Another mathematical process

In a magnetic field, the force working on a particle, F_p , is expressed by the following equation¹,

$$F_{\rm p} = (\chi_{\rm p} / \mu_0) V \mathbf{B} \cdot \nabla \mathbf{B} \tag{1}$$

And the x-component of $B \cdot \nabla B$ can be written by,

$$(\mathbf{B} \cdot \nabla \mathbf{B})_{x} = B_{x}(\partial B_{x}/\partial x) + B_{y}(\partial B_{x}/\partial y) + B_{z}(\partial B_{x}/\partial z)$$
(2)

Magnetic field property is given by Maxwell's equation as follows,

$$rot \mathbf{H} = \mathbf{j} + \partial \mathbf{D}/\partial t, \tag{3}$$

where H is magnetic field. In our experimental system, the electric current density, j, and the time derivative of electric flux density, $\partial D/\partial t$, are zero. Hence, the upper equation is written as,

$$rot \mathbf{H} = (\partial H_z/\partial y - \partial H_y/\partial z, \, \partial H_x/\partial z - \partial H_z/\partial x, \, \partial H_y/\partial x - \partial H_x/\partial y) = \mathbf{0}. \tag{4}$$

Here, notice y and z-component of rotH. Equation 4 can be rewritten as follows,

$$\partial B_{x}/\partial z = \partial B_{z}/\partial x, \ \partial B_{x}/\partial y = \partial B_{y}/\partial x, \tag{5}$$

since the magnetic flux density, B, is given by,

$$B = \mu_0 H + M = \mu_0 (1 + \chi) H \tag{6}$$

where μ_0 and χ are the vacuum magnetic permeability and the magnetic susceptibility, respectively, and these have no anisotropy. Therefore, substitution of eq.5 into eq.2 yeilds

$$(\mathbf{B} \cdot \nabla \mathbf{B})_{x} = B_{x}(\partial B_{x}/\partial x) + B_{y}(\partial B_{y}/\partial x) + B_{z}(\partial B_{z}/\partial x)$$
(7)

The terms $B_y(\partial B_y/\partial x)$ and $B_z(\partial B_z/\partial x)$ appear in $(B \cdot \nabla B)_x$. Figure 1 shows the comparison between the value of $B_y(\partial B_y/\partial x)$ and $B_z(\partial B_z/\partial x)$ calculated for the magnetic flux density simulated by SUPER MOMENT soft ware. The system of this simulation was the same one expressed in the text. The

solid line shows $B_y(\partial B_y/\partial x)$ and the circle dots represent $B_z(\partial B_z/\partial x)$. They completely agreed with each other.

Figure 1 The comparison between $B_y(\partial B_y/\partial x)$ and $B_z(\partial B_z/\partial x)$ around the edges of the pair of magnets whose gap was kept 400 $\mu\text{m}.$ They completely agreed with each other.

Reference

1. Pohl, H. A.; DIELECTROPHORESIS; Cambridge University Press: Cambridge, London, New York, Melbourne, 1978