Supporting Information: Structural Analysis of the End-groups and Substructures of Commercial Poly (ethylene terephthalate) by Multiple-WET ¹H/ ¹³C-NMR Kimiko Tanaka, ^{†*} Muneki Oouchi, ^{‡*} Fumiaki Hayashi, [‡] Hideaki Maeda, [‡] Hiroshi Waki [†] [†]Mitsui Chemical Analysis & Consulting Service Inc. [‡]NMR Facility, Center for Life Science Technologies, RIKEN - **Table S1.** Chemical shifts and spin-lattice relaxation times T_I of PET solution. - Figure S1. MWET(n) 2D and 3D, IR pulse sequences. - **Figure S2.** The excitation profile for MWET(n) with n=10 points suppression at 900 MHz. - Figure S3. ¹H NMR spectrum of the 3% PET solution at 900 MHz. - Figure S4. MWET(7) ¹H NMR spectrum of the 3% PET solution at 900 MHz. - Figure S5. MWET(7) DQF-COSY spectrum of the 3% PET solution at 900 MHz. - Figure S6. MWET(7) TOCSY spectrum of the 3% PET solution at 900 MHz. - Figure S7. ¹³C NMR spectrum of the 10% PET solution at 150 MHz. - a) ¹H-decoupled ¹³C spectrum with NOE; b) ¹H-decoupled ¹³C spectrum without NOE. - Figure S8. DEPT-135 spectrum of the 10% PET solution at 150 MHz. - **Figure S9.** MWET(7) HSQC spectrum of the 3% PET solution at 900 MHz. - Figure S10. MWET(7) HSQC-TOCSY spectrum of the 3% PET solution at 900 MHz. - Figure S11. MWET(7) HMBC spectrum of the 3% PET solution at 900 MHz. - **Figure S12.** Stacked plot of ¹H Inversion Recovery data of the 3% PET solution at 900 MHz. - Figure S13. Stacked plot of MWET(7)-IR data of the 3% PET solution at 900 MHz. **Table S1.** Chemical shifts and spin-lattice relaxation times T_I of PET solution. | | | ¹ H Chemical shift δ _H | | 13 C Chemical shift $\delta_{\rm C}$ | | $T_I(^1\mathrm{H}) / \mathrm{s}$ | | |---------------------------------------|----|--|----------------|---|-------------|----------------------------------|-----------| | | • | in this work | in previous | | in previous | (3% | solution) | | | | (3% solution) | work*1 | (10% solution) | work *2 | IR | MWET-IR | | CHCl ₃ / CDCl ₃ | | 7.240 | | 77.00 | | | | | TA | а | 8.076 | | 129.99 | | 3.26 | | | | b | | | 133.60 | | | | | | c | | | 167.37 | 167.7 | | | | EG | d | 4.678 | 4.676 | 63.50 | 63.3 | 1.25 | | | End-EG | f | 4.450 | 4.470 | 66.90 | 66.6 | 1.24 | 1.23 | | | g | 3.990 | 3.967 | 61.22 | 60.9 | 1.09 | 1.11 | | | e | | | 167.89 | | | | | DEG | i | 4.489 | 4.492 | 64.65 | | 0.96 | 0.99 | | | j | 3.933 | 3.746 | 69.00 | | 1.01 | 1.03 | | | h | | | 167.57 | | | | | End-DEG | l | $(4.497)_{*2}^{*3}$ | 4.645 | (64.14)*3 | | | | | | m | $(3.854)^{*3}$ | 3.813 | $(68.85)^{*3}$ | | | | | | n | 3.662 | 3.645 | 71.84 | | | | | | 0 | 3.764 | 3.868 | 61.67 | | | | | TEG | q | $(4.457)^{*3}$ | 4.457 | (64.44)*3 | | | | | | r | 3.868 | 3.823 | $(69.21)^{*3}$ | | | | | | S | 3.749 | 3.700 | 70.25 | | | | | methyl ester | и | $(3.931)^{*3}$ | $(3.931)^{*4}$ | 52.96 | | | | | | t | | | 168.42 | | | | | vinyl | a | 5.157 | | 100.35 | | | 1.89 | | | b' | 4.815 | | 100.55 | | | 1.60 | | | c' | 7.336 | | 140.84 | | | 3.91 | | IA | d' | 8.659 | | 131.09 | | | 3.86 | | | f' | 8.223 | | 134.80 | | | 3.00 | | | g' | 7.550 | | 128.79 | | | 3.28 | ^{*1} Amiya, S.; Mathumura, K.; Taniguchi, T. Microstructure of Poly (ethylene terephthalate). *Anal. Sci.* **1991**, *7 Suppl.*, 1649–1650. ^{*2} Fox, B.; Moad, G.; van Diepen, G.; Willing, I.; Cook, W. D. Characterization of Poly(ethylene terephthalate) and Poly(ethylene terephthalate) Blends. *Polymer* **1997**, *38*, 3035–3043. ^{*3} overlapped. ^{*4} model compound by Amiya, S. et.al.*1 Figure S1. MWET(n) 2D and 3D, IR pulse sequences. **Figure S2.** The excitation profile for MWET(n) with n=10 points suppression (marked with green arrows (\rightarrow)) of the 3% PET solution at 900 MHz. Suppression points were taken at δ_H 8.08 (TA); 4.68 (EG); 5.62 (OH); 7.24 (chloroform); 8.39, 7.88 and 7.45 (pyridine); 4.50 and 3.93 (DEG); and 4.35 (HFIP-d₂). a) ¹H NMR spectrum; b) the excitation profile for MWET(10) recorded by 5 Hz step; c) spectrum of MWET(10). a) 16 scans, total experiment time: 7 min 30 sec. **Figure S3.** ¹H NMR spectrum of the 3% PET solution at 900 MHz with a cryogenic probe. 90° pulse, repetition time (AQ+D1): 25 s, DIGMOD: baseopt and DE: 55 μs. b) 128 scans, total experiment time: 54 min 14 sec. Figure S3. (Continued) **Figure S4.** MWET(7) 1 H NMR spectrum of the 3% PET solution with 7 points suppression at 900 MHz with a cryogenic probe. Suppression points were set at δ_{H} 8.08 (TA); 4.68 (EG); 5.62 (OH); 7.24 (chloroform); and 8.39, 7.88, and 7.45 (pyridine). 90° pulse, repetition time: 25 s, DIGMOD: baseopt, DE: 55 μ s 4.0 3.5 3.0 2.5 6.0 5.5 5.0 4.5 b) 128 scans, total experiment time: 54 min 31 sec. Figure S4. (Continued) **Figure S5.** MWET(7) DQF-COSY spectrum of the 3% PET solution with 7 points suppression as same as Figure S4 at 900 MHz. 32 scans, repetition time: 2.4 s, total experiment time: 7 h 41 min, spectral width SW: 12,594 (1 H) × 12,626 (1 H) Hz, acquired data points: 336 (t1) × 2,048(t2) and processed data points: 1,024 (F1) × 4,096 (F2), DIGMOD: baseopt, DE: 30 μ s. **Figure S6.** MWET(7) TOCSY spectrum of the 3% PET solution with 7 points suppression as same as Figure S4 at 900 MHz. 8 scans, repetition time: 2.3 s, total experiment time: 2 h 14 min, TOCSY (DIPSI2) mixing time: 140 ms, spectral width SW: 12,594 (1 H) × 12,626 (1 H) Hz, acquired data points: 384 (t1) × 2,048 (t2) and processed data points: 1,024 (F1) × 4,096 (F2) , DIGMOD: baseopt, DE: 30 μ s. a) ¹H-decoupled ¹³C spectrum with NOE. 100,000 scans, 30° pulse, repetition time: 2.7 s. total experiment time: 3 d 4 h 45 min, ¹H-decoupling: bi_waltz65_256*⁵. Baseline was corrected by Figure S7. ¹³C NMR spectrum of the 10% PET solution at 150 MHz with a cryogenic probe. b) ¹H-decoupled ¹³C spectrum without NOE. 42,200 scans, 30° pulse, repetition time: 5 s, AQ: 0.91 s, total experiment time: 2 d 11 h 3 min. ¹H-decoupling: waltz65, pre-decoupling time: 2 ms, maximum variation: 60%. Baseline was corrected by au-program "abs13c". Figure S7. (Continued) **Figure S8.** DEPT-135 spectrum of the 10% PET solution at 150 MHz. 4,096 scans, repetition time: 3.9 s. total experiment time: 4 h 32 min, ¹H-decoupling: bi_waltz65_64pl*⁵(7). Baseline was corrected by au-program "abs13c". *5: Zhou Z.; Kummerle R.; Qiu X.; Redwine D.; Cong R.; Taha A.; Baugh D.; Winniford B. A new decoupling method for accurate quantification of polyethylene copolymer composition and triad sequence distribution with ¹³C NMR *J.Magn.Reson.* 187 (2007) 225. **Figure S9.** MWET(7) HSQC spectrum of the 3% PET solution with 7 points suppression as same as Figure S4 at 900 MHz. 88 scans, repetition time: 2.5 s, total experiment time: 12 h 23 min, spectral width SW: 37,313 (13 C) × 14,423 (1 H) Hz, acquired data points: 192 (t1) × 2,048 (t2) and processed data points: 1,024 (F1) × 4,096 (F2), DIGMOD: baseopt, DE: 30 µs.. **Figure S10.** MWET(7) HSQC-TOCSY spectrum of the 3% PET solution with 7 points suppression as same as Figure S4 at 900 MHz. 128 scans, repetition time: 5.6 s, total experiment time: 1 d 16 h 12 min, TOCSY(DIPSI2) mixing time:140 ms, spectral width SW: 37,313 (13 C) × 14,423 (1 H) Hz, acquired data points: 192 (t1) × 2,048 (t2) and processed data points: 1,024 (F1) × 4,096 (F2) , DIGMOD: baseopt, DE: 30 µs.. **Figure S11.** MWET(7) HMBC spectrum of the 3% PET solution with 7 points suppression as same as Figure S4 at 900 MHz. 80 scans, repetition time: 2.9 s, total experiment time: 13 h 11 min, long range J_{CH} : 10Hz, spectral width SW: 50,000 (13 C) × 12,626 (1 H) Hz, acquired data points: 192 (t1) × 2,048 (t2) and processed data points: 1,024 (F1) × 2,048 (F2), DIGMOD: baseopt, DE: 30 μ s. **Figure S12.** Stacked plot of 1 H inversion recovery data of the 3% PET solution at 900 MHz. Interval times τ (top to bottom): 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 10, 12, 15 and 25 s, DIGMOD: baseopt, DE: 55 μ s. **Figure S13.** Stacked plot of MWET(7)-IR data of the 3% PET solution with 7 points suppression as same as Figure S4 at 900 MHz. Interval times τ (top to bottom): 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 10, 12, 15 and 25 s, DIGMOD: baseopt, DE: 55 μ s.