Supporting Information

Three Different Fates for Phosphinidenes Generated by Photocleavage of Phospha-Wittig Reagents ArP=PMe₃

Shashin Shah, M. Cather Simpson,* Rhett C. Smith, and John D. Protasiewicz*

Department of Chemistry, Case Western Reserve University

Cleveland, Ohio 44106-7078

Experimental

General Compounds 1,¹ 2,¹ 5,² 6,³ and Mes*P=PMes*⁴ were synthesized as per reported literature methods. PMe₃ was purchased from Aldrich and dried under Na and then filtered through alumina. THF and pentane were purified by distillation from purple Na-benzophenone solutions under N₂. ¹H and ³¹P NMR spectra were recorded using a 300 MHz Varian Gemini spectrometer. ³¹P NMR are referenced to external 85% H₃PO₄, while ¹H NMR are referenced to residual proton solvent signals of C₆D₆.

Synthesis of 2,6-Trip₂C₆H₃P=PMe₃ (3) To 1.00 g (1.71 mmol) of 2.6-Trip₂C₆H₃PCl₂³ was added 1.10 eq (123 mg) of Zn dust and 6.00 eq (1.06 mL) of PMe₃. The reaction mixture was stirred vigorously for 20 h and progressively changed from a clear to yellow solution. After filtration to remove excess Zn powder and removal of all volatiles under reduced pressure, a white-yellow solid was obtained which was extracted with 20 mL hexanes. The resultant bright-yellow solution was again stripped of all volatiles under reduced pressure to give a yellow solid. Pure yellow crystals of 2,6-Trip₂C₆H₃P=PMe₃ were obtained after recrystallization from hot pentane at -35 °C. Isolated yield: 0.71 g, 70%. ³¹P {¹H} NMR (C₆D₆): δ -113.4 (*J*_{PP} = 563 Hz), -1.6 (*J*_{PP} = 564 Hz). ¹H NMR (C₆D₆): δ 0.60 (dd, 9H, P(CH₃)₂, ³*J*_{HH} = 6.9 Hz), 1.27 (d, 12H, CH(CH₃)₂, ³*J*_{HH} = 6.9 Hz), 1.27 (d, 12H, CH(CH₃)₂, ³*J*_{HH} = 6.9 Hz), 1.27 (d, 12H, CH(CH₃)₂, ³*J*_{HH} = 6.9 Hz), 7.23 (s, 4H). ¹³C {¹H} NMR (C₆D₆): δ 17.29 (dd, P(CH₃)₃, *J*_{CP} = 41.2 Hz, ³*J*_{CPP} = 15.3 Hz), 24.36 (CH(CH₃)₂), 24.60 (CH(CH₃)₂), 26.19 (CH(CH₃)₂), 31.28 (CH(CH₃)₂), 34.92 (CH(CH₃)₂), 121.55, 123.62, 130.30, 140.90, 146.34, 147.26, 148.11.

Photochemistry Irradiation of samples was performed using the 3rd harmonic (355 nm) of an Nd:YAG laser (Surelite, Continuum). The pulsewidth and repetition rate were ~10 ns and 20 Hz, respectively. The beam was passed through a quartz cylindrical lens to form an oblong spot of approximately 3.5 cm in length and 1.0 cm at the mid-point. All samples were irradiated at 22.2 °C at a wavelength of 355 nm and power of 200-220 mW. Sample concentrations of about 0.04 *M* in 0.4 mL C₆D₆ were employed in all instances unless otherwise stated. NMR yields were calculated by employing known concentrations of 1,4-dimethoxybenzene as an internal standard. Quartz 5 mM NMR tubes (Wilmad) were employed for all studies.

Photolysis of 1 Photolysis of 1 is accompanied by rapid fading of initial bright yellow color to a clear solution. The reaction is complete in 10 min as ascertained by 31 P NMR to produce quantitative formation of the cyclometallated species 4 and PMe₃.

Photolysis of 2 Photolysis of **2** is accompanied by a gradual change of solution from an initial bright yellow to an orange solution characteristic of the diphosphene **5**. Monitoring of the reaction by ³¹P NMR indicates qualitatively that rate of formation of **5** is decreased over time. After 2.5 h, the reaction is > 95% complete with respect to starting **2**, and produces **5** (90-95%), PMe₃. An unidentified species is also produced (³¹P NMR δ -27 ppm). Efforts are currently underway to characterize this compound.

Photolysis of 3 Photolysis of **3** is accompanied by a rapid color change from an initial bright yellow to orange. Monitoring of the reaction by NMR indicates that all **3** is consumed within 20 min to produce the diphosphene 2,6-Trip₂C₆H₃-P=PC₆H₃-2,6-Trip₂ and the cyclized phosphafluorene **6** in approximately a 1:9 ratio. Compound **6** is also photochemically active and produces two unidentified species (³¹P {¹H} NMR δ -35 and δ -69.8.). This was confirmed by the independent synthesis³ and subsequent photolysis of **6**. No change is observed in the ³¹P NMR signal for the diphosphene 2,6-Trip₂C₆H₃-P=PC₆H₃-2,6-Trip₂, indicating it to be inert to photolysis.

Photolysis of Mes*P=PMes* Photolysis of Mes*P=PMes* is accompanied by gradual fading of initial characteristic orange color of diphosphene to a pale yellow solution. After 2 h, reaction is complete with respect to starting Mes*P=PMes* to produce the cyclometallated species 4 (> 95%).

Photolysis of 5 No change in initial orange color was observed as the diphosphene was irradiated. After 2 h, only signals for **5** were observed on 31 P NMR spectroscopy indicating that the diphosphene is inert to photolysis.

Photolysis of 2 in presence of PMe₃ The photolysis of **2** was carried out in the presence of differing amounts of PMe₃ in order to gauge the effect of $[PMe_3]$ on rate of conversion of **2** to **5**. Four samples of **2** with 0, 1.3, 3.6, and 8.6 eq of PMe₃ were irradiated and monitored at time intervals of 0, 15, and 30 min. Plots of [**5**] versus $[PMe_3]$ indicated that the rate of conversion of **2** to **5** is inhibited with increasing $[PMe_3]$. (See Figure 1, Supporting Information)

Photolysis of 1 and 3 in presence of PMe₃ The photolysis of 1 and 3 was carried out in the presence of 1, 3, 5, and 10 eq of PMe₃. Samples of 1 were monitored after 10 min whereas samples of 3 were monitored after 20 min. In both cases, the presence of excess PMe₃ has no influence on the rate of decomposition of 1 and 3 to the products of photolysis.

Photolysis of 2 with added 1 The photolysis of 2 was carried out in the presence of 1, 5, and 10 eq of 1. In the case of 2 with 1 eq of 1, monitoring the samples by NMR spectroscopy after 20 and 40 min shows that the predominant products are the respective decomposition products 5 and 4. However, trace asymmetric diphosphene Mes*P=PC₆H₃-2,6-Mes₂ (7) is also observed on ³¹P NMR spectroscopy. In the presence of more 1 (5 and 10 eq), it can be observed (qualitatively) that more 7 is formed. Quantification of [7] with respect to [1] is difficult due to overlap of resonances in ¹H NMR and the photochemistry of 7 itself (to be reported in full paper).

Figure 1: Photolysis of 2 and added PMe₃ – Plot of conversion of 5 after 15 and 30 min

References

- 1. Shah, S. and Protasiewicz, J.D. J. Chem. Soc. Chem. Commun., 1998, 1585-1586.
- 2. Urnezius, E. and Protasiewicz, J.D. Main Group Chem., 1996, 1, 369-372.
- 3. Twamley, B., Sofield, C.D., Olmstead, M.M., and Power, P.P. J. Am. Chem. Soc., 1999, 121, 3357-3367.
- 4. Yoshifuji, M., Shima, I., Inamoto, N., Hirotsu, K., and Higuchi, T. J. Am. Chem. Soc., **1981**, *103*, 4587-4589.