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Effect of projection on C2H
+

6 virtual states

We show here the effect of projection on the α and β channels of C2H
+

6 . For both chan-

nels the error is usually below 0.001eV. This error is greater than the error shown in the

manuscript as we have used a grid spacing of h=0.4a.u. compared to h=0.3a.u. in the

manuscript main text. In Fig. 1 for the α channel we show that when we do not project

onto the virtual subspace the error in the first virtual eigenvalue is 0.4eV. Projecting on four

states gives for the four virtual states an error that is below 10−4eV, and one can see that

the error jumps in the fifth virtual state. When we project onto 40 virtual states we see very

low error in all states. The same behavior is shown in Fig. 2 for the β channel. Here we

can see that when we do not project onto the virtual subspace, the error in the first virtual

state is 6.28eV, and is reduced to 7 × 10−4eV when we project on four virtual states.
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Figure 1: Eigenstate error (compared to the full operator) for the C2H
+

6 α channel. Blue
circles show the error for projection onto zero virtual states, black diamonds show the error
for projection onto four virtual states, and red larger circles show error for projection onto
forty virtual states. The vertical dashed line shows the highest occupied state.
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Figure 2: Eigenstate error (compared to the full operator) for the C2H
+

6 β channel. Blue
circles show the error for projection onto zero virtual states, black diamonds show the error
for projection onto four virtual states, and red larger circles show the error for projection
onto forty virtual states. The vertical dashed line shows the highest occupied state.
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Effect of projection on PBE0 C60 virtual states

We show here the effect of the projection on a hybrid PBE0 calculation for the virtual states

of C60. The coordinates are the ones that were used in the main text of the manuscript. We

compare calculations for projection onto zero, five, ten, and twenty virtual states with a 6-

311G** basis set calculation that was performed with the NWCHEM code. We demonstrate

that one can progress to higher virtual states in the DOS by increasing the number of

projected states. Zero projected states clearly does not capture any of the peaks. Five

projected states captures only the first peak, while ten projected states captures the first

two peaks. Finally, twenty projected states describes all three negative peaks in the DOS

for the virtual states.

Figure 3: C60 PBE0 virtual states Density of States (DOS) with different number of projected
virtual states
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Matrix-Vector operations scaling with different solvers

In Appendix B of the main text we assumed that we have P0 Matrix-Vector operations (Ĥψ)

per eigenvalue. In this section we show the behavior for both the ARPACK and Chebyshev-

Davidson solvers. In figure 4 we show the number of operations to get all the eigenvalues

and it is easy to see an almost linear behavior.
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Figure 4: Number of Ĥψ operations to get all eigenvalues as a number of the calculated
eigenvalues. Blue asterisks show Chebyshev-Davidson data, red circles show ARPACK data.

We can estimate P0 by plotting the number of operations per eigenstate. This is shown
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in the next figure where we show the number of operation per eigenstate which is exactly

the P0 that we used in the main text.
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Figure 5: Number of Ĥψ operations per eigenstate. Blue asterisks show Chebyshev-Davidson
data, red circles show ARPACK data.
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It can be seen from Figure 5 that for large molecules the value of P0 approaches 15 for the

ARPACK solver, the Chebyshev-Davidson solver is slightly lower but can have oscillations.

This leads to more matrix-vector operations with the ARPACK solver and in large molecules

we have 10-20 percent longer run times. In Small molecules the difference is dramatic and

the Chebychev-Davidson can be almost 10 times faster than ARPACK.

Additional performance analysis

We can take the data of Figure 6 of the main text and combine it with the number of matrix-

vector operations to get the values of Tpoisson and THproj from Appendix B. To get Tpoisson

we note that if we have N occupied states and we use additional M virtual states, then the

total time for Fock preparation stage, Tprep fock, is:

Tprep fock =

(
N(N + 1)

2
+N ·M

)
Tpoisson (1)

We can also use the assumption N × TPoisson � THHartree to write the time of a single

diagonalization of the full operator, Tfull single diag as:

Tfull single diag ∼ P0 ×N ×N × Tpoisson (2)

With the combination of Eq. 1 and Eq. 2 we can estimate the full operator diagonaliza-

tion time direction from the Fock preparation time. This is shown in Figure:
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Figure 6: Additional timing information, diagonalization time for the full opearator (solid
blue line with asterisks) and the projected operator (dashed red line with circles). Fock
prepation time is shown with cyan diaomnds and a dashed-dotted line. The estimated full
diagonalization time (Eq. 2 with P0 = 15) is shown with black squares and a dashed line.
Tpoisson is shown with cyan stars and a dashed line. THproj is shown with red x symbols and
a dashed line.

Performance of the K̂ · P̂ representation

In this section we show the performance of the K̂ · P̂M representation. With ARPACK we

did not manage to get convergence - instead we get oscillations around the correct value ( We

show this later for H2), this makes sense as regular usage of ARPACK requires a Hermitian

operator and this representation is non-hermitian. With Chebyshev-Davidson we manage

to get convergence with this representation but it requires more orbital SCF iterations and
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hence more Fock preparation sycles. Although a single diagonalization is slightly faster,

there are also more diagonalizations that are required. Overall we get a roughly 1.5-2 times

slower calculation as a result of those factors.
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Figure 7: K̂ · P̂M comparison for the number of orbital SCF cycles. All calculations were
performed with the Chebyshev-Davidson eigensolver.

We demonstrate the lack of convergence of the ARPACK solver (for this non-hermitian

representation) in Figure 8.
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Figure 8: Comparison of the convergence of H2 HOMO for the K̂ · P̂ representation with
ARPACK (red circles) and Chebyshev-Davidson (blue asterisks). We use freely the term
”SCF cycle”, one can see that the Chebyshev-Davidson solver completed 4 outer SCF cycles
that converge, while ARPACK does not converge at all.
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