Design, Synthesis and Biological Evaluation of Substituted Pyrimidines as Potential Phosphatidylinositol 3-Kinase (PI3K) Inhibitors
 Ji-Quan Zhang, ${ }^{\dagger, \dagger}{ }^{\dagger}$ Yong-Jie Luo, ${ }^{\dagger}$ Yan-Shi Xiong, ${ }^{\dagger}$ Yang Yu, ${ }^{\dagger}$ Zheng-Chao Tu, ${ }^{\text {§ }}$ Zi-Jie Long, ${ }^{,}$ Xiao-Ju Lai, ${ }^{\perp}$ Hui-Xuan Chen, ${ }^{\dagger}$ Yu Luo, ${ }^{\dagger}$ Jiang Weng, ${ }^{\dagger}$ Gui Lu ${ }^{*},{ }^{,}, \#$
 ${ }^{\dagger}$ Institute of Medicinal Chemsitry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
 *College of Pharmacy, Guizhou Medical University, Guiyang, 550004, PR China
 ${ }^{\text {§ }}$ Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, PR China
 ${ }^{\prime}$ Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510260, PR China
 ${ }^{\perp}$ State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, 510060, PR
 China
 \#Institute of Human Virology, Sun Yat-sen University, Guangzhou, 510080, PR China

Fax: (+86)-20-39943048
E-mail: lugui@mail.sysu.edu.cn

Supporting information

\qquad

1. Synthetic Schemes. .S2
2. Synthesis of intermediates and target compounds.................................. 3
3. Enzyme assays.. $\mathbf{S 2 3}$
4. Cell proliferation assay.. 23
5. Western blot assay.. 524
6. Tumor growth in xenografts..S24
7. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for selected compounds.......................... 26

1. Synthetic Schemes

2a: $\mathrm{R}^{1}=$ morpholine
2b: $\mathbf{R}^{1}=(2 S, 6 R)$-2,6-dimethylmorpholine
2c: $\mathbf{R}^{1}=(4 a R, 7 a S)$-hexahydro-2H-[1,4]dioxino[2,3-c]pyrrole
2d: $\mathrm{R}^{1}=(\pm)-(4 a R, 7 a R)$-hexahydro-2H-[1,4]dioxino[2,3-c]pyrrole
5a: $R^{1}=$ morpholine, $R^{2}=$ morpholine
5b: $R^{1}=$ morpholine, $R^{2}=(2 S, 6 R)$-2,6-dimethylmorpholine
5c: $\mathrm{R}^{1}=$ morpholine, $\mathrm{R}^{2}=(1 R, 4 R)$-2-oxa-5-azabicyclo[2.2.1]heptane
5d: $\mathrm{R}^{1}=$ morpholine, $\mathrm{R}^{2}=(\pm)-(4 a S, 7 a S)$-hexahydro- $2 H-[1,4]$ dioxino[2,3-c]pyrrole
5e: $\mathrm{R}^{1}=$ morpholine, $\mathrm{R}^{2}=(4 a R, 7 a S)$-hexahydro- $2 H-[1,4]$ dioxino[2,3-c]pyrrole
5f: $\mathrm{R}^{1}=$ morpholine, $\mathrm{R}^{2}=$ 1-(methylsulfonyl)piperazine
$5 \mathrm{~g}: \mathrm{R}^{1}=$ morpholine, $\mathrm{R}^{2}=4$-morpholinoaniline
5h: $\mathrm{R}^{1}=$ morpholine, $\mathrm{R}^{2}=$ 2-morpholinoethanamine
5i: $R^{1}=(2 S, 6 R)-2,6$-dimethylmorpholine, $R^{2}=$ morpholine
$5 \mathrm{j}: \mathrm{R}^{1}=(2 S, 6 R)$-2,6-dimethylmorpholine, $\mathrm{R}^{2}=(2 S, 6 R)$-2,6-dimethylmorpholine
5k: $R^{1}=(2 S, 6 R)$-2,6-dimethylmorpholine, $\mathrm{R}^{2}=(4 a R, 7 a S)$-hexahydro- $2 H$-[1,4]dioxino[2,3-c]pyrrole
5I: $\mathrm{R}^{1}=(4 a R, 7 a S)$-hexahydro-2H-[1,4]dioxino[2,3-c]pyrrole, $\mathrm{R}^{2}=$ morpholine
$5 \mathrm{~m}: \mathrm{R}^{1}=(\pm)-(4 a R, 7 a R)$-hexahydro- $2 H-[1,4]$ dioxino[2,3-c]pyrrole, $\mathrm{R}^{2}=$ morpholine
5 n : $\mathrm{R}^{1}=$ morpholine, $\mathrm{R}^{2}=3$-morpholinoaniline
50: $R^{1}=$ morpholine, $R^{2}=4$-(4-(methylsulfonyl)piperazin-1-yl)aniline
5p: $\mathrm{R}^{1}=$ morpholine, $\mathrm{R}^{2}=$ (4-aminophenyl)(4-(methylsulfonyl)piperazin-1-yl)methanone
(a) R^{1} (1.0 equiv.), DIPEA (1.05 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-5{ }^{\circ} \mathrm{C}-\mathrm{rt}, 2.5 \mathrm{~h}, 60-70 \%$; (b) R^{2} (1.2 equiv.), TEA (1.5 equiv.), NaI (1.5 equiv.), THF/EtOH (1:1), $65^{\circ} \mathrm{C}, 12 \mathrm{~h}, 50-90 \%$ (for aliphatic amines) or R^{2} (1.0 equiv.), TsOH (1.0 equiv.), $\mathrm{n}-\mathrm{BuOH}, 100{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}, 15-50 \%$ (for aromatic amines); (c) 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(trifluoromethyl)pyridin-2-amine (4, 2.0 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3} \quad(2 \mathrm{M}, 3.0$ equiv.), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.05 equiv.), dioxane, $150^{\circ} \mathrm{C}, 2.0-2.5 \mathrm{~h}$, microwave, $5-30 \%$.

Scheme 1.

9a: $\mathrm{R}^{1}=$ morpholine
9b: $\mathrm{R}^{1}=(2 S, 6 R)$-2,6-dimethylmorpholine
11a: $R^{1}=$ morpholine, $R^{2}=(1 R, 4 R)$-2-oxa-5-azabicyclo[2.2.1]heptane
11b: $R^{1}=$ morpholine, $R^{2}=(4 R S, 7 R S)$-hexahydro- $2 H-[1,4]$ dioxino $[2,3$-c]pyrrole
11c: $R^{1}=(2 S, 6 R)$-2,6-dimethylmorpholine, $R^{2}=(1 R, 4 R)-2$-oxa- 5 -azabicyclo[2.2.1]heptane3-c]pyrrole
11d: $R^{1}=(2 S, 6 R)$-2,6-dimethyImorpholine, $R^{2}=(2 S, 6 R)$-2,6-dimethylmorpholine
11e: $R^{1}=(2 S, 6 R)$-2,6-dimethylmorpholine, $R^{2}=(4 a R, 7 a S)$-hexahydro- $2 H$-[1,4]dioxino[2,3-c]pyrrole
(a) R^{1} (0.9 equiv.), DIPEA (0.9 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-5-0^{\circ} \mathrm{C}, 24 \mathrm{~h}, 60-75 \%$; (b) R^{2} (1.0 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.5 equiv.), THF, rt, $24 \mathrm{~h}, 75-90 \%$; (c) 4 (2.0 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($2 \mathrm{M}, 3.0$ equiv.), Pd (dppf) $\mathrm{Cl}_{2} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.05 equiv.), dioxane, $150^{\circ} \mathrm{C}, 2.0$ -2.5 h, microwave, 10-30\%.

Scheme 2.

(a) urea (4.0 equiv.), $200^{\circ} \mathrm{C}, 2 \mathrm{~h}, 85 \%$; (b) POCl_{3} (5.5 equiv.), DIPEA (2.8 equiv.), MeCN, $100{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}, 90 \%$; (c) R^{1} (2.5 equiv.), DIPEA (2.5 equiv.), Nal (2.2 equiv.), DMF, $80^{\circ} \mathrm{C}, 8 \mathrm{~h}, 65-80 \%$; (d) 4 (2.0 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($2 \mathrm{M}, 3.0$ equiv.), $\mathrm{Pd}\left(\mathrm{dppf}\right.$) $\mathrm{Cl}_{2} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.05 equiv.), dioxane, $150^{\circ} \mathrm{C}, 2.0-2.5 \mathrm{~h}$, microwave, $20-30 \%$.

Scheme 3.

(a) $4,4,4^{\prime}, 4^{\prime}, 5,5,5^{\prime}, 5^{\prime}$-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (1.1 equiv.), $\mathrm{Pd}(d p p f) \mathrm{Cl}_{2} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.05 equiv.), KOAc (3.0 equiv.), dioxane, $115^{\circ} \mathrm{C}, 12 \mathrm{~h}, 72 \%$; (b) 3d (0.5 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($2 \mathrm{M}, 1.5$ equiv.), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.025 equiv.), dioxane, $150^{\circ} \mathrm{C}, 2.0 \mathrm{~h}$, microwave, 62%.

Scheme 4.

(a) m-CPBA (1.25 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $16 \mathrm{~h}, 68 \%$; (b) 2-bromoethanol (1.1 equiv.), $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ (0.1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $24 \mathrm{~h}, 29 \%$; (c) KOH (1.1 equiv.), EtOH, reflux, $6 \mathrm{~h}, 67 \%$; (d) $10 \% \mathrm{Pd} / \mathrm{C}$, THF, rt, 95%.

Scheme 5.

2. Synthesis of intermediates and target compounds

NMR spectra were recorded on a Bruker Avance III spectrometer with TMS as the internal standard and CDCl_{3} or DMSO- d_{6} as solvent. Low-resolution MS spectra were obtained on an Agilent LC-MS 6120 instrument with an ESI mass detector, and the data were obtained in the positive or negative ion mode. High-resolution ESI-MS data were obtained on a Shimadzu LC-MS-IT-TOF mass spectrometer. The purity of the synthesized compounds was evaluated using a high-performance liquid chromatography (HPLC) equipped with a Chiralcel OD-H, OJ-H or Chiralpak AD-H column (4.6 mm diameter $\times 250 \mathrm{~mm}$ length). The purity of all biologically evaluated compounds was $>95 \%$.

Intermediates 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(trifluoromethyl)pyridin-2-amine (4), 2,4,7trichloroquinazoline (16), 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrimidin-2-amine (20), (4aR,7aS)-
hexahydro-2H-[1,4]dioxino[2,3-c]pyrrole (27), (1R,4R)-2-oxa-5-azabicyclo[2.2.1]heptanes (28), 3morpholinoaniline (29), 4-(4-(methylsulfonyl)piperazin-1-yl)aniline (30) and (4-aminophenyl)(4-(methylsulfonyl) piperazin-1-yl)methanone (31) were prepared according to the methods reported previously. ${ }^{1-7}$

2.1 General procedure for the preparation of 4-substituted-2,6-dichloropyrimidines 2a-d

DIPEA (1.05 equiv.) was added to a solution of 2,4,6-trichloropyrimidine 1 (1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) and cooled to $-5{ }^{\circ} \mathrm{C}$. Then morpholine (1.0 equiv.) was added dropwise. The mixture was stirred at $-5{ }^{\circ} \mathrm{C}$ for 0.5 h and rt for 2 h , then $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 1)$, the organic layers were combined, washed with brine $(20 \mathrm{~mL} \times 1)$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solvent was removed under reduced pressure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=4 / 1$) to afford $\mathbf{2 a}$ as white solid in 65.81% yield.

Compounds $\mathbf{2 b}$-d were prepared following the similar procedure with $\mathbf{2 a}$.

2.1.1 4-(2,6-diChloropyrimidin-4-yl)morpholine (2a) ${ }^{8}$

Yield 65.81%. ESI-MS $(m / z): 234.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.39(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.88-3.49 (m, 8H).

2.1.2 (2R,6S)-4-(2,6-diChloropyrimidin-4-yl)-2,6-dimethylmorpholine (2b)

Yield 69.09\%. ESI-MS $(\mathrm{m} / \mathrm{z}): 262.1[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.39(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~d}$, $J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 163.0,161.1,160.1,99.8,71.4,49.7$, 18.9.
2.1.3 (4aR,7aS)-6-(2,6-diChloropyrimidin-4-yl)hexahydro-2H-[1,4]dioxino[2,3-c]pyrrole (2c)

Yield 65.81\%. ESI-MS (m/z): 276.1 [M+H] ${ }^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.23(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}$, $J=38.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{dd}, J=10.8,5.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.65(\mathrm{ddd}, J=28.4,14.4,9.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.50-3.39(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta: 162.0,159.7,159.6,100.3,72.6,72.0,62.9,61.7,48.0,47.1$.

2.1.4 (土)-(4aR,7aR)-6-(2,6-diChloropyrimidin-4-yl)hexahydro-2H-[1,4]dioxino[2,3-c]pyrrole (2d)

Yield 60.28%. ESI-MS $(\mathrm{m} / \mathrm{z}): 276.0[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.21(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=16.6$,
6.3 Hz, 1H), 3.95-3.55 (m, 7H), $3.24(\mathrm{dt}, J=19.1,10.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 162.2,159.9$, 159.8, 100.1, 67.1, 47.0, 46.7.

2.2 General procedure for the preparation of 2,4-disubstituted-6-chloro-pyrimidines 3a-f, 3h-m

Morpholine (1.0 equiv.) was added to a solution of 4 -substituted-2,6-dichloropyrimidine (1.1 equiv.) in THF/EtOH ($10 \mathrm{~mL}, 1: 1$), followed by the addition of TEA (1.2 equiv.) and NaI (1.1 equiv.). The solution was stirred at $65^{\circ} \mathrm{C}$ for 12 h . Then the solvent was removed, the residue was dissolved in EtOAc (50 mL), washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$ in turn, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, the crude product was purified by column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=5 / 1$) to afford 3a as white solid in 63.51% yield.

Compounds $\mathbf{3 b} \mathbf{- f}, \mathbf{3 h} \mathbf{- m}$ were prepared following the similar procedure with $\mathbf{3 a}$.

2.2.1 4,4'-(6-Chloropyrimidine-2,4-diyl)dimorpholine (3a) ${ }^{9}$

Yield 63.51%. ESI-MS $(m / z): 285.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.86(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.82-3.64 (m, 12H), 3.59-3.50 (m, 4H).

2.2.2 (2R,6S)-4-(4-Chloro-6-morpholinopyrimidin-2-yl)-2,6-dimethylmorpholine (3b)

Yield 58.21\%. ESI-MS (m/z): $313.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.84(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}$, $J=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.80-3.68(\mathrm{~m}, 4 \mathrm{H}), 3.68-3.46(\mathrm{~m}, 6 \mathrm{H}), 2.53(\mathrm{t}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{dd}, J=6.2,1.7 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta: 164.0,160.7,160.6,91.1,71.7,66.5,49.3,44.5,18.9$.
2.2.3 (1R,4R)-5-(4-Chloro-6-morpholinopyrimidin-2-yl)-2-oxa-5-azabicyclo[2.2.1]heptane (3c)

Yield 66.22\%. ESI-MS (m/z): 297.1 [M+H $]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.84(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}$, $1 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 6 \mathrm{H}), 1.89(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 163.3,160.4,159.8,91.1$, 76.6, 74.0, 66.5, 56.9, 55.6, 44.4, 36.6.

2.2.4 (土)-(4aS,7aS)-6-(4-Chloro-6-morpholinopyrimidin-2-yl)hexahydro-2H-[1,4]dioxino[2,3-c]pyrrole (3d)

Yield 52.34\%. ESI-MS (m/z): $327.1[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.87(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H})$, $3.90-3.81(\mathrm{~m}, 5 \mathrm{H}), 3.77-3.64(\mathrm{~m}, 7 \mathrm{H}), 3.58-3.51(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 163.3,160.4,159.5,91.0$, 78.1, 67.2, 66.3, 46.4, 44.4.
2.2.5 (4aR,7aS)-6-(4-Chloro-6-morpholinopyrimidin-2-yl)hexahydro-2H-[1,4]dioxino[2,3-c]pyrrole (3e)

Yield 68.09\%. ESI-MS (m/z): $327.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.85(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H})$, 3.93-3.48 (m, 16H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta: 163.3,160.3,159.8,91.0,73.0,66.5,62.4, ~ 46.8, ~ 44.4$.

2.2.6 4-(6-Chloro-2-(4-(methylsulfonyl)piperazin-1-yl)pyrimidin-4-yl)morpholine (3f)

Yield 50.65\%. ESI-MS (m / z): $362.1[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.89(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.80-3.70(\mathrm{~m}, 4 \mathrm{H}), 3.55(\mathrm{~s}, 4 \mathrm{H}), 3.24(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.78(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 163.5,160.7,160.5,91.8,66.8,45.8,44.5,43.5,34.5$.
2.2.7 4-Chloro-6-morpholino-N-(2-morpholinoethyl)pyrimidin-2-amine (3h)

Yield 73.65\%. ESI-MS (m/z): $328.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H})$, $3.77-3.66(\mathrm{~m}, 9 \mathrm{H}), 3.58-3.51(\mathrm{~m}, 5 \mathrm{H}), 2.53(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 164.0$, $161.3,160.7,91.1,66.9,66.5,57.3,53.4,44.4,37.6$.
2.2.8 (2R,6S)-4-(6-Chloro-2-morpholinopyrimidin-4-yl)-2,6-dimethylmorpholine (3i)

Yield 78.45\%. ESI-MS $(\mathrm{m} / \mathrm{z}): 313.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.85(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}$, $2 \mathrm{H}), 3.68(\mathrm{t}, J=23.9 \mathrm{~Hz}, 10 \mathrm{H}), 2.54(\mathrm{td}, J=12.7,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=5.6 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 163.1,160.9,160.5,91.4,71.7,66.9,49.3,44.8,18.9$.

2.2.9 (2R,2'R,6S,6'S)-4,4'-(6-Chloropyrimidine-2,4-diyl)bis(2,6-dimethylmorpholine) (3j)

Yield 86.15\%. ESI-MS $(m / z): 341.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.84(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 3.68-3.51(\mathrm{~m}, 4 \mathrm{H}), 2.61-2.43(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{dd}, J=6.1,3.4 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 163.1,160.6,160.5,91.1,71.7,71.4,49.6,49.5,18.9$.
2.2.10 (4aR,7aS)-6-(4-Chloro-6-((2R,6S)-2,6-dimethylmorpholino)pyrimidin-2-yl)hexahydro-2H-[1,4]dioxino [2,3-c]pyrrole (3k)

Yield 74.45%. ESI-MS $(\mathrm{m} / \mathrm{z}): 355.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.85(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}$, $J=63.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.93-3.53(\mathrm{~m}, 10 \mathrm{H}), 2.55(\mathrm{t}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=5.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 162.9,160.2,159.9,91.0,72.8,71.6,62.6,49.1,47.1,18.7$.
2.2.11 (4aR,7aS)-6-(6-Chloro-2-morpholinopyrimidin-4-yl)hexahydro-2H-[1,4]dioxino[2,3-c]pyrrole (3l)

Yield 72.37%. ESI-MS $(\mathrm{m} / \mathrm{z}): 327.1[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.68(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}$, $2 \mathrm{H})$, , 3.97-3.37 (m, 16H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 162.1,160.9,159.8,91.5,72.8,67.0,62.6,47.1,44.1$.

Yield 75.29%. ESI-MS (m / z): $327.1[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.66(\mathrm{~s}, 1 \mathrm{H}), 3.91-3.83(\mathrm{~m}, 4 \mathrm{H})$, $3.80-3.57(\mathrm{~m}, 12 \mathrm{H}), 3.17(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 161.9,160.8,159.8,91.2,77.8,67.2,66.8,46.2$, 44.3.

2.3 General procedure for the preparation of 2,4-disubstituted-6-chloro-pyrimidines 3g, 3n, 3o and 3p

To a solution of $\mathbf{2 a}$ (1.0 equiv.) in n - $\mathrm{BuOH}(20 \mathrm{~mL}$) was added 4 -morpholinoaniline (1.0 equiv.), followed by the addition of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (1.0 equiv.). After the mixture was stirred at $100 \square$ for 24 h , the solvent was removed, the residue was dissolved in EtOAc (50 mL), washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine (50 mL) in turn, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, the residue was purified by column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=1 / 1)$ to afford 3 g as gray solid in 53.54% yield.

Compounds $\mathbf{3 n}, \mathbf{3 0} \mathbf{- p}$ were prepared following the similar procedure mentioned above.

2.3.1 4-Chloro-6-morpholino-N-(4-morpholinophenyl)pyrimidin-2-amine (3g)

Yield 53.54\%. ESI-MS $(\mathrm{m} / \mathrm{z}): 376.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.45-7.36(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.82(\mathrm{~m}, 4 \mathrm{H}), 3.78-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.57(\mathrm{~s}, 4 \mathrm{H}), 3.14-3.07$ $(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 163.7,160.3,159.1,147.2,132.2,121.2,116.4,92.6,66.9,66.4,50.1$, 44.5.

2.3.2 4-Chloro-6-morpholino-N-(3-morpholinophenyl)pyrimidin-2-amine (3n)

Yield 34.90\%. ESI-MS (m / z): $376.1[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta: 9.35(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H})$, 7.13-7.01 (m, 2H), $6.55(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 3.77-3.70(\mathrm{~m}, 4 \mathrm{H}), 3.69-3.58(\mathrm{~m}, 8 \mathrm{H}), 3.09-3.01(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta: 163.2,159.1,158.7,151.4,140.6,128.8,110.4,109.0,106.0,92.2,66.1,65.6$, 48.6, 44.3.

2.3.3 4-Chloro-N-(4-(4-(methylsulfonyl)piperazin-1-yl)phenyl)-6-morpholinopyrimidin-2-amine (3o)

Yield 14.60%. ESI-MS $(m / z): 453.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.42(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 3.80-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.58(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.42-3.35(\mathrm{~m}, 4 \mathrm{H})$, 3.27-3.20 (m, 4H), $2.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 163.6,160.3,159.1,146.4,133.2,121.2,118.0$, 92.8, 66.4, 50.3, 46.1, 44.5, 34.8.

2.3.4 (4-((4-Chloro-6-morpholinopyrimidin-2-yl)amino)phenyl)(4-(methylsulfonyl)piperazin-1-yl) methanone (3p)

Yield 15.30%. ESI-MS $(m / z): 481.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 9.72(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 3.73-3.54(\mathrm{~m}, 12 \mathrm{H}), 3.16(\mathrm{~s}, 4 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta: 169.3,163.2,159.3,158.6,141.9,128.1,127.7,118.1,95.5,65.7,45.6,44.6,42.0,34.0$.

2.4 General procedure for the preparation of 2,4,6-trisubstituted pyrimidines5a-m

To a solution of $\mathbf{3 a - m}$ (1.0 equiv.), 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(trifluoromethyl)pyridin-2-amine ($4,2.0$ equiv.) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.05 equiv.) in degassed dioxane (6 mL) was added $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ (3.0 equiv.). The mixture was heated under microwave at $150{ }^{\circ} \mathrm{C}$ for $2.0-2.5 \mathrm{~h}$. The solvent was removed, the residue was dissolved in EtOAc (50 mL), washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL} \times 3)$ and brine $(30 \mathrm{~mL})$ in turn, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, the residue was first separated by column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=5 / 1$ to $1 / 2$), then further purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=50 / 1\right)$ to afford white or off-white solid in 5-30\% yield.

2.4.1 5-(2,6-diMorpholinopyrimidin-4-yl)-4-(trifluoromethyl)pyridin-2-amine (5a) ${ }^{1}$

Yield 27.78%. HPLC purity 99.31% (Chiralcel OD-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ \mathrm{i}-\mathrm{PrOH}=60 / 40, t=12.86 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{2}\right]^{+}: 411.1751$, found: 411.1736 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.24(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{dd}, J=12.0,4.0 \mathrm{~Hz}, 12 \mathrm{H}), 3.59(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 163.3,161.4,159.4,150.6,137.7,131.6,128.7,123.8,105.7,92.8,67.0,66.6,44.4$, 30.9 .
2.4.2 5-(2-((2S,6R)-2,6-diMethylmorpholino)-6-morpholinopyrimidin-4-yl)-4-(trifluoromethyl)pyridin-2amine (5b)

Yield 22.05%. HPLC purity 96.10% (Chiralcel OD-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=9.34 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{2}\right]^{+}: 439.2064$, found: 439.2070; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.26(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 4.54(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.86-3.70(\mathrm{~m}, 4 \mathrm{H}), 3.71-3.50(\mathrm{~m}$, $6 \mathrm{H}), 2.54(\mathrm{dd}, J=13.1,10.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 163.3,162.6,161.1$, $158.4,151.0,138.4,124.8,121.5,105.4,92.4,72.0,66.5,49.7,44.5,18.9$.
2.4.3 5-(2-((1R,4R)-2-Oxa-5-azabicyclo[2.2.1]heptan-5-yl)-6-morpholinopyrimidin-4-yl)-4-(trifluoromethyl) pyridin-2-amine (5c)

Yield 20.15%. HPLC purity 97.20% (Chiralcel OD-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=12.58 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{2}\right]^{+}: 423.1751$, found: 423.1772 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.25(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=20.0,7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.81-3.66 (m, 5H), 3.62-3.56 (m, 5H), $1.90(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 163.0,160.7,158.8,151.0$, $147.4,138.1,124.4,121.9,105.3,92.1,73.3,67.2,56.8,55.5,53.2,44.8,36.4$.
2.4.4 (土)-5-(2-((4aS,7aR)-diHydro-2H-[1,4]dioxino[2,3-c]pyrrol-6(3H,7H,7aH)-yl)-6-morpholinopyrimidin-4- yl)-4-(trifluoromethyl)pyridin-2-amine (5d)

Yield 16.97%. HPLC purity 98.92% (Chiralcel OD-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=16.89$ and 18.06 min). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{3}\right]^{+}: 453.1856$, found: 453.1852; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.25(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, 3.79-3.70 (m, 6 H), 3.63-3.56 (m, 4H), $3.26(\mathrm{t}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 163.0,160.7$, $159.1,150.3,138.1,124.4,121.9,105.3,100.1,93.0,78.8,67.8,66.5,46.8,44.2$.

Yield 15.05%. HPLC purity 95.60% (Chiralcel OJ-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=15.16 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{3}\right]^{+}: 453.1856$, found: 453.1838 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.25(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H})$, 3.94-3.55 (m, 16H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 163.0,162.7,160.3,158.7,150.9,138.4,124.4,121.5,105.3$, 92.4, 73.3, 67.2, 62.9, 47.4, 44.5.

2.4.6 5-(2-(4-(Methylsulfonyl)piperazin-1-yl)-6-morpholinopyrimidin-4-yl)-4-(trifluoromethyl)pyridin-2amine (5f)

Yield 14.54%. HPLC purity 97.34% (Chiralpak AD-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\operatorname{PrOH}=60 / 40, t=25.56 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}-\mathrm{H}]^{-}$calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{~S}\right]^{-}: 486.1507$, found: $486.1498 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.23(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 3.99-3.89(\mathrm{~m}, 4 \mathrm{H}), 3.84-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.66-3.53(\mathrm{~m}, 4 \mathrm{H})$, 3.31-3.20 (m, 4H), $2.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta: ~ 163.3,162.9,160.9,158.8,150.7,144.3,137.7$, 124.1, 105.4, 92.7, 66.6, 45.8, 44.3, 43.6, 34.3.

2.4.7
 4-(6-Amino-4-(trifluoromethyl)pyridin-3-yl)-6-morpholino-N-(4-morpholinophenyl)pyrimidin-2-amine

(5g)

Yield 9.50%. HPLC purity 98.96% (Chiralcel OD-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=20.80 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{2}\right]^{+}: 502.2173$, found: 502.2163 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.27(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-6.85(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 3.88-3.83(\mathrm{~m}, 4 \mathrm{H})$, $3.81-3.76(\mathrm{~m}, 4 \mathrm{H}), 3.62(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.13-3.07(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 163.3,163.0,159.6$, 158.7, 151.0, 146.8, 137.7, 137.3, 133.1, 123.9, 120.8, 116.6, 104.8, 94.7, 67.0, 66.7, 50.3, 44.4.

Yield 8.41%. HPLC purity 98.57% (Chiralcel OD-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=11.40 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{2}\right]^{+}: 454.2173$, found: $454.2142 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.24(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 3.82-3.65(\mathrm{~m}, 8 \mathrm{H}), 3.63-3.56(\mathrm{~m}, 4 \mathrm{H}), 3.50(\mathrm{dd}, J$ $=11.4,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 163.2,163.0,161.8$, $158.6,150.8,137.7,131.6,124.1,105.0,93.1,67.0,66.6,57.6,53.5,44.2,37.7$.

2.4.9 5-(6-((2S,6R)-2,6-diMethylmorpholino)-2-morpholinopyrimidin-4-yl)-4-(trifluoromethyl)pyridin-2amine (5i)

Yield 14.30%. HPLC purity 96.30% (Chiralcel OJ-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=7.91 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{2}\right]^{+}: 439.2064$, found: 439.2072; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.25(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 4.23-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.57(\mathrm{~m}, 10 \mathrm{H}), 2.66-2.51(\mathrm{~m}, 2 \mathrm{H})$, $1.25(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 162.8,161.5,158.8,150.9,138.0,137.6,124.4,121.5$, 105.2, 92.7, 71.7, 67.2, 50.0, 44.5, 18.9.

2.4.10 5-(2,6-bis((2S,6R)-2,6-diMethylmorpholino)pyrimidin-4-yl)-4-(trifluoromethyl)pyridin-2-amine (5j)

Yield 5.35%. HPLC purity 97.82% (Chiralcel OJ-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=7.22 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{2}\right]^{+}: 467.2377$, found: 467.2308 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.27(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 4.54(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.74-3.58$ $(\mathrm{m}, 4 \mathrm{H}), 2.68-2.46(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{dd}, J=10.7,6.2 \mathrm{~Hz}, 12 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 162.9,162.7,161.2$, 158.7, 150.9, 138.1, 131.9, 124.5, 105.0, 92.4, 71.7, 49.7, 18.9.
2.4.11 5-(2-((4aR,7aS)-diHydro-2H-[1,4]dioxino[2,3-c]pyrrol-6(3H,7H,7aH)-yl)-6-((2R,6S)-2,6-dimethyl

Yield 22.42%. HPLC purity 98.35% (Chiralcel $\mathrm{OJ}-\mathrm{H}, 0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=9.20 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{3}\right]^{+}: 481.2170$, found: $481.2149 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.26(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 4.34-3.97(\mathrm{~m}, 4 \mathrm{H})$, 3.96-3.55 (m, 10H), $2.56(\mathrm{dd}, J=16.2,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.29-1.17(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 162.7$, $162.6,160.4,158.8,151.0,138.1,124.8,121.2,105.3,92.4,73.3,71.7,62.6,49.7,46.0,19.3$.

2.4.12 5-(6-((4aR,7aS)-diHydro-2H-[1,4]dioxino[2,3-clpyrrol-6(3H,7H,7aH)-yl)-2-morpholinopyrimidin-4-

 yl)-4-(trifluoromethyl)pyridin-2-amine (5l)

Yield 23.35%. HPLC purity 95.61% (Chiralcel OD-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=11.40 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{3}\right]^{+}: 453.1856$, found: $453.1876 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.25(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.80-3.67(\mathrm{~m}, 6 \mathrm{H}), 3.64-3.52(\mathrm{~m}$, $5 \mathrm{H}), 3.26(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 161.6,159.1,154.3,151.0,150.1,127.0,124.4,109.8,105.0$, 93.0, 72.7, 67.1, 62.9, 46.8, 44.5.

2.4.13 (土)-5-(6-((4aR,7aR)-diHydro-2H-[1,4]dioxino[2,3-c]pyrrol-6(3H,7H,7aH)-yl)-2-morpholinopyrimidin-4-yl)-4-(trifluoromethyl)pyridin-2-amine (5m)

Yield 10.44%. HPLC purity 97.02% (Chiralcel $\mathrm{OJ}-\mathrm{H}, 0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=14.03 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{3}\right]^{+}: 453.1856$, found: $453.1836 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.26(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 4 \mathrm{H}), 3.81-3.58(\mathrm{~m}, 12 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 162.1,161.5,161.3,158.6,151.0,137.9,124.3,120.3,105.0,92.7,78.0,67.3,67.0,46.0,44.3$.
(5n)

Yield 21.83\%. HPLC purity 99.39\% (Chiralcel OD-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=19.08 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{2}\right]^{+}: 502.2173$, found: 502.2203 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.28(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.62-6.53(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H})$, $4.86(\mathrm{~s}, 2 \mathrm{H}), 3.88-3.75(\mathrm{~m}, 8 \mathrm{H}), 3.65(\mathrm{~s}, 4 \mathrm{H}), 3.21-3.09(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 163.1,162.8$, $159.4,158.9,151.9,150.9,141.0,137.6,129.4,123.5,121.4,111.1,109.7,106.7,104.7,94.9,67.0,66.5,49.5$, 44.5.

2.4.15 4-(6-Amino-4-(trifluoromethyl)pyridin-3-yl)-N-(4-(4-(methylsulfonyl)piperazin-1-yl)phenyl)-6-morpholinopyrimidin-2-amine (5o)

Yield 19.33%. HPLC purity 98.50% (Chiralcel OD-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=8.21 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{8} \mathrm{O}_{3} \mathrm{~S}\right]^{+}: 579.2108$, found: 579.2132; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta: 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 2 \mathrm{H})$, $6.21(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 4 \mathrm{H}), 3.57(\mathrm{~s}, 4 \mathrm{H}), 3.21(\mathrm{~s}, 4 \mathrm{H}), 3.11(\mathrm{~s}, 4 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta: 162.9,162.7,160.1,159.2,150.5,145.0,135.3,134.2,133.7,121.0,120.0,116.8,103.8,94.1,66.0$, 49.2, 45.6, 44.0, 34.0.

2.4 .16 (4-((4-(6-Amino-4-(trifluoromethyl)pyridin-3-yl)-6-morpholinopyrimidin-2-yl)amino)phenyl)(4(methyl sulfonyl)piperazin-1-yl)methanone (5p)

Yield 19.80\%. HPLC purity 99.39\% (Chiralcel OD-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=19.08 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}\right]^{+}: 607.2057$, found: $607.2049 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.28(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{dd}, J=$
$14.2,9.1 \mathrm{~Hz}, 8 \mathrm{H}), 3.65(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.24(\mathrm{~s}, 4 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 170.8,163.1$, $162.9,159.0,150.9,142.2,128.5,127.3,124.3,123.3,121.5,118.3,104.9,100.1,95.7,66.5,45.9,44.5,34.8$.

2.5 General procedure for the preparation of 2-substituted-4,6-dichloro-1,3,5-triazines 9a-b

To a solution of DIPEA (1.0 equiv.) and morpholine (1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) was added 2,4,6-trichloro-1,3,5-triazine $\mathbf{8}$ (1.1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $-5{ }^{\circ} \mathrm{C}$ slowly. The mixture was stirred at $-5{ }^{\circ} \mathrm{C}$ for 1 h and $0{ }^{\circ} \mathrm{C}$ overnight. The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, washed with $1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL} \times 2)$ and brine $(50 \mathrm{~mL} \times 1)$ in turn, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, the residue was purified by column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=10 / 1$ to $5 / 1)$ to afford 9 a as white solid in 59.74% yield.

Compound $9 \mathbf{b}$ was prepared following the similar procedure mentioned above.

2.5.1 4-(4,6-diChloro-1,3,5-triazin-2-yl)morpholine (9a) ${ }^{9}$

Yield 59.74\%. ESI-MS $(\mathrm{m} / \mathrm{z}): 235.1[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8: 3.97-3.80 (m, 4H), 3.80-3.65 (m, 4 H).

2.5.2 (2S,6R)-4-(4,6-diChloro-1,3,5-triazin-2-yl)-2,6-dimethylmorpholine (9b)

Yield 74.42%. ESI-MS $(m / z): 263.10[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 4.56(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.59$ $(\mathrm{m}, 2 \mathrm{H}), 2.67(\mathrm{dd}, J=13.3,10.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 170.7,164.0$, 71.6, 49.3, 18.7.

2.6 General procedure for the preparation of 2-chloro-4,6-disubstituted-1,3,5-triazines 10a-e

To a solution of 2 -substituted-4,6-dichloro-1,3,5-triazine $\mathbf{1 0 a}$ (1.0 equiv.) in THF (10 mL) was added ($1 R, 4 R$)-2-oxa-5-azabicyclo[2.2.1]heptane ($\mathbf{2 8}, 1.0$ equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.5 equiv.). The mixture was stirred at room temperature overnight. Then the solvent was removed and the residue was dissolved in EtOAc (50 mL). The solution was washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$ in turn, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solvent was removed under reduced pressure, the residue was purified by column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=5 / 1$) to afford 10 a as white solid in 84.46% yield.

Compounds 10b-e were prepared following the similar procedure mentioned above.

2.6.1 (1R,4R)-5-(4-Chloro-6-morpholino-1,3,5-triazin-2-yl)-2-oxa-5-azabicyclo[2.2.1]heptane (10a)

Yield 84.46\%. ESI-MS (m/z): $298.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.02(\mathrm{~d}, J=35.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ $(\mathrm{s}, 1 \mathrm{H}), 3.94-3.64(\mathrm{~m}, 10 \mathrm{H}), 3.52(\mathrm{dt}, J=27.2,11.2 \mathrm{~Hz}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 169.1,164.6,163.3$, 76.1, 73.6, 66.8, 56.8, 55.2, 43.8, 36.7 .
2.6.2 (土)-(4aR,7aR)-6-(4-Chloro-6-morpholino-1,3,5-triazin-2-yl)hexahydro-2H-[1,4]dioxino[2,3-c]pyrrole (10b)

Yield 82.23\%. ESI-MS (m / z): $328.1[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 4.08-3.41(\mathrm{~m}, 16 \mathrm{H}), 3.31-3.14$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta: 169.2,164.2,163.8,77.8,67.2,66.6,46.2,43.8$.
2.6.3 (1R,4R)-5-(4-Chloro-6-((2S,6R)-2,6-dimethylmorpholino)-1,3,5-triazin-2-yl)-2-oxa-5-azabicyclo[2.2.1] heptane (10c)

Yield 83.04\%. ESI-MS $(m / z): 326.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.01(\mathrm{~d}, J=28.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ $(\mathrm{s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.65-3.39(\mathrm{~m}, 4 \mathrm{H}), 2.68-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.05(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 169.4,164.2,163.3,76.1,74.0,71.7,56.8,55.2,48.7,36.6,18.7$.

Yield 76.53\%. ESI-MS $(\mathrm{m} / \mathrm{z}): 342.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 4.48(\mathrm{dd}, J=36.4,12.6 \mathrm{~Hz}, 4 \mathrm{H})$, $3.57(\mathrm{~s}, 4 \mathrm{H}), 2.56(\mathrm{t}, J=11.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.23(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 169.5,164.2,71.6,48.8$, 18.8.
2.6.5 (4aR,7aS)-6-(4-Chloro-6-((2S,6R)-2,6-dimethylmorpholino)-1,3,5-triazin-2-yl)hexahydro-2H-[1,4] dioxino[2,3-c]pyrrole (10e)

Yield 88.73\%. ESI-MS (m / z): $356.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 4.52(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.23$ $(\mathrm{s}, 2 \mathrm{H}), 3.92-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.72-3.49(\mathrm{~m}, 6 \mathrm{H}), 2.56(\mathrm{t}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 169.2,163.9,163.7,72.6,71.4,62.0,48.8,47.1,18.7$.
2.7 General procedure for the preparation of 2,4,6-trisubstituted-1,3,5-triazines 11a-e

Compounds 11a-e were prepared from 10a-e following the similar procedure for $\mathbf{5 a} \mathbf{- m}$.
2.7.1 5-(4-((1R,4R)-2-Oxa-5-azabicyclo[2.2.1]heptan-5-yl)-6-morpholino-1,3,5-triazin-2-yl)-4-(trifluoro methyl)pyridin-2-amine (11a)

Yield 16.85%. HPLC purity 95.32% (Chiralcel OD-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=10.96 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{2}\right]^{+}: 424.1703$, found: $424.1692 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $8.71(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=35.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 3.93-3.46(\mathrm{~m}, 12 \mathrm{H}), 1.92(\mathrm{q}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 169.5,164.6,163.6,159.4,152.6,138.4,122.5,121.5$, $105.3,76.3,74.1,66.8,56.6,54.9,43.6,36.6$.
2.7.2 (土)-5-(4-((4aR,7aR)-dihydro-2H-[1,4]dioxino[2,3-c]pyrrol-6(3H,7H,7aH)-yl)-6-morpholino-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine (11b)

Yield 7.80\%. HPLC purity 95.72% (Chiralcel OD-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=12.72 \mathrm{~min}$). ESI-MS (m / z): $454.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.72(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 4.16-3.60(\mathrm{~m}$,

16 H), 3.26 (dt, $J=14.9,10.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 169.7,164.5,163.9,159.8,152.7,138.1$, 122.3, 105.3, 99.7, 78.0, 67.3, 66.8, 45.8, 43.6.

2.7.3 5-(4-((1R,4R)-2-Oxa-5-azabicyclo[2.2.1]heptan-5-yl)-6-((2S,6R)-2,6-dimethylmorpholino)-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine (11c)

Yield 20.05\%. HPLC purity 95.80% (Chiralcel OD-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=8.95 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{2}\right]^{+}: 452.2016$, found: $452.2020 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.71(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=27.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.69-3.49(\mathrm{~m}, 4 \mathrm{H}), 2.56(\mathrm{t}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ $169.2,163.9,163.3,159.5,152.4,127.3,122.0,105.6,100.0,74.0,71.6,56.4,55.0,48.6,36.5,30.9,18.7$.
2.7.4 5-(4,6-bis((2S,6R)-2,6-diMethylmorpholino)-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine
(11d)

Yield 10.10%. HPLC purity 95.54% (Chiralcel OD-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=7.17 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{2}\right]^{+}: 468.2329$, found: $468.2312 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.71(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~d}, J=54.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.61(\mathrm{~s}, 4 \mathrm{H}), 2.69-2.47(\mathrm{~m}, 4 \mathrm{H})$, $1.24(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 170.0,164.7,159.5,152.7,138.1,124.3,122.3,105.3,71.7,48.8$, 19.0.
2.7.5 5-(4-((2S,6R)-2,6-diMethylmorpholino)-6-((4aR,7aS)-tetrahydro-2H-[1,4]dioxino[2,3-c]pyrrol-6(3H)-yl)-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine (11e)

Yield 13.14%. HPLC purity 98.35% (Chiralcel OJ-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=9.20 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{3}\right]^{+}$: 482.2122, found: 482.2120; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.73(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 4.00-3.80(\mathrm{~m}, 6 \mathrm{H}), 3.72-3.53(\mathrm{~m}, 6 \mathrm{H}), 2.57(\mathrm{t}, J=13.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.29-1.18(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 169.7,164.0,163.8,159.5,152.4,146.0,122.3,112.0$,
105.3, 72.6, 71.4, 62.0, 48.8, 30.7, 19.0.

2.8 General procedure for the preparation of 7-chloro-2,4-disubstitutedquinazolines 17a-b

To a solution of $\mathbf{1 6}$ (1.0 equiv.) in DMF (10 mL) was added DIPEA (2.5 equiv.) and NaI (2.2 equiv.), followed by the addition of morpholine (2.5 equiv.). The mixture was heated to $80 \square$ for 8 h , then cooled to rt and diluted with EtOAc $(50 \mathrm{~mL})$. The solution was washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL} \times 5)$ and brine $(50 \mathrm{~mL})$ in turn, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solvent was removed under reduced pressure, the residue was purified by column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=5 / 1)$ to afford $\mathbf{1 7 a}$ as yellow solid in 66.76% yield.

Compound 17b was prepared following the similar procedure mentioned above.

2.8.1 4,4'-(7-Chloroquinazoline-2,4-diyl)dimorpholine (17a)

Yield 66.76\%. ESI-MS $(\mathrm{m} / \mathrm{z}): 335.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}$, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=8.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 8 \mathrm{H}), 3.80-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.66-61(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 165.4,158.8,155.3,138.6,126.2,125.4,121.5,110.3,67.0,66.6,50.4,44.5$.
2.8.2 (2R,2'R,6S,6'S,)-4,4'-(7-Chloroquinazoline-2,4-diyl)bis(2,6-dimethylmorpholine) (17b)

Yield 79.46\%. ESI-MS $(\mathrm{m} / \mathrm{z}): 391.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}$, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.90-78(\mathrm{~m}$, 2 H), $3.71-3.59$ (m, 2H), 2.84 (dd, $J=12.7,10.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.61 (dd, $J=12.9,10.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.26 (dd, $J=13.8,6.2$ $\mathrm{Hz}, 12 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta: 165.3,158.4,155.5,136.7,126.4,125.4,121.5,110.5,71.9,71.5,55.4$, 49.6, 18.8.

2.9 General procedure for the preparation of 5-(2,4-disubstitutedquinazolin-7-yl)-4-(trifluoromethyl)pyridin-2amines 18a-b

Compounds $\mathbf{1 8 a} \mathbf{- e}$ were prepared from $\mathbf{1 7 a - b}$ following the similar procedure for $\mathbf{5 a}$.
2.9.1 5-(2,4-diMorpholinoquinazolin-7-yl)-4-(trifluoromethyl)pyridin-2-amine (18a)

Yield 31.64%. HPLC purity 98.65% (Chiralcel OD-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=14.84 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{2}\right]^{+}: 461.1907$, found: 461.1898 ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $8.10(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 3.99-3.60$ (m, 16H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta: 165.7,158.6,158.1,153.9,150.8,141.2,137.7,137.3,127.0,124.8$, 124.6, 122.6, 111.3, 104.7, 67.0, 66.7, 50.3, 44.4.

2.9.2 5-(2,4-bis((2R,6S)-2,6-diMethylmorpholino)quinazolin-7-yl)-4-(trifluoromethyl)pyridin-2-amine (18b)

Yield 18.50%. HPLC purity 97.82% (Chiralcel OJ-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=7.22 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{2}\right]^{+}: 517.2533$, found: $517.2528 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $8.10(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 4.66(\mathrm{~d}, J=$ $12.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{dd}, J=8.6,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{dd}, J=8.3,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{dd}, J=$ $12.7,10.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{dd}, J=12.9,10.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=6.0 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta:$ $165.3,158.4,158.1,154.1,150.9,140.9,137.4,126.9,124.8,124.5,124.3,122.6,111.3,104.6,71.9,71.5,55.4$, 49.7, 19.0, 18.9.

2.10 (\pm)-2-((4aR,7aR)-dihydro-2H-[1,4]dioxino[2,3-c]pyrrol-6(3H,7H,7aH)-yl)-6-morpholino-4,5'-

bipyrimidin-2'-amine (21)

To a mixture of $\mathbf{4 d}(0.25 \mathrm{~g}, 0.77 \mathrm{mmol}, 1.0$ equiv. $), 20(0.34 \mathrm{~g}, 1.53 \mathrm{mmol}, 2.0$ equiv.) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($32 \mathrm{mg}, 0.038 \mathrm{mmol}, 0.05$ equiv.) in degassed dioxane (3.6 mL) was added $2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(1.20$ $\mathrm{mL}, 2.40 \mathrm{mmol}, 3.0$ equiv.). The mixture was heated under microwave to $150{ }^{\circ} \mathrm{C}$ for 2 h . The solvent was removed and the residue was dissolved in $\mathrm{EtOAc}(50 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL} \times 3)$ and brine (30 mL) in turn, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, the crude product was first separated by column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=5 / 1$ to $1 / 2)$, then further purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=50 / 1\right)$
to give 21 as off-white solid ($157 \mathrm{mg}, 52.25 \%$ yield). HPLC purity 98.95% (Chiralcel OD-H, $0.5 \mathrm{~mL} / \mathrm{min}$, hexane $/ i-\mathrm{PrOH}=60 / 40, t=20.80 \mathrm{~min}$). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{7} \mathrm{O}_{3}\right]^{+}: 386.1935$, found: $386.1916 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 8.93(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~s}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=9.1 \mathrm{~Hz}$, $4 \mathrm{H}), 3.79-3.56(\mathrm{~m}, 12 \mathrm{H}), 3.19-3.08(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta: 164.1,163.3,159.8,159.3,156.8$, 119.9, 86.4, 78.0, 66.5, 65.9, 45.8, 44.0.

2.11 (-)-5-(2-((4aR,7aR)-diHydro-2H-[1,4]dioxino[2,3-c]pyrrol-6(3H,7H,7aH)-yl)-6-morpholinopyrimidin-4-

 yl)-4-(trifluoromethyl)pyridin-2-amine (6)(-)

The title compound was obtained via chiral preparative column (Phenomenex Lux, cellulose-2, $250 \times 10 \mathrm{~mm}$, $5 \mu \mathrm{~m}$). HPLC purity 99.90% (Phenomenex Lux, $3.0 \mathrm{~mL} / \mathrm{min}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=95 / 5, t=11.25 \mathrm{~min}$). HRMS (ESI): m / z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{3}\right]^{+}: 453.1856$, found: 453.1845; $[a]_{D}^{30}=-34.2\left(\mathrm{c}=0.20, \mathrm{CHCl}_{3}\right)$.

2.12 (+)-5-(2-((4aS,7aS)-diHydro-2H-[1,4]dioxino[2,3-c]pyrrol-6(3H,7H,7aH)-yl)-6-morpholinopyrimidin-

 4-yl)-4-(trifluoromethyl)pyridin-2-amine (7)(+)

The title compound was obtained via chiral preparative column (Phenomenex Lux, cellulose-2, $250 \times 10 \mathrm{~mm}$, $5 \mu \mathrm{~m}$). HPLC purity 99.90% (Phenomenex Lux, $3.0 \mathrm{~mL} / \mathrm{min}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=95 / 5, t=12.30 \mathrm{~min}$). HRMS (ESI): m / z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{3}\right]^{+}: 453.1856$, found: 453.1863; $[a]_{D}^{30}=46.8\left(\mathrm{c}=0.21, \mathrm{CHCl}_{3}\right)$.

2.13 (-)-5-(4-((4aR,7aR)-dihydro-2H-[1,4]dioxino[2,3-c]pyrrol-6(3H,7H,7aH)-yl)-6-morpholino-1,3,5-triazin-

 2-yl)-4-(trifluoromethyl)pyridin-2-amine (12)$(-)$

The title compound was obtained via chiral preparative column (Phenomenex Lux, cellulose-2, $250 \times 10 \mathrm{~mm}$, $5 \mu \mathrm{~m}$). HPLC purity 97.70% (Phenomenex Lux, $3.0 \mathrm{~mL} / \mathrm{min}$, $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=95 / 5, t=12.25 \mathrm{~min}$). ESI-MS (m / z):
$454.2[\mathrm{M}+\mathrm{H}]^{+} ;[a]_{D}^{30}=-29.5\left(\mathrm{c}=0.21, \mathrm{CHCl}_{3}\right)$.
2.14 (+)-5-(4-((4aS, 7aR)-dihydro-2H-[1,4]dioxino[2,3-c]pyrrol-6(3H,7H,7aH)-yl)-6-morpholino-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine (13)
(+)

The title compound was obtained via chiral preparative column (Phenomenex Lux, cellulose-2, $250 \times 10 \mathrm{~mm}$, $5 \mu \mathrm{~m}$). HPLC purity 98.62% (Phenomenex Lux, $3.0 \mathrm{~mL} / \mathrm{min}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=95 / 5, t=14.25 \mathrm{~min}$). ESI-MS (m / z): $454.2[\mathrm{M}+\mathrm{H}]^{+} ;[a]_{D}^{30}=50.7\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right)$.

2.15 Preparation of (\pm)-(4aR,7aR) hexahydro-2H-[1,4]dioxino[2,3-c]pyrrole (26)

2.15.1 Benzyl 6-oxa-3-azabicyclo[3.1.0]hexane-3-carboxylate (23) ${ }^{10}$

To a solution of 3-chlorobenzoperoxoic acid ($10.55 \mathrm{~g}, 61.14 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ was added benzyl 2,5-dihydro-1 H -pyrrole-1-carboxylate $22(10 \mathrm{~g}, 49.24 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ dropwise. The mixture was stirred at rt for 16 h , and the formed precipitate was filtered off. Then the solution was washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ $(100 \mathrm{~mL} \times 1), \mathrm{NaHCO}_{3}(100 \mathrm{~mL} \times 1)$ and $\mathrm{NaCl}(100 \mathrm{~mL} \times 1)$ in turn, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, the residue was further purified by column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=3 / 1$) to afford 23 ($7.39 \mathrm{~g}, 68.49 \%$ yield). ESI-MS $(\mathrm{m} / \mathrm{z}): 220.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.41-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.16-5.04$ (m, 2H), 3.86 (dd, $J=19.1,12.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.73-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{dd}, J=12.7,6.0 \mathrm{~Hz}, 2 \mathrm{H})$.

2.15.2 (\pm)-(3R,4R)-benzyl 3-(2-bromoethoxy)-4-hydroxypyrrolidine-1-carboxylate (24)

To a solution of $\mathbf{2 3}(3.16 \mathrm{~g}, 14.42 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added 2-bromoethanol ($1.97 \mathrm{~g}, 15.87$ $\mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.22 \mathrm{~g}, 0.19 \mathrm{mmol})$ slowly. The mixture was stirred at rt overnight, then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(30 \mathrm{~mL})$. The solution was washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$ in turn, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the
solvent was removed and the residue was purified by column chromatography ($\mathrm{PE} / \mathrm{EtOAc}=1 / 2$) to give $24(1.44 \mathrm{~g}$, 29.03\% yield). ESI-MS (m / z): $344.2[\mathrm{M}+\mathrm{H}]^{+} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.31(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 5 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H})$, $3.80(\mathrm{~d}, J=35.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.63(\mathrm{td}, J=12.2,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.56-3.28(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 155.7$, 137.1, 128.5, 128.0, 127.8, 83.3, 82.5, 73.3, 72.4, 69.4, 66.9, 30.4.

2.15.3 (\pm)-(4aR,7aR)-benzyl tetrahydro-2H-[1,4]dioxino[2,3-c]pyrrole-6(3H)-carboxylate (25)

A solution of $\mathrm{KOH}(0.26 \mathrm{~g}, 4.59 \mathrm{mmol})$ in absolute ethanol (3 mL) was added to $24(1.43 \mathrm{~g}, 4.14 \mathrm{mmol})$ in ethanol (10 mL). The mixture was refluxed for 6 h , the formed precipitate was filtered off and the cake was washed with EtOAc $(50 \mathrm{~mL})$. The organic layers were combined and concentrated to give a residue, which was further purified by column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=1 / 1)$ to afford $\mathbf{2 5}(0.74 \mathrm{~g}, 67.27 \%$ yield $)$. ESI-MS $(\mathrm{m} / \mathrm{z})$: 264.2 $[\mathrm{M}+\mathrm{H}]^{+} ;$LC-MS: $264.1(\mathrm{M}+1) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.35(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 5 \mathrm{H}), 5.13(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.92-3.70 (m, 6H), $3.60(\mathrm{~s}, 2 \mathrm{H}), 3.15(\mathrm{dd}, J=9.5,4.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 155.2,136.4,128.5$, 128.1, 128.0, 76.6, 67.5, 61.2, 45.5 .

2.15.4 (\pm)-(4aR,7aR)-hexahydro-2H-[1,4]dioxino[2,3-c]pyrrole (26)

To a solution of $\mathbf{2 5}(0.30 \mathrm{~g}, 1.14 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added $10 \% \mathrm{Pd} / \mathrm{C}(0.10 \mathrm{~g})$. The mixture was stirred under H_{2} atmosphere at rt for 6 h . Then the catalyst was filtered off, the solvent was removed to give 26, which was used for next step directly. ESI-MS (m / z): $130.1[\mathrm{M}+\mathrm{H}]^{+}$.

3. Enzyme assays

In this study, the compounds were evaluated in terms of their ability to inhibit class I PI3K enzymes P110 $/$ p85 and p1108/p85 via the Kinase-Glo Luminescent Kinase Assays, as well as p110ß/p85 and p110 $/ \mathrm{p} 101$ via the ADP-Glo Luminescent Kinase Assay. PI3K reactions were performed in 50 mM HEPES at pH 7.5 with 1 mM EGTA, $100 \mathrm{mM} \mathrm{NaCl}, 3 \mathrm{mM} \mathrm{MgCl} 2,2 \mathrm{mM}$ DTT, and 0.03% CHAPS; all tested compounds were dissolved in 100% DMSO. PIP2 and ATP were used as substrates, and the final reaction volume was $10 \mu \mathrm{~L}$. To evaluate the PI3K α inhibitors, 1.65 nM enzyme, $50 \mu \mathrm{M}$ PIP2, and $25 \mu \mathrm{M}$ ATP were used for every $10 \mu \mathrm{~L}$ reaction volume with inhibitor concentrations ranging from 0.5 nM to $10 \mu \mathrm{M}$. After incubating for 1 h at room temperature, the reactions were quenched by adding $10 \mu \mathrm{~L}$ of Kinase-Glo reagent ($5 \mu \mathrm{~L}$ of ADP-Glo reagent for $\mathrm{p} 110 \beta / \mathrm{p} 85$ and $\mathrm{p} 110 \gamma / \mathrm{p} 101$). Raw data were collected from Flexstation program (SnygerMax for $\mathrm{p} 110 \beta / \mathrm{p} 85$ and $\mathrm{p} 110 \gamma / \mathrm{p} 101$) and the IC_{50} values were defined via curves that plotted using Graphpad Prism software.

4. Cell proliferation assay

The following cell lines were used in the experiment: K562, HL60, Huh7, MOLT-4, MCF-7, DU145, U937, NCI-N87, HT1080, BGC-823, BEL-7402, A431, A549, Hela, SGC-7901, PANC-1, MDA-MB-231, PC3 and

SK-BR-3. Cells were maintained at $37{ }^{\circ} \mathrm{C}$ in a $5 \% \mathrm{CO}_{2}$ incubator in RPMI1640 (Gibco, Invitrogen) or DMEM (Gibco, Invitrogen) containing 10\% fetal bovine serum (Gibco, Invitrogen). Cell proliferation was determined by CCK8 assay (DOjinDo, Japan). Cells were seeded data density of 800-1000 cells/well in 384 well plates and treated with various concentrations of compounds or the solvent control. After incubating for 72 h , CCK8 reagent was added, and absorbance was measured at 450 nm by using Envision 2104 multi-label Reader (PerkinElmer, USA). All the experiments were repeated at least three times. Dose-response curves were plotted using Prism 5.0 (Graph Pad Software Inc., USA) to determine the IC_{50} values.

Cell viability in Figure 7 was assessed by WST-8 assay (Dojindo) according to the manufacturer's instructions. Cells were seeded in the 96 -well plate. After different treatment, $10 \mu \mathrm{~L}$ WST- 8 solutions were added to each well and cells were incubated at $37^{\circ} \mathrm{C}$ for 4 h . The absorbance was finally determined at 450 nm .

5. Western blot assay

Suppressive activities of Akt and phospho-Akt (p-Akt, S473) in U937 cells were determined by Western blot. U937 cells were treated with different compounds for 24 h . Cell lysates were clarified by centrifugation at 12,000 rpm for 20 min at $4{ }^{\circ} \mathrm{C}$, and supernatant was collected. Equal amounts of protein were subjected to SDS-PAGE and transferred to nitrocellulose membranes (Merck Millipore, Billerica, MA, USA). The membrane were blocked and incubated overnight at $4{ }^{\circ} \mathrm{C}$ with primary antibodies against p-Akt, Akt (Cell Signaling Technology Corp., Beverly, MA, USA), and β-actin (Santa Cruz Biotechnology, Santa Cruz, CA, USA), followed by incubation with appropriate secondary antibodies. Antibody binding was detected with chemiluminescence reagents (Sigma-Aldrich, St. Louis, MO, USA).

6. Tumor growth in xenografts

MDA-MB-231 cells $\left(10^{6}\right)$ were injected into the right flank of 4 -week-old female nude mice $(\mathrm{n}=5)$. When the tumor size reached $50 \mathrm{~mm}^{3}$, mice were randomly distributed into two groups that were treated intragastrically every two days with either a vehicle control or with $30 \mathrm{mg} / \mathrm{kg} 5 d$ dissolved in PEG300. The tumor volumes $\left(\mathrm{A} \times \mathrm{B}^{2} / 2\right.$; A being the greatest diameter and B being the diameter perpendicular to A) were measured by calipers. Other indicators of general health, such as body weight, feeding behavior, and motor activity, of each animal were also monitored. After administering the drug or vehicle for 19 days, the mice were sacrificed and the tumor xenografts were immediately dissected and weighed. All animal procedures were approved by the Institutional Animal Care and Use Committee of the Sun Yat-sen University Cancer Center.

References

(1) Burger, M. T.; Pecchi, S.; Wagman, A.; Ni, Z.-J.; Knapp, M.; Hendrickson, T.; Atallah, G.; Pfister, K.; Zhang, Y.; Bartulis, S.; Frazier, K.; Ng, S.; Smith, A.; Verhagen, J.; Haznedar, J.; Huh, K.; Iwanowicz, E.; Xin, X.; Menezes, D.; Merritt, H.; Lee, I.; Wiesmann, M.; Kaufman, S.; Crawford, K.; Chin, M.; Bussiere, D.; Shoemaker, K.; Zaror, I.; Maira, S.-M.; Voliva, C. F. Identification of NVP-BKM120 as a potent, pelective, orally bioavailable class I PI3 kinase inhibitor for treating cancer. ACS Med. Chem. Lett. 2011, 2, 774-779.
(2) Cmiljanovic, V.; Cmiljanovic, N.; Giese, B.; Wymann, M. Triazine, pyrimidine and pyridine analogs and their use as therapeutic agents and diagnostic probes and their preparation. WO2010052569A2, 2010.
(3) Smits, R. A.; de Esch, I. J. P.; Zuiderveld, O. P.; Broeker, J.; Sansuk, K.; Guaita, E.; Coruzzi, G.; Adami, M.; Haaksma, E.; Leurs, R. Discovery of quinazolines as histamine H4 receptor inverse agonists using a scaffold hopping approach. J. Med. Chem. 2008, 51, 7855-7865.
(4) Zhang, J.; Zhang, Y.; Zhang, W.; Liu, B.; Zhang, J.; Liu, J.; Zhang, L. Preparation of quinazoline derivatives as inhibitors of protein tyrosine kinase. CN103102344A, 2013.
(5) Butora, G.; Goble, S. D.; Pastemak, A.; Yang, L.; Zhou, C.; Moyes, C. R. Preparation of tetrahydropyridopyridines and related compounds as modulators of chemokine receptor. US20080081803A1, 2008.
(6) Tangallapally, R. P.; Yendapally, R.; Lee, R. E.; Lenaerts, A. J. M.; Lee, R. E. Synthesis and evaluation of cyclic secondary amine substituted phenyl and benzyl nitrofuranyl amides as novel antituberculosis agents. J. Med. Chem. 2005, 48, 8261-8269.
(7) Wang, S.; Midgley, C. A.; Scaërou, F.; Grabarek, J. B.; Griffiths, G.; Jackson, W.; Kontopidis, G.; McClue, S. J.; McInnes, C.; Meades, C.; Mezna, M.; Plater, A.; Stuart, I.; Thomas, M. P.; Wood, G.; Clarke, R. G.; Blake, D. G.; Zheleva, D. I.; Lane, D. P.; Jackson, R. C.; Glover, D. M.; Fischer, P. M. Discovery of N-phenyl-4-(thiazol-5-yl)pyrimidin-2-amine aurora kinase inhibitors. J. Med. Chem. 2010, 53, 4367-4378.
(8) Li, H.; Thota, S.; Carroll, D.; Argade, A.; Tso, K.; Sran, A.; Clough, J.; Keim, H.; Bhamidipati, S.; Taylor, V.; Cooper, R.; Singh, R.; Wong, B. Preparation of pyrimidine-2,4-diamines for inhibition of the JAK pathway. WO2006133426A2, 2006.
(9) Hummersone, M. G.; Gomez, S.; Menear, K. A.; Cockcroft, X.-L. F.; Smith, G. C. M. Preparation of methylenehydrazinotriazinediamine derivatives and related analogs as inhibitors of mTOR. WO2006090167A2, 2006.
(10) Pinson, J.-A.; Zheng, Z.; Miller, M. S.; Chalmers, D. K.; Jennings, I. G.; Thompson, P. E. 1-Aminoacyl-triazine serivatives are isoform-selective $\mathrm{PI} 3 \mathrm{~K} \beta$ inhibitors that target nonconserved Asp862 of PI3K β. ACS Med. Chem. Lett. 2012, 4, 206-210.
7. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for selected compounds

5-(2,6-diMorpholinopyrimidin-4-yl)-4-(trifluoromethyl)pyridin-2-amine (5a)
${ }^{1}$ H NMR

${ }^{13}$ C NMR

(土)-5-(2-((4aS,7aR)-diHydro-2H-[1,4]dioxino[2,3-c]pyrrol-6(3H,7H,7aH)-yl)-6-morpholinopyrimidin-4-yl)-4-(tri fluoromethyl)pyridin-2-amine (5d)
${ }^{1}$ H NMR

${ }^{13}$ C NMR

5-(2-(4-(Methylsulfonyl)piperazin-1-yl)-6-morpholinopyrimidin-4-yl)-4-(trifluoromethyl)pyridin-2-amine (5f)
${ }^{1}$ H NMR

4-(6-Amino-4-(trifluoromethyl)pyridin-3-yl)-6-morpholino-N-(4-morpholinophenyl)pyrimidin-2-amine (5g) ${ }^{1}$ H NMR

${ }^{13}$ C NMR

(4-((4-(6-Amino-4-(trifluoromethyl)pyridin-3-yl)-6-morpholinopyrimidin-2-yl)amino)phenyl)(4-(methylsulfonyl) piperazin-1-yl)methanone (5p)
${ }^{1}$ H NMR
:

$\stackrel{\text { 응 }}{\stackrel{3}{1}}$
8
1
1

${ }^{13} \mathrm{C}$ NMR

5-(2,4-diMorpholinoquinazolin-7-yl)-4-(trifluoromethyl)pyridin-2-amine (18a)
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

(\pm)-2-((4aR,7aR)-dihydro-2H-[1,4]dioxino[2,3-c]pyrrol-6(3H,7H,7aH)-yl)-6-morpholino-4,5'-bipyrimidin-2'-ami ne (21)
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

$\stackrel{\stackrel{\rightharpoonup}{8}}{\stackrel{\Phi}{\square}}$

