 3.51(\mathrm{dd}, J=2.0,12 \mathrm{~Hz}), 2.03(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~m}, 4 \mathrm{H}), 1.11(\mathrm{q}, 2 \mathrm{H}, J=7.6), 0.86(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz})$, $0.73(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 0.56(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.2,144.6,140.0,136.1,133.8,129.8$, $127.8,122.2,95.0,68.5,68.4,59.2,53.6,50.1,36.3,34.8,27.1,25.3,23.5,22.4,19.7,14.0,7.4,6.8$; IR (thin film) vmax 2963, 1691, 1427, 1386, 1131, 1092, $1009 \mathrm{~cm}^{-1}$; CIHRMS $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{O}_{5} \mathrm{Si}$: 575.3195, found: 575.3226; $[\alpha]_{\mathrm{D}}{ }^{23}=+51^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Epoxy alcohol 9. To $50 \mathrm{mg}(0.087 \mathrm{mmol})$ of $\mathbf{8}$ dissolved in 2 mL THF was added $240 \mu \mathrm{~L}(0.24 \mathrm{mmol})$ of 1.0 M DIBAL-H in hexane at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 15 min before being quenched with 5% potassium sodium tartrate and extracted with EtOAc. . The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification on silica gel (25% EtOAc in hexane) provided 44 mg (0.076 $\mathrm{mmol}, 88 \%$) of $\mathbf{9}$ as a pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-$ $7.68(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 6 \mathrm{H}), 6.46(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 6.04(\mathrm{dt}, 1 \mathrm{H}, J=6.8$, $16 \mathrm{~Hz}), 4.75(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 4.47(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.44(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 3.97(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 3.88(\mathrm{~d}, 1 \mathrm{H}, J$ $=12 \mathrm{~Hz}), 3.80(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 3.60(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 3.55(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 3.54(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 2.16(\mathrm{~d}, 1 \mathrm{H}, J=$ $9.2 \mathrm{~Hz}), 2.03(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~m}, 4 \mathrm{H}), 1.12(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 0.73(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}), 0.60(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.1,134.3,134.2,132.1,129.6,127.6,127.3,96.1,68.7,67.9,63.7,60.5,58.2,52.8,52.6,47.1$, $35.7,34.9,27.2,25.2,23.4,22.6,19.6,14.4,13.9,7.4,6.8$; IR (thin film) $v \max 3426,2963,2931,2859,1644,1428,1113$, $1047 \mathrm{~cm}^{-1}$; CIHRMS M ${ }^{+}$calculated for $\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}: 576.3271$, found: 576.3271; $[\alpha]_{\mathrm{D}}{ }^{23}=-30^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

10

Epoxy-quinol 10. $45 \mathrm{mg}(0.078 \mathrm{mmol})$ of 9 was dissolved in $1 \mathrm{~mL} \mathrm{CH} \mathrm{CH}_{3} \mathrm{CN}$ and $0.2 \mathrm{~mL} 48 \% \mathrm{HF}$ was added at $0^{\circ} \mathrm{C}$. After stirring for $5 \mathrm{~min}, 2 \mathrm{~mL}$ sat. NaHCO_{3} was added and the reaction mixture was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification on silica gel ($25 \% \mathrm{EtOAc}$ in hexane) provided $33 \mathrm{mg}(0.071 \mathrm{mmol}, 92 \%)$ of $\mathbf{1 0}$ as a pale yellow oil . ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 6 \mathrm{H}), 6.55(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz})$, $6.43(\mathrm{dt}, 1 \mathrm{H}, J=6.8,16 \mathrm{~Hz}), 5.02(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 4.49(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 4.46(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 3.78(\mathrm{dd}, 1 \mathrm{H}, J=1.6$, $4 \mathrm{~Hz}), 3.43(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$

NMR (75.0 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 194.3,148.7,141.8,135.9,133.4,130.3,129.9,127.8,126.7,63.4,56.5,55.4,52.5,36.1$, 27.0, 22.2, 19.4, 13.9; IR (thin film) $v \max 3423,2959,2931,2361,2339,1663,1627,1112,1043 \mathrm{~cm}^{-1} ;$ CIHRMS $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{BrO}_{4} \mathrm{Si}: 463.2306$, found: $463.2301 ;[\alpha]_{\mathrm{D}}{ }^{23}=-95^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Absolute Stereochemical Correlation of Compound $\mathbf{1 0}$

Chiral ketal 13. A mixture of $\mathbf{5}(1.0 \mathrm{~g}, 2.0 \mathrm{mmol}),(2 R, 4 R)-(-)$-pentanediol (270 $\mathrm{mg}, 2.6 \mathrm{mmol}$) and pyridinium p-toluenesulfonate ($50 \mathrm{mg}, 0.2 \mathrm{mmol}$) was placed in a round-bottomed flask fitted with a water condenser and 20 mL benzene was added. After stirring at $70^{\circ} \mathrm{C}$ for $4 \mathrm{~h}, \mathrm{pH} 7$ buffer was added at rt and the reaction mixture was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification on silica gel (15% EtOAc in hexane) provided $900 \mathrm{mg}(1.66 \mathrm{mmol}, 83 \%)$ of chiral ketal 13 as a yellow solid. $\mathrm{mp} 103-104{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.05(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.4 \mathrm{~Hz}), 6.22(\mathrm{~d}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 4.56(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.52(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 1.67$ $(\mathrm{m}, 1 \mathrm{H}), 1.47(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, 3 \mathrm{H}, J=6 \mathrm{~Hz}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=6 \mathrm{~Hz}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.7$, $154.4,144.0,136.3,136.0,133.5,130.0,127.8,125.3,93.8,66.1,64.7,61.8,37.7,27.1,22.5,22.2,19.7$; IR (thin film) $v \max 2931,2858,1681,1473,1462,1428,1275,1113,1067 \mathrm{~cm}^{-1}$; CIHRMS $\left[\mathrm{M}^{+}\right]$calculated for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{BrO}_{4} \mathrm{Si}: 540.1331$, found: 540.1323; $[\alpha]_{D}^{23}=+12.5^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Epoxy enone 14. $51 \mathrm{mg}(0.18 \mathrm{mmol})$ of $\mathrm{Ph}_{3} \mathrm{COOH}$ was dissolved in 1 mL THF at $-78{ }^{\circ} \mathrm{C}$, then $167 \mu \mathrm{~L}(0.1 \mathrm{mmol})$ of 0.66 M KHMDS in toluene was added. After 10 min , chiral ketal $\mathbf{1 3}(40 \mathrm{mg}, 0.074 \mathrm{mmol})$ in 1 mL THF was added. The yellow solution formed was warmed to $-10{ }^{\circ} \mathrm{C}$ over 5 h and kept at $-10^{\circ} \mathrm{C}$ for a further 1.5 h . The reaction was quenched with water and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. Purification on silica gel ($25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) provided $35 \mathrm{mg}(0.063 \mathrm{mmol}, 85 \%)$ of $\mathbf{1 4}$ as a pale yellow solid . ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 6 \mathrm{H}), 4.63(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.8 \mathrm{~Hz}), 4.48(\mathrm{~d}, 1 \mathrm{H}$, $J=10.8 \mathrm{~Hz}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 3.68(\mathrm{~d}, 1 \mathrm{H}, J=4 \mathrm{~Hz}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~d}$, $3 \mathrm{H}, J=6 \mathrm{~Hz}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.05(\mathrm{~d}, 3 \mathrm{H}, J=6 \mathrm{~Hz}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.7,152.2,136.2,136.1,133.3$, $133.1,130.1,127.8,125.9,96.7,65.0,62.1,54.2,52.0,39.5,27.1,22.1,21.9,19.6$; IR (thin film) vmax 2932, 2858, 1703, 1472, 1428, 1382, 1216, 1114, $1021 \mathrm{~cm}^{-1}$; CIHRMS $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{BrO}_{5} \mathrm{Si}$: 557.1354 , found: 557.1361; $[\alpha]_{\mathrm{D}}{ }^{23}=+51^{\mathrm{o}}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

α-Pentenyl enone 15. $15 \mathrm{mg}(0.014 \mathrm{mmol})$ of $\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}$ was placed in a 10 mL Schlenk tube, then $50 \mathrm{mg}(0.09 \mathrm{mmol})$ of $\mathbf{1 4}$ in $3 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added, followed by addition of $50 \mathrm{mg}(0.14 \mathrm{mmol}) \quad E$-tributyl-1pentenylstannane. The reaction was stirred at $35^{\circ} \mathrm{C}$ for 15 h . After cooling to rt , another $10 \mathrm{mg} \mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}$ was added and the reaction stirred for a further 10 h at $35^{\circ} \mathrm{C}$. After cooling to rt , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred with $20 \mathrm{~mL} 5 \% \mathrm{KF}$ solution for 20 min . The organic layer was separated, and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification on silica gel ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) provided $36 \mathrm{mg}(0.066 \mathrm{mmol}, 73 \%)$ of α-pentenyl enone $\mathbf{1 5}$ as colorless oil and 9 mg recovered 14. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 6 \mathrm{H}), 6.12(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~d}, 1 \mathrm{H}, J$ $=11.2 \mathrm{~Hz}), 4.39(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 3.56(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 1.98$ $(\mathrm{m}, 2 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~d}, 3 \mathrm{H}, J=6 \mathrm{~Hz}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.05(\mathrm{~d}, 3 \mathrm{H}, J=6 \mathrm{~Hz}), 0.85(\mathrm{t}, 3 \mathrm{H}$, $J=7.2 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.0,145.0,139.9,136.1,134.3,133.4,130.0,127.9,122.2,96.7,64.5$, $58.5,53.3,40.2,36.2,27.2,22.4,22.0,19.6,14.0$; IR (thin film) $\operatorname{vmax~cm}^{-1} 2931,2859,1692,1463,1428,1381,1260$, 1217, 1168, 1113; CIHRMS $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{O}_{5} \mathrm{Si}: 547.2882$, found: 547.2887; $[\alpha]_{\mathrm{D}}{ }^{23}=+76^{\circ}(\mathrm{c}=1.0$, CHCl_{3}).

Epoxy alcohol 16. To $130 \mathrm{mg}(0.24 \mathrm{mmol})$ of $\mathbf{1 5}$ in 5 mL THF was added $600 \mu \mathrm{~L}$ $(0.6 \mathrm{mmol})$ of 1.0 M DIBAL-H in hexane at $-78^{\circ} \mathrm{C}$, the mixture was stirred for 15 min before quenched with 5% potassium sodium tartrate and extracted with EtOAc. . The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification on silica gel ($12 \% \mathrm{EtOAc}$ in hexane) provided $110 \mathrm{mg}(0.20 \mathrm{mmol}, 85 \%)$ of $\mathbf{1 6}$ as a pale yellow oil and $10 \mathrm{mg}(9 \%)$ of the cis-epoxy alcohol isomer. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.67(\mathrm{~m}, 4 \mathrm{H})$, $7.42-7.34(\mathrm{~m}, 6 \mathrm{H}), 6.26(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}), 6.01(\mathrm{dt}, 1 \mathrm{H}, J=7.2,16 \mathrm{~Hz}), 4.73(\mathrm{dd}, 1 \mathrm{H}, J=3.2,11.2 \mathrm{~Hz}), 4.48(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.2 \mathrm{~Hz}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 3.50(\mathrm{dd}, 1 \mathrm{H}, J=3.2,4.0 \mathrm{~Hz})$, $2.45(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 2.01(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.07(\mathrm{~d}, 3 \mathrm{H}, J$ $=6.4 \mathrm{~Hz}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.6,136.1,136.0,134.1,133.8,133.5$, $129.8,127.8,126.9,98.8,64.4,64.1,63.9,56.7,50.7,50.4,40.6,35.6,27.1,22.6,22.0,21.8,19.5,14.0$; IR (thin film) $v \max 3422$, 2961, 2930, 2858, 1463, 1428, 1381, 1171, 1113, $1039 \mathrm{~cm}^{-1}$; CIHRMS M ${ }^{+}$calculated for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si}^{\text {: }}$ 548.2958, found: 548.3000; $[\alpha]_{D}^{23}=+47.3^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Epoxy-quinol 10. $110 \mathrm{mg}(0.2 \mathrm{mmol})$ of $\mathbf{1 6}$ dissolved in $5 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}$ was added $1 \mathrm{~mL} 48 \% \mathrm{HF}$ at $0^{\circ} \mathrm{C}$. After stirring for $5 \mathrm{~min}, 10 \mathrm{~mL}$ sat. NaHCO_{3} was added and the reaction mixture was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. Purification on silica gel (25% EtOAc in hexane) provided $85 \mathrm{mg}(0.18 \mathrm{mmol}$, 92%) of $\mathbf{1 0}$ ' as a pale yellow oil. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were found to be identical with

10 produced by tartrate-mediated reactions; $[\alpha]_{\mathrm{D}}^{23}=-97.5^{\circ}\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right) .10$ (tartrate-mediated, cf. Scheme 1$)$: $[\alpha]_{\mathrm{D}}(-$ $\left.95.0^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)\right)$.

11

Bis-epoxide 11. Compound $\mathbf{1 0}$ ($85 \mathrm{mg}, 0.18 \mathrm{mmol}$) was dissolved in 2 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing 0.2 mL pH 7 buffer and $50 \mathrm{mg}(0.29 \mathrm{mmol}) m$-CPBA was added. The mixture was stirred at rt for 4 h . After addition of $2 \mathrm{~mL} 1: 1$ sat $\mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, the mixture was stirred for 10 min and extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO 4 , filtered and concentrated in vacuo. Purification on silica gel (14% EtOAc in hexane) provided $75 \mathrm{mg}(0.16 \mathrm{mmol}, 85 \%)$ of $\mathbf{1 1}$ as a pale yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.60$ (m, 4H), 7.40-7.36 (m, 6H), $4.53(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 4.47(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 4.36(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 3.87(\mathrm{~d}, 1 \mathrm{H}, J=2$ $\mathrm{Hz}), 3.75(\mathrm{dd}, 1 \mathrm{H}, J=2,3.6 \mathrm{~Hz}), 3.45(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 3.19(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 3.14(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~m}, 4 \mathrm{H}), 1.01(\mathrm{~s}$, $9 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR ($75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.0,150.3,135.8,134.3,133.2,130.0,127.9,61.9,60.3$, $56.5,56.4,55.8,52.9,34.1,27.0,19.3,14.0$; IR (thin film) $v \max 3447,2960,2932,2858,1681,1428,1258,1236,1112$, $1044 \mathrm{~cm}^{-1}$; CIHRMS M ${ }^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si}: 478.2176$, found: 478.2207; $[\alpha]_{\mathrm{D}}{ }^{23}=-115^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

2

Bis-epoxide 2. Compound 11 ($52 \mathrm{mg}, 0.11 \mathrm{mmol}$) was dissolved in 2.5 mL THF and $700 \mu \mathrm{~L} 1: 1 \mathrm{AcOH} / \mathrm{TBAF}$ was added (freshly prepared by mixing $60 \mu \mathrm{~L} \mathrm{AcOH}$ with 1 mL 1.0 M TBAF in THF). After stirring for 2 h at rt , the reaction mixture was directly subjected to column chromatography. Purification on silica gel (40% EtOAc in hexane) afforded $19 \mathrm{mg}(0.079 \mathrm{mmol}, 73 \%)$ of 2 as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.46(\mathrm{dd}, 1 \mathrm{H}, J=7.2,12.8 \mathrm{~Hz}), 4.38(\mathrm{dd}, 1 \mathrm{H}, J=5.6$, $12.8 \mathrm{~Hz}), 4.34(\mathrm{~d}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}), 3.79(\mathrm{dd}, 1 \mathrm{H}, J=1.6,3.6 \mathrm{~Hz}), 3.76(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.0 \mathrm{~Hz}), 3.51(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 3.11(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{app} \mathrm{t}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, 3 \mathrm{H}, J=$ 7.2 Hz); ${ }^{13} \mathrm{C}$ NMR ($75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.4,150.6,133.3,61.7,60.3,56.2,56.1,56.0,52.8,34.0,19.2,14.0$; IR (thin film) vmax 3420, 2961, 2874, 1676, 1236, $1044 \mathrm{~cm}^{-1} ;$ CIHRMS $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{5}: 241.1078$, found: 241.1043 .

(-)-Cycloepoxydon (1) and "iso"-cycloepoxydon (12). Bis-epoxide $11(75 \mathrm{mg}, 0.016 \mathrm{mmol})$ was dissolved in 5 mL $\mathrm{CH}_{3} \mathrm{CN}$ and $2 \mathrm{~mL} 48 \% \mathrm{HF}$ was added. After stirring at rt for $2 \mathrm{~h}, 5 \mathrm{~mL}$ water was added and the solution was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification on silica gel ($25 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) provided $19.8 \mathrm{mg}(0.08 \mathrm{mmol}, 53 \%)$ of (-)-cycloepoxydon $\mathbf{1}$ as a white solid and $13 \mathrm{mg}(0.05 \mathrm{mmol}, 35 \%)$ "iso"-cycloepoxydon $\mathbf{1 2}$ as a white solid.

1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD} 95: 5$) $\delta 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{dd}, 1 \mathrm{H}, J=2.0,17.6 \mathrm{~Hz}), 4.07-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{dd}$, $1 \mathrm{H}, J=1.2,4.0 \mathrm{~Hz}), 3.41(\mathrm{dd}, 1 \mathrm{H}, J=0.8,3.6 \mathrm{~Hz}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}$,
$3 \mathrm{H}, J=7.2 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD} 95: 5$) $\delta 191.8,150.3,129.4,77.7,65.0,61.9,60.0,57.0,52.1,33.8$, 18.5, 13.8; IR (thin film) $v \max 3397,2961,1675,1457,1398,1262,1108,1039,910,735 \mathrm{~cm}^{-1} ;$ CIHRMS [M+H] ${ }^{+}$ calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{5}: 241.1078$, found: 241.1098; $[\alpha]_{\mathrm{D}}{ }^{23}=-139^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH} 95: 5\right)$ [literature value: ${ }^{\mathrm{S} 3}$ $\left.[\alpha]_{\mathrm{D}}{ }^{23}=-145^{\circ}\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH} 95: 5\right)\right] .12 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD} 95: 5$) $4.93(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{~s}$, $1 \mathrm{H}), 4.78$ (ddd, 1H, $J=0.8,3.6,12.8 \mathrm{~Hz}$), $4.60(\mathrm{ddd}, 1 \mathrm{H}, J=2.0,5.6,12.8 \mathrm{~Hz}$), $3.77(\mathrm{dd}, 1 \mathrm{H}, J=0.8,3.2 \mathrm{~Hz}$), $3.61(\mathrm{~m}$, $1 \mathrm{H}), 3.42(\mathrm{dd}, 1 \mathrm{H}, J=0.8,3.6 \mathrm{~Hz}), 1.55-1.32(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75.0 \mathrm{MHz}, \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}$ $95: 5) \delta 189.5,155.6,132.5,88.9,73.3,72.5,61.6,59.7,53.7,35.2,18.6,14.3$; IR (thin film) vmax $3396,2961,1684,1457$, 1418, 1264, 1107, 1048, 1001, 911, $734 \mathrm{~cm}^{-1}$; CIHRMS $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{5}: 241.1078$, found: 241.1103; $[\alpha]_{\mathrm{D}}^{23}=-138^{\circ}\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH} 95: 5\right)$.

Experimental Procedures for NF κ B DNA binding and I $\kappa \mathbf{B} \alpha$ degradation

Mouse 3T3 cells were grown in Dulbecco's Modified Eagle's Medium (DMEM) containing 10\% fetal bovine serum (FBS). Twenty-four hours prior to treatment, cells were fluid changed to DMEM containing 0.5% FBS. Cells were then incubated for 2 h with the indicated concentrations of cycloepoxydon or methanol as a control. Cultures were then treated with $2 \mathrm{ng} / \mathrm{ml}$ of TNF α ($\mathrm{R} \& \mathrm{D}$ Systems) for 20 min and cells were lysed in AT buffer (20 mM Hepes, $\mathrm{pH} 7.9,1 \% \mathrm{v} / \mathrm{v}$ Triton $\mathrm{X}-100,20 \% \mathrm{v} / \mathrm{v}$ glycerol, 1 mM EDTA, 1 mM EGTA, $20 \mathrm{mM} \mathrm{NaF}, 1 \mathrm{mM} \mathrm{Na} 4 \mathrm{P}_{2} \mathrm{O}_{7}, 1 \mathrm{mM}$ dithiothreotol, $1 \mathrm{mM} \mathrm{Na}{ }_{3} \mathrm{VO}_{4}, 1 \mu \mathrm{~g} / \mathrm{ml}$ PMSF, $1 \mu \mathrm{~g} / \mathrm{ml}$ leupeptin, $1 \mu \mathrm{~g} / \mathrm{ml}$ pepstatin). To measure DNA binding, samples containing $20 \mu \mathrm{~g}$ of protein were analyzed in an electrophoretic mobility shift assay using a radiolabelled $\kappa \mathrm{B}$ site probe as described previously. ${ }^{\text {S4 }}$ For Western blotting, samples containing $10 \mu \mathrm{~g}$ of protein were separated on a 12.5% SDS-polyacrylamide gel, transferred to a nitrocellulose membrane, and probed with an anti-Iк $\mathrm{B} \alpha$ antiserum (1:500 dilution) directed against C-terminal sequences of $\mathrm{I} \mathrm{B} \alpha$ (Santa Cruz Biotechnology, Inc., Catalog \#sc-203); complexes were then detected with horseradish peroxidase-conjugated goat anti-rabbit $\operatorname{IgG}(1: 20,000)$ and SuperSignal West Dura Extended Substrate (Pierce).

References for Supporting Information:

(S1) Bissing, D. E.; Matuszac, C. A.; McEwen, W. E. J. Am. Chem. Soc. 1964, 86, 3824-3828.
(S2) Prepared according to: (a) Eisch J. J.; Galle J. E. J. Organomet. Chem. 1988, 341, 293-313. (b) Zweifel, G.; Miller, J. A. Organic Reactions, Vol. 32, John Wiley \& Sons, New York, 1984, p. 430.
(S3) Gehrt, A.; Erkel, G.; Anke, H.; Anke, T.; Sterner, O. Nat. Prod. Lett. 1997, 9, 259-264.
(S4) (a) Capobianco, A .J.; Gilmore, T. D. Oncogene 1991, 6, 2203-2210. (b) Sif, S.; Capobianco, A. J. Gilmore, T. D. Oncogene 1993, 8, 2501-2509.

Table 1. NMR data (in $\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD} 95: 5$) comparison of natural and synthetic (-)cycloepoxydon 1

${ }^{1} \mathrm{H}$ NMR (Hz)			${ }^{13} \mathrm{C}$ NMR (Hz)
Natural (500 MHz)	Synthetic (400 MHz)	Natural (125 MHz)	Synthetic (75.0 MHz)
$4.90(\mathrm{~m}, 1 \mathrm{H})$	$4.91(\mathrm{~s}, 1 \mathrm{H})$	191.9	191.8
$4.49(\mathrm{dd}, 1 \mathrm{H}, 2.2,17.1)$	$4.50(\mathrm{dd}, 1 \mathrm{H}, 2.0,17.6)$	150.4	150.3
$4.03(\mathrm{ddd}, 1 \mathrm{H}, 2,2,17.1)$	$4.07-4.02(\mathrm{~m}, 2 \mathrm{H})$	129.3	129.4
$4.02(\mathrm{~m}, 1 \mathrm{H})$		77.7	77.7
$3.75(\mathrm{dd}, 1 \mathrm{H}, 1.4,3.6)$	$3.77(\mathrm{dd}, 1 \mathrm{H}, 1.2,4.0)$	64.9	65.0
$3.38(\mathrm{dd}, 1 \mathrm{H}, 1.0,3.6)$	$3.41(\mathrm{dd}, 1 \mathrm{H}, 0.8,3.6)$	62.0	61.9
$3.28(\mathrm{ddd}, 1 \mathrm{H}, 2.8,7.6,10.3)$	$3.30(\mathrm{~m}, 1 \mathrm{H})$	59.9	60.0
$1.71(\mathrm{~m}, 1 \mathrm{H})$	$1.72(\mathrm{~m}, 1 \mathrm{H})$	57.0	57.0
$1.51(\mathrm{~m}, 1 \mathrm{H})$	$1.52(\mathrm{~m}, 1 \mathrm{H})$	52.1	52.1
$1.40(\mathrm{~m}, 1 \mathrm{H})$	$1.44-1.32(\mathrm{~m}, 2 \mathrm{H})$	33.8	33.8
$1.35(\mathrm{~m}, 1 \mathrm{H})$		18.5	18.5
$0.88(\mathrm{t}, 3 \mathrm{H}, 7.2)$	$0.90(\mathrm{t}, 3 \mathrm{H}, 7.2)$	13.8	13.8

NMR spectra of synthetic (-)-cycloepoxydon (in $\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD} 95: 5$)

X-ray Crystal Structure of Cycloepoxydon 1

X-ray Crystal Structure of "iso"-cycloepoxydon 12

Crystals of 1 and 12 suitable for x-ray analysis were obtained by slow evaporation from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (95:5). Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (1: CCDC-168199; 12: CCDC-168200). Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk.

Table 1. Crystal data and structure refinement for $\mathbf{1}$

Identification code	cycloepoxydon
Empirical formula	C12 H16 O5
Formula weight	240.25
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P2(1)
Unit cell dimensions	$\mathrm{a}=7.1459(10) \AA$ 成 $\quad \alpha=90^{\circ}$.
	$\mathrm{b}=4.5094(7) \AA \quad \beta=92.890(5)^{\circ}$.
	$\mathrm{c}=17.904(3) \AA$ ¢ $\quad \gamma=90^{\circ}$.
Volume	$576.22(14) \AA^{3}$
Z	2
Density (calculated)	$1.385 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.108 \mathrm{~mm}^{-1}$
F(000)	256
Crystal size	$0.60 \times 0.10 \times 0.02 \mathrm{~mm}^{3}$
Theta range for data collection	3.02 to 23.25°.
Index ranges	$-7<=\mathrm{h}<=7,-5<=\mathrm{k}<=4,-19<=1<=15$
Reflections collected	2626
Independent reflections	$1540[\mathrm{R}(\mathrm{int})=0.0471]$
Completeness to theta $=23.25^{\circ}$	98.9 \%
Absorption correction	SADABS
Max. and min. transmission	0.9978 and 0.4849
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	1540 / 1 / 207
Goodness-of-fit on F^{2}	1.046
Final R indices [$\mathrm{l}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0519, \mathrm{wR} 2=0.1186$
R indices (all data)	$\mathrm{R} 1=0.0695, \mathrm{wR} 2=0.1268$
Absolute structure parameter	0 (3)
Largest diff. peak and hole	0.229 and -0.207e..$^{-3}$

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 1 . U(eq) is defined as $1 / 3$ of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$5536(4)$	$7101(8)$	$9299(2)$	$23(1)$
$\mathrm{O}(2)$	$705(4)$	$9989(7)$	$9323(2)$	$29(1)$
$\mathrm{O}(3)$	$-490(4)$	$5449(8)$	$7818(2)$	$32(1)$
$\mathrm{O}(4)$	$3865(4)$	$8884(7)$	$6693(2)$	$22(1)$
$\mathrm{O}(5)$	$6219(4)$	$12855(7)$	$8260(2)$	$23(1)$
$\mathrm{C}(1)$	$4015(6)$	$9000(11)$	$9075(2)$	$21(1)$
$\mathrm{C}(2)$	$2276(6)$	$8020(11)$	$9456(2)$	$22(1)$
$\mathrm{C}(3)$	$589(6)$	$7029(11)$	$9022(2)$	$21(1)$
$\mathrm{C}(4)$	$668(5)$	$6890(11)$	$8196(2)$	$21(1)$
$\mathrm{C}(5)$	$2239(5)$	$8351(10)$	$7836(2)$	$19(1)$
$\mathrm{C}(6)$	$2081(6)$	$8591(14)$	$7006(3)$	$24(1)$
$\mathrm{C}(7)$	$4951(6)$	$11255(11)$	$7036(2)$	$21(1)$
$\mathrm{C}(8)$	$5437(6)$	$10405(11)$	$7838(2)$	$19(1)$
$\mathrm{C}(9)$	$3778(5)$	$9251(10)$	$8241(2)$	$17(1)$
$\mathrm{C}(10)$	$6648(6)$	$11665(13)$	$6578(3)$	$24(1)$
$\mathrm{C}(11)$	$6216(7)$	$12700(14)$	$5781(3)$	$28(1)$
$\mathrm{C}(12)$	$7967(7)$	$13105(18)$	$5350(3)$	$54(2)$

Table 3. Crystal data and structure refinement for 12

Identification code	"iso"-cycloepoxydon
Empirical formula	C12 H16 O5
Formula weight	240.25
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P2(1)/c
Unit cell dimensions	$\mathrm{a}=8.8454(8) \AA$ ¢ $\quad \alpha=90^{\circ}$.
	$\mathrm{b}=18.7240(16) \AA \quad \beta=90.216(4)^{\circ}$.
	$\mathrm{c}=13.6620(11) \AA \quad \gamma=90^{\circ}$.
Volume	2262.7(3) \AA^{3}
Z	8
Density (calculated)	$1.410 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.110 \mathrm{~mm}^{-1}$
F(000)	1024
Crystal size	$0.30 \times 0.15 \times 0.10 \mathrm{~mm}^{3}$
Theta range for data collection	2.30 to 24.71°.
Index ranges	$-10<=\mathrm{h}<=10,-15<=\mathrm{k}<=22,-16<=1<=15$
Reflections collected	10587
Independent reflections	$3847[\mathrm{R}(\mathrm{int})=0.0471]$
Completeness to theta $=24.71^{\circ}$	99.8 \%
Absorption correction	SADABS
Max. and min. transmission	0.9891 and 0.81939
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3847 / 0 / 435
Goodness-of-fit on F^{2}	1.044
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I}$]	$\mathrm{R} 1=0.0472, \mathrm{wR} 2=0.1006$
R indices (all data)	$\mathrm{R} 1=0.0739, \mathrm{wR} 2=0.1114$
Largest diff. peak and hole	0.222 and -0.218 e. \AA^{-3}

Table 4. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{1 2}$. U (eq) is defined as $1 / 3$ of the trace of the orthogonalized U^{ij} tensor.

	X	y	Z	U(eq)
$\mathrm{O}(1)$	982(2)	7770(1)	443(1)	22(1)
$\mathrm{O}(2)$	1603(2)	9711(1)	62(1)	29(1)
$\mathrm{O}(3)$	5163(2)	9153(1)	-755(1)	25(1)
$\mathrm{O}(4)$	2053(2)	8016(1)	-2672(1)	26(1)
$\mathrm{O}(5)$	-1017(2)	7590(1)	-3030(1)	22(1)
C(1)	864(3)	8430(1)	-72(2)	19(1)
C(2)	1563(3)	9022(1)	519(2)	23(1)
C(3)	3019(3)	9349(1)	231(2)	24(1)
C(4)	3801(3)	9079(1)	-654(2)	19(1)
C(5)	2851(2)	8679(1)	-1342(2)	17(1)
C(6)	3272(3)	8468(1)	-2356(2)	21(1)
C(7)	986(3)	7907(1)	-1895(2)	20(1)
C(8)	1561(2)	8370(1)	-1076(2)	17(1)
C(9)	-608(2)	8069(1)	-2252(2)	19(1)
C(10)	-888(3)	8842(1)	-2528(2)	23(1)
$\mathrm{C}(11)$	-2540(3)	8988(1)	-2770(2)	24(1)
C(12)	-2920(3)	9773(2)	-2841(2)	34(1)
$\mathrm{O}\left(1^{\prime}\right)$	5944(2)	7323(1)	-3207(1)	22(1)
$\mathrm{O}\left(2^{\prime}\right)$	6573(2)	5380(1)	-2880(1)	30(1)
$\mathrm{O}\left(3^{\prime}\right)$	10130(2)	5918(1)	-2035(1)	33(1)
$\mathrm{O}\left(4^{\prime}\right)$	7093(2)	7082(1)	-126(1)	24(1)
$\mathrm{O}\left(5^{\prime}\right)$	3996(2)	7495(1)	240(1)	20(1)
C(1')	5829(3)	6656(1)	-2706(2)	20(1)
C(2^{\prime})	6527(3)	6073(1)	-3316(2)	24(1)
C(3^{\prime})	7988(3)	5749(1)	-3043(2)	24(1)
C(4')	8780(3)	6006(1)	-2147(2)	21(1)
C(5')	7843(2)	6409(1)	-1456(2)	17(1)
C(6')	8302(3)	6632(1)	-447(2)	19(1)
C(7')	5981(2)	7169(1)	-890(2)	18(1)
C(8')	6544(2)	6708(1)	-1706(2)	18(1)
C(9')	4408(2)	6989(1)	-500(2)	18(1)
$\mathrm{C}\left(10{ }^{\prime}\right)$	4236(3)	6230(1)	-144(2)	21(1)

$\mathrm{C}\left(11{ }^{\prime}\right)$	$2602(3)$	$6033(1)$	$89(2)$	$22(1)$
$\mathrm{C}\left(12{ }^{\prime}\right)$	$2432(4)$	$5276(2)$	$468(2)$	$34(1)$

