Supporting Information

Isomeric and isostructural oligothienylsilanes – structurally similar, physicochemically different – the effect of interplay between C–H...C(π), S...C(π) and chalcogen S...S interactions

Krzysztof Durka,^a Krzysztof Gontarczyk,^a Sergiusz Luliński^a, Janusz Serwatowski^a, Krzysztof Woźniak^b

^{*a*} Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warszawa, Poland

^b Chemistry Department, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland

Table of Contents

1.	Thermal analysis:	2
2.	Solubility studies	5
3.	Single-crystal X-ray diffraction analysis	6
4.	Theoretical calculations	14
5.	NMR spectra of cocrystals III + IV	22

1. Thermal analysis:

	mass / mg	$T_{\rm m}/{}^{\rm o}{\rm C}$	$T_{\rm o}/{}^{\rm o}{\rm C}$	$\Lambda H / J \cdot g^{-1}$	heating
	inass / ing	Im, C	10, 0	211/05	cycle
т	4.27	28.6	-24	-61.8	first
1	4.27	17.2		-56.7	second
п	2.28	71.3	23.0	-72.9	first
11	5.50	71.4		-74.1	second
ш	2.44	131.5	67.1	-74.6	first
111	2.44	131.8	69.8	-74.8	second
W	1 16	221.4	152.2	-81.1	first
1 V	4.40	221.2	152.1	-81.0	second
III+IV	0.94	180-210	131.4	77.7	first

Table S1. The summary of DSC measurements for selected compounds. Melting points (T_m) , crystallization temperatures (T_c) and enthalpy (ΔH) .

^exo

Figure S2. DSC curve of II.

Figure S3. DSC curve of III.

Figure S4. DSC curve of IV.

Figure S5. DSC curve of cocrystal III + IV.

2. Solubility studies.

Table S2. Solid-liquid equilibria (SLE) for binary mixtures of **III** and **IV** with toluene, thiophene and 1,4-dioxane determined by a dynamic method in the temperature range of 293-363 K. *x* stands for the molar fraction.

III + toluene		IV +	toluene	III +		IV +		III +	1,4-	IV + 1,4-		
				thiop	hene	thiop	hene	dioxa	ine	dioxa	ne	
T/	x	T/	x	T/	x	T/	x	T/	x	T/	x	
°C		°C		°C		°C		°C		°C		
56.6	0.09985	96.6	0.02896	47.1	0.10799	88.8	0.03956	67.7	0.19015	92.5	0.04011	
53.8	0.08854	95.4	0.02795	42.0	0.09342	86.5	0.03657	58.2	0.14652	90.5	0.03798	
50.4	0.07873	94.2	0.02694	38.7	0.08669	83.5	0.03346	44.2	0.09858	88.6	0.03580	
46.7	0.06908	93.2	0.02593	37.2	0.08309	80.5	0.03057	39.3	0.08537	86.7	0.03388	
42.4	0.05932	92.0	0.02486	32.3	0.07116	77.5	0.02759	36.1	0.07729	85.2	0.03204	
36.8	0.04928	91.0	0.02384	28.3	0.06264	74.6	0.02473	33.3	0.07077	83.6	0.02993	
34.4	0.04477	89.8	0.02282	25.7	0.05793	71.4	0.02174	30.1	0.06411	81.8	0.02790	
31.6	0.03959	88.6	0.02177	23.3	0.05347	67.1	0.01875	27.6	0.05911	79.7	0.02560	
27.9	0.03475	87.4	0.02071	20.4	0.04828	61.9	0.01581	24.4	0.05367	77.2	0.02396	
23.4	0.02951	86.2	0.01968	18.2	0.04513	56.8	0.01287	20.9	0.04792	74.5	0.02212	
18.5	0.02448	85.0	0.01865			50.2	0.00991	18.0	0.04364	71.8	0.02001	
12.5	0.01984	83.8	0.01761			44.5	0.00791			69.0	0.01793	
										65.4	0.01600	

3. Single-crystal X-ray diffraction analysis

320

11.334(1)

6.532(1)

839.0(1)

11.360(1)

6.479(1)

836.1(1)

Table S3. Unit-cell parameters for **III** and **IV** measured in the temperature range 100 - 320 K.

II_S2

Figure S5. Difference-Fourier map in the thienyl ring planes generated for I and II. Map was prepared with MAPVIEW program within WinGX (L. J. Farrugia, *J. Appl. Cryst.* **1999**, *32*, 837–838).

	Dimer	Conformation	Groups involved in interaction	Interactions	d_{HA} / Å	$d_{ m D-H}$ / Å	d_{DA} / Å	$ heta_{ ext{D-HA}}$ / °
Ι	D1	S1S2S3	62 67	C10A-H10AC8A	2.742	1 020	3.784	162.05
			55 - 52	C10A-H10AS2A	2.743	- 1.080	3.735	152.49
			S2 - S1	S2AC4	-	-	3.497	-
		S1S2*S3		C10A-H10AC6B	2.762		3.737	149.78
			S3 - S2*	C10A-H10AC7B	2.702	1.083	3.776	171.33
				C10A-H10AC8B	2.878	=	3.811	144.31
			C2* C1	С6В-Н6ВС3	2.832	1.002	3.696	136.82
			52" - 51	C6B-H6BC4	2.898	- 1.082	3.897	153.52
		S1S2S3*	G34 G3	S3BC5	-	-	3.426	-
			53 * - 5 2	S3BS2A	-	-	3.593	-
			S2 - S1	S2AC4	-	-	3.568	-
		S1S2*S3*	034 034	S3BC5	-	-	3.458	-
			55* - 52*	S3BC6B	-	-	3.425	-
			C3+ C1	C6B-H6BC3	2.816	1.070	3.666	135.64
			52" - 51	C6B-H6BC4	2.855	1.079	3.857	154.45
	D2	S1S2S3		C4-H4C1	2.838		3.812	150.43
				C4-H4C2	2.735	-	3.776	162.66
			S1 - S1	C4-H4C3	2.653	1.076	3.677	158.85
				C4-H4C4	2.694	-	3.640	146.45
				C4-H4S1	2.900	-	3.775	138.56
		S1S2*S3		C4-H4C1	2.843		3.814	149.38
				C4-H4C2	2.735	-	3.792	165.50
			S1 - S1	C4-H4C3	2.657	1.082	3.691	159.84
				C4-H4C4	2.700	-	3.633	144.18
				C4-H4S1	2.904	_	3.757	135.90
		S1S2S3*		C4-H4C1	2.862		3.820	148.09
			Q1 Q1	C4-H4C2	2.749	1.079	3.782	160.59
			<u> </u>			- 10/8	2 (161 16
			51 51	C4-H4C3	2.638	1.070	3.675	161.16

Table S4. Geometrical parameters for intermolecular interactions in studied systems. d - distance; θ - angle.

					_		
			C4-H4S1	2.913		3.792	138.82
	S1S2*S3*		C4-H4C1	2.844	_	3.813	149.60
			C4-H4C2	2.733	_	3.779	163.51
		S1 - S1	C4-H4C3	2.663	1.078	3.693	159.84
			C4-H4C4	2.704		3.647	145.89
			C4-H4S1	2.902		3.766	137.30
D3	S1S2S3	63 63	C8A-H8AC8A	2.893	1 090	3.937	162.78
		52 - 52	С8А-Н8АС7А	2.805	- 1.080	3.862	166.25
		S1 – S2	C2- H2S2A	2.868	1.078	3.693	133.42
	S1S2*S3	S2*-S2*	C7B-H7BC8B	2.910	1.083	3.948	160.62
	S1S2S3*	63 63	C8A-H8AC8A	2.831	1 092	3.873	161.82
		52 - 52	С8А-Н8АС7А	2.779	- 1.062	3.839	166.45
		S1 – S2	C2- H2S2A	2.768	1.079	3.577	131.60
	S1S2*S3*	S2*-S2*	С7В-Н7ВС8В	2.902	1.084	3.949	162.23
D4	S1S2S3	63 63	C11A-	2 827	1.083	3 701	137 70
		33 - 33	H11AC12A	2.021	1.005	5.701	137.77
	S1S2*S3	\$3 _ \$3	C11A-	2 803	1.082	3 679	137 99
		55 - 55	H11AC12A	2.005	1.002	5.017	137.77
	S1S2S3*		C12B-	2 780		3 582	131 27
		S3* - S3*	H12BC10B	2.700	- 1 076	5.502	1,71,27
		50 50	C12B-	2 464	1.070	3 476	156 36
			H12BC11B	2.101		5.170	100.00
	S1S2*S3*		C12B-	2.757		3.579	133.06
		S3* - S3*	H12BC10B	2.707	- 1.077	5.617	155.00
		50 50	C12B-	2 445	1.077	3 464	157 51
			H12BC11B	2.110		5.101	107.01
D5	S1S2S3	$CH_3 - S3$	C13-H13BC12A	2.671	1.091	3.741	166.38
	S1S2*S3	$CH_3 - S3$	C13-H13BC12A	2.691	1.083	3.759	168.86
	S1S2S3*	CH ₂ – S3*	C13-H13BC11B	2.791	- 1 090	3.870	170.53
		C113 – 55	C13-H13BC12B	2.764	1.070	3.809	160.42
	S1S2*S3*	CH \$3*	C13-H13BC11B	2.850	- 1.090	3.926	169.03
		CH3 - 35	C13-H13BC12B	2.800	1.070	3.847	160.72
D1	S1S2S3	\$1 _ \$2	C3-H3S2	2.753	- 1.081	3.638	139.01
		51 - 52	С3-Н3С8	2.871	1.001	3.774	141.19

				C10-H10 C2	2 748		3 650	141 15
			S3 – S1	<u>C10-H10 C3</u>	2.618	1 078	3 667	164 36
			50 51	C10-H10 C4	2.905		3 792	139.77
	D2	S1S2S3		C1-H1 C8	2.690		3 636	146.14
			S1 - S2	C1-H1 C7	2 906	- 1.079	3 939	160.41
				C8-H8S3	2.918		3.746	136.87
			S2 - S3	C8-H8C10	2.888	- 1.076	3.803	139.72
	D3	S1S2S3	S2 - S2	C4-H4C4	2.947	1.079	3.994	163.52
	D5	S1S2S3		C11-H11C9	2.862		3.798	157.33
			S3 – S3	C11-H11C10	2.780	1.079	3.915	165.34
				C11-H11C12	2.947	_	3.893	146.69
	D6	S1S2S3	S1 – S2	S1S2	-	-	3.550	-
III	D1	S1S2S3S4	61 61	S1C4	-	-	3.616	-
			51 - 51	S1S1	-	-	3.696	-
		S1*S2S3S4	614 62	C2-H2S3	2.909	1.092	3.758	135.46
			51* - 53	С2-Н2С12	2.723	- 1.082	3.787	167.42
				S3S4	-	-	3.668	-
			62 64	S3C14	-	-	3.574	-
			55 - 54	S3C15	-	-	3.567	-
				S3C16	-	-	3.589	-
				S4S2	-	-	3.668	-
			SA S7	S4C6	-	-	3.589	-
			54 - 52	S4C7	-	-	3.567	-
				S4C8	-	-	3.574	-
				S2S1	-	-	3.632	-
			S2 – S1*	S2C2	-	-	3.541	-
			52 51	S2C3	-	-	3.506	-
				S2C4	-	-	3.502	-
		S1*S2*S3S4	S1* - S3	C2-H2S3	2.909	- 1.082	3.758	135.46
			~• ~~	C2-H2C12	2.723	1.002	3.787	167.42
				<u>\$3\$4</u>	-	-	3.668	-
			S4 – S2*	<u>S3C14</u>	-	-	3.574	-
			~ ~	<u>S3C15</u>	-	-	3.567	-
				S3C16	-	-	3.589	-

			C14-H14C6	2.823	3.769		132.65
		$S2^{*} - S1^{*}$	C14-H14C7	2.622	3.669	1.082	162.67
			C14-H14C8	2.776	3.644		152.36
			S2S1	-	-	3.668	-
		62 64	S2C2	-	-	3.567	-
		55 - 54	S2C3	-	-	3.589	-
			S2C4	-	-	3.574	-
	S1*S2*S3*S4	Q1* Q2*	C2-H2S3	2.909	1 092	3.758	135.46
		51" - 55"	C2-H2C12	2.723	- 1.082	3.787	167.42
		S2* S4	C10-H10S4	2.823	1 092	3.769	132.65
		55" - 54	C10-H10C15	2.622	- 1.082	3.669	162.67
			S4S2	-	-	3.632	-
		S4 S7*	S4C6	-	-	3.541	-
		54 - 52"	S4C7	-	-	3.506	-
			S4C8	-	-	3.502	-
		\$7* \$1*	C6-H6S1	2.901	1.082	3.751	135.12
		52 ~ 51	С6-Н6С4	2.727	- 1.082	3.793	167.03
	S1*S2*S3*S4*		C1-H1C2	2.9658		3.6881	124.56
		S1* – S1*	C1-H1C1	2.622	1.081	3.515	139.52
			C1-H1S1	2.680		3.761	177.77
D2	S1S2S3S4	S1 S1	C4-H4C3	2.612	- 1.081	3.668	165.41
		51 - 51	C4-H4C4	2.741	1.001	3.783	161.65
	S1*S2S3S4	S1* - S3	C3-H3C12	2.796	1.080	3.783	161.65
		S3 - S1*	C12-H12C4	2.663	1.081	3.728	168.43
		S4 - S2	C16-H16C7	2.612	- 1.081	3.668	165.41
			C16-H16C8	2.741	1.001	3.782	161.65
		\$2 \$4	С8-Н8С15	2.612	- 1.081	3.668	165.41
		52 - 54	C8-H8C16	2.741	1.001	3.782	161.65
	S1*S2*S3S4	S1* - S3	C3-H3C12	2.796	1.080	3.813	156.89
		S3 - S1*	C12-H12C4	2.663	1.081	3.728	168.43
		$S4 - S2^{*}$	C16-H16C8	2.663	1.081	3.728	168.43
		S2*-S4	C8-H8C16	2.796	1.080	3.813	156.89
	S1*S2*S3*S4	S 1* - S 3*	C3-H3C12	2.882	1.080	3.937	165.62
		S3* - S1*	С12-Н12С3	2.882	1.080	3.937	165.62

			S4 – S2*	C16-H16C8	2.663	1.080	3.728	168.43
			S2*-S4	С7-Н7С16	2.796	1.080	3.813	156.89
		S1*S2*S3*S4*	S1* - S1*	С3-Н3С3	2.882	1.080	3.937	165.62
IV	D1	S1S2S3S4	C1 C1	С3-Н3С3	2.652	1 097	3.678	156.93
			51 - 51	C3-H3S1	2.841	- 1.067	3.774	143.82
		S1*S2S3S4	S1* S7	C1-H1C8	2.725	_ 1.083	3.713	151.58
			51" - 52	C1-H1S2	2.860	- 1.085	3.831	149.32
			S7 S4	С7-Н7С16	2.653	_ 1.087	3.678	156.94
			52 - 54	C7-H7S4	2.841	1.007	3.774	143.82
			SA S3	C15-H15C12	2.653	_ 1.087	3.678	156.94
			54 - 55	C15-H15S3	2.841	1.007	3.774	143.82
			62 61*	C11-H11C4	2.729	1 087	3.598	136.68
			55-51	C11-H11S1	2.584	1.007	3.645	164.86
		S1*S2*S3S4	S1* S7*	C1-H1C8	2.648	- 1.083	3.657	141.79
			51 - 52	C1-H1S2	2.744	1.085	3.682	159.72
			\$2* _ \$1	C5-H5C16	2.725	- 1.083	3.713	151.58
			52 - 54	C5-H5S4	2.860	1.085	3.831	149.32
			SA S3	C15-H15C12	2.653	- 1.087	3.678	156.94
			54 - 55	C15-H15S3	2.841	1.007	3.774	143.82
			S3_ S1*	C11-H11C4	2.729	- 1.087	3.598	136.68
			55-51	C11-H11S1	2.584	1.007	3.645	164.86
		S1*S2*S3*S4	S1* <u>-</u> S2*	C1-H1C8	2.648	- 1.083	3.657	141.79
			51 - 52	C1-H1S2	2.744	1.005	3.682	159.72
			S2* _ S 4	С5-Н5С16	2.725	- 1.083	3.713	151.58
			52 54	C5-H5S4	2.860	1.005	3.831	149.32
			<u>84 - 83</u>	C15-H15C12	2.584	- 1.087	3.598	136.68
			54 55	C15-H15S3	2.728	1.007	3.645	164.87
			S3- S1*	С9-Н9С4	2.744	- 1.083	3.682	141.79
			50 51	C9-H9S1	2.648	1.005	3.657	159.72
		S1*S2*S3*S4*	S1* – S1*	C1-H1C3	2.744	- 1.083	3.660	141.79
-			SI SI	C1-H1S1	2.648	1.005	3.682	159.72
	D2	S1S2S3S4	S1 – S1	C4-H4C4	2.744	- 1 078	3.781	161.23
				C4-H4S1	2.982	1.070	3.752	128.70
		S1*S2S3S4	S1*- S2	S1S2	-	-	3.416	-

			S1C8	-	-	3.571	-
		S2 - S1*	C8-H8S1	2.877	1.078	3.874	153.82
		64 62	С16-Н16С9	2.744	1.079	3.781	161.23
		54 - 53	C16-H16S3	2.982	- 1.078	3.752	128.70
		62 64	C12-H12C16	2.744	1.079	3.781	161.23
		53 - 54	C12-H12S4	2.982	- 1.078	3.752	128.70
	S1*S2*S3S4	C1* C7*	S1S2	-	-	3.638	-
		51"- 52"	S1C8	-	-	3.545	-
		S7* S1*	S2S1	-	-	3.638	-
		52" - 51"	S2C4	-	-	3.545	-
		S4 S2	С16-Н16С9	2.744	1.078	3.781	161.23
		54 - 55	C16-H16S3	2.982		3.752	128.70
		62 64	C12-H12C16	2.744	1.078	3.781	161.23
		55 - 54	C12-H12S4	2.982		3.752	128.70
	S1*S2*S3*S4	S1* S7*	S1S2	-	-	3.638	-
		51~- 52~	S1C8	-	-	3.545	-
		S7* S1*	S2S1	-	-	3.638	-
		52 - 51	S2C4	-	-	3.545	-
		64 62*	C16-H16C9	2.877	3.958	- 1.079	165.09
		54 - 55"	C16-H16S3	2.906	3.874	1.078	153.82
		C2+ C4	S2S4	-	-	3.416	-
		55" - 54	S3C16	-	-	3.571	-
	S1*S2*S3*S4*	Q1* Q1*	S1C4	-	-	3.752	-
		51" - 51*	S1S1	-	-	3.545	-
)	S1S2S3S4	S1 – S1	S1S1	-	-	3.541	-
	S1*S2S3S4	S1* - S4	C4-H4S4	2.862	1.084	3.781	142.67
		S2 - S3	S2S3	-	-	3.541	-

4. Theoretical calculations

Figure S6. Overlay of molecular geometries taken from crystal structures with standardized X-H (blue) distances and geometries optimized with *CRYSTAL09* program (red). Note that in the case of structures derived from atomic positions with higher occupancy factors (III_S1S2S3S4 and IV_S1S2S3S4), the differences between experimental and optimized geometries are very small, while in the case of III_S1*S2*S3*S4* and IV_S1*S2*S3*S4* the differences are much more pronounced.

Table S5. The positions of symmetrically non-equivalent atoms obtained from CRYSTAL09 optimisation of I and II. Unit cell parameters were constrained during optimisation procedure (I: a = 15.1565 Å, b = 27.9888 Å, c = 6.6148 Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$; Space group: *Pccn*; II: a = 9.2813 Å, b = 28.5568 Å, c = 6.5767 Å, $\alpha = 90^{\circ}$, $\beta = 125.384^{\circ}$, $\gamma = 90^{\circ}$; Space group: *Cc*).

	Ι													II		
Atom	S1S2S3	5		S1S2*S3		S1S2S3*		S1S2*S	3*		Atom	S1S2S3	;			
2110111	X	Y	Ζ	X	Y	Ζ	X	Y	Ζ	X	Y	Ζ	110m	X	Y	Ζ
Si	0.4955	-0.3930	0.2354	0.4955	-0.3930	0.2354	0.4955	-0.3930	0.2354	0.4955	-0.3930	0.2354	Si1	0.3365	-0.1403	0.4826
S 1	0.3354	-0.3835	-0.4517	0.3364	-0.3827	-0.4572	0.3365	-0.3831	-0.4488	0.3356	-0.3832	-0.4524	S1	-0.3237	-0.0457	0.1187
S2	-0.4839	-0.3114	-0.1016	-0.3340	-0.3443	0.0859	-0.4848	-0.3071	-0.0801	-0.3286	-0.3404	0.0911	S2	-0.0069	-0.1974	-0.3160
S3	-0.3902	-0.4843	0.3568	-0.3907	-0.4828	0.3577	-0.3925	-0.4048	-0.3619	-0.3899	-0.4034	-0.3690	S3	-0.0326	-0.0515	-0.1618
C1	0.4173	-0.3576	0.3925	0.4173	-0.3576	0.3925	0.4173	-0.3576	0.3925	0.4173	-0.3576	0.3925	C1	-0.4831	-0.0628	-0.1902
C2	0.4141	-0.3084	0.4127	0.4141	-0.3084	0.4127	0.4141	-0.3084	0.4127	0.4141	-0.3084	0.4127	C2	0.4978	-0.1100	-0.2169

C3	0.3477	-0.2917	-0.4532	0.3467	-0.2922	-0.4541	0.3478	-0.2916	-0.4535	0.3484	-0.2918	-0.4511	C3	-0.3875	-0.1335	0.0167
C4	0.3002	-0.3273	-0.3673	0.2996	-0.3285	-0.3730	0.3013	-0.3273	-0.3646	0.3007	-0.3276	-0.3660	C4	-0.2846	-0.1046	0.2126
C5	-0.4394	-0.3490	0.0864	-0.4394	-0.3490	0.0864	-0.4394	-0.3490	0.0864	-0.4394	-0.3490	0.0864	C5	0.1544	-0.1622	-0.3001
C6	-0.3465	-0.3436	0.0889	-0.4804	-0.3158	-0.0730	-0.3465	-0.3436	0.0889	-0.4804	-0.3158	-0.0730	C6	0.1727	-0.1714	-0.4868
C7	-0.3153	-0.3090	-0.0492	-0.4124	-0.2885	-0.1667	-0.3154	-0.3081	-0.0458	-0.4145	-0.2886	-0.1671	C7	0.0537	-0.2081	0.3506
C8	-0.3799	-0.2881	-0.1617	-0.3334	-0.3001	-0.0953	-0.3809	-0.2860	-0.1511	-0.3315	-0.2976	-0.0977	C8	-0.0486	-0.2257	0.4171
C9	-0.4277	-0.4257	0.4047	-0.4277	-0.4257	0.4047	-0.4277	-0.4257	0.4047	-0.4277	-0.4257	0.4047	C9	0.2198	-0.0968	0.2242
C10	-0.3880	-0.4088	-0.4186	-0.3880	-0.4088	-0.4186	-0.3922	-0.4705	0.3652	-0.3922	-0.4705	0.3652	C10	0.0406	-0.0931	0.0744
C11	-0.3305	-0.4418	-0.3253	-0.3294	-0.4419	-0.3246	-0.3354	-0.4868	-0.4793	-0.3341	-0.4861	-0.4803	C11	0.1861	-0.0397	-0.0550
C12	-0.3232	-0.4837	-0.4282	-0.3244	-0.4834	-0.4316	-0.3273	-0.4551	-0.3245	-0.3263	-0.4539	-0.3274	C12	0.3018	-0.0660	0.1481
C13	0.4371	-0.4350	0.0632	0.4375	-0.4347	0.0631	0.4376	-0.4361	0.0667	0.4373	-0.4356	0.0650	C13	0.4550	-0.1827	0.4103
H2	0.4596	-0.2852	0.3346	0.4587	-0.2845	0.3344	0.4607	-0.2853	0.3374	0.4580	-0.2847	0.3320	H1	0.4460	-0.0360	-0.3299
H3	0.3358	-0.2544	-0.4206	0.3344	-0.2549	-0.4212	0.3363	-0.2543	-0.4204	0.3366	-0.2544	-0.4189	H3	-0.3782	-0.1712	0.0376
H4	0.2470	-0.3248	-0.2598	0.2456	-0.3243	-0.2674	0.2494	-0.3243	-0.2540	0.4021	-0.4627	0.1516	H4	-0.1840	-0.1134	0.4038
H6	-0.3045	-0.3645	0.1867	0.4501	-0.3141	-0.1098	-0.3041	-0.3656	0.1815	0.4501	-0.3150	-0.1088	H5	0.2229	-0.1365	-0.1539
H7	-0.2463	-0.2997	-0.0658	-0.4237	-0.2620	-0.2830	-0.2464	-0.2993	-0.0642	-0.4267	-0.2634	-0.2884	H7	0.0447	-0.2199	0.1874
H8	-0.3737	-0.2613	-0.2778	-0.2729	-0.2833	-0.1452	-0.3742	-0.2596	-0.2694	-0.2713	-0.2821	-0.1522	H8	0.3527	0.2472	0.3264
H10	-0.4004	-0.3736	-0.3590	-0.4007	-0.3736	-0.3579	-0.4067	-0.4909	0.2307	-0.4071	-0.4912	0.2317	H10	-0.0554	-0.1111	0.0885
H11	-0.2960	-0.4351	-0.1847	-0.2938	-0.4351	-0.1857	-0.3009	0.4794	-0.4825	-0.2986	0.4804	-0.4829	H11	0.2119	-0.0155	-0.1563
H12	-0.2831	0.4858	-0.3913	-0.2835	0.4865	-0.3902	-0.2883	-0.4586	-0.1894	-0.2862	-0.4571	-0.1940	H12	0.4428	-0.0644	0.2384
H13A	0.3914	-0.4157	-0.0351	0.3931	-0.4148	-0.0336	0.3894	-0.4177	-0.0277	0.3910	-0.4167	-0.0321	H13A	-0.4579	-0.2058	-0.4330
H13B	0.3996	-0.4617	0.1470	0.4002	-0.4603	0.1512	0.4043	-0.4638	0.1537	0.2472	-0.3243	-0.2596	H13B	-0.4650	-0.1639	0.3643
H13C	0.4840	-0.4531	-0.0359	0.4854	-0.4535	-0.0290	0.4853	-0.4529	-0.0340	0.4854	-0.4532	-0.0323	H13C	0.3621	-0.2042	0.2490

Table S6. The positions of symmetrically non-equivalent atoms obtained from CRYSTAL09 optimisation of **III**. Unit cell parameters were constrained during optimisation procedure (a = 11.2609 Å, b = 11.2609 Å, c = 6.3487 Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$; Space group: **S1S2S3S4**, **S1*S2*S3*S4***: *P*-42₁*c*; **S1*S2S3S4**, **S1*S2*S3*S4**: *P*2₁).

	S1S2S3S4		S1*S2S3S4			S1*S2*S3S4			S1*S2*S3*S4			S1*S2*S3*S4*			
Atom	X	Y	Ζ	X	Y	Ζ	X	Y	Ζ	X	Y	Ζ	X	Y	Ζ
Si1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
S1	0.1216	0.1599	0.3587	0.0786	-0.2552	0.1410	0.0786	-0.2552	0.1410	0.0786	-0.2552	0.1410	-0.0786	0.2552	0.1410
C1	0.0126	0.1374	0.1620	-0.0180	-0.1328	0.1703	-0.0180	-0.1328	0.1703	-0.0180	-0.1328	0.1703	0.0180	0.1328	0.1703
C2	-0.0580	0.2358	0.1482	-0.0981	-0.1547	0.3279	-0.0981	-0.1547	0.3279	-0.0981	-0.1547	0.3279	0.0856	0.2682	0.4245
C3	-0.0272	0.3294	0.2887	0.0053	-0.3323	0.3411	0.0053	-0.3323	0.3411	-0.0856	-0.2682	0.4245	-0.0053	0.3323	0.3411
C4	0.0681	0.3027	0.4116	-0.0856	-0.2682	0.4245	-0.0856	-0.2682	0.4245	0.0053	-0.3323	0.3411	0.0981	0.1547	0.3279
H2	-0.1317	0.2411	0.0394	-0.1632	-0.0899	0.3783	-0.1632	-0.0899	0.3783	-0.1632	-0.0899	0.3783	0.1632	0.0899	0.3783

H3	-0.0745	0.4130	0.2974	-0.1399	-0.2989	0.5538	-0.1399	-0.2989	0.5538	-0.1399	-0.2989	0.5538	0.1399	0.2989	-0.4462
H4	0.1097	0.3568	-0.4686	0.0380	-0.4181	0.3881	0.0380	-0.4181	0.3881	0.0380	-0.4181	0.3881	-0.0380	0.4181	0.3881
S2				0.1216	0.1599	0.3587	0.2552	0.0786	-0.1410	0.2552	0.0786	-0.1410			
C5				0.0126	0.1374	0.1620	0.1328	-0.0180	-0.1703	0.1328	-0.0180	-0.1703			
C6				-0.0580	0.2358	0.1482	0.1547	-0.0981	-0.3279	0.1547	-0.0981	-0.3279			
C7				-0.0272	0.3294	0.2887	0.2682	-0.0856	-0.4245	0.2682	-0.0856	-0.4245			
C8				0.0681	0.3027	0.4116	0.3323	0.0053	-0.3411	0.3323	0.0053	-0.3411			
H6				-0.1317	0.2411	0.0394	0.0899	-0.1632	-0.3783	0.0899	-0.1632	-0.3783			
H7				-0.0745	0.4130	0.2974	0.2989	-0.1399	-0.5538	0.2989	-0.1399	-0.5538			
H8				0.1097	0.3568	0.5314	0.4181	0.0380	-0.3881	0.4181	0.0380	-0.3881			
S3				0.1374	-0.0126	-0.1620	0.1216	0.1599	0.3587	-0.2552	-0.0786	-0.1410			
C9				0.1599	-0.1216	-0.3587	0.0126	0.1374	0.1620	-0.1328	0.0180	-0.1703			
C10				0.2358	0.0580	-0.1482	-0.0580	0.2358	0.1482	-0.1547	0.0981	-0.3279			
C11				0.3294	0.0272	-0.2887	-0.0272	0.3294	0.2887	-0.2682	0.0856	-0.4245			
C12				0.3027	-0.0681	-0.4116	0.0681	0.3027	0.4116	-0.3323	-0.0053	-0.3411			
H10				0.2411	0.1317	-0.0394	-0.1317	0.2411	0.0394	-0.0899	0.1632	-0.3783			
H11				0.4130	0.0745	-0.2974	-0.0745	0.4130	0.2974	-0.2989	0.1399	-0.5538			
H12				0.3568	-0.1097	-0.5314	0.1097	0.3568	0.5314	-0.4181	-0.0380	-0.3881			
S4				-0.1599	0.1216	-0.3587	-0.1599	0.1216	-0.3587	0.1216	0.1599	0.3587			
C13				-0.1374	0.0126	-0.1620	-0.1374	0.0126	-0.1620	0.0126	0.1374	0.1620			
C14				-0.2358	-0.0580	-0.1482	-0.2358	-0.0580	-0.1482	-0.0580	0.2358	0.1482			
C15				-0.3027	0.0681	-0.4116	-0.3294	-0.0272	-0.2887	-0.0272	0.3294	0.2887			
C16				-0.3294	-0.0272	-0.2887	-0.3027	0.0681	-0.4116	0.0681	0.3027	0.4116			
H14				-0.2411	-0.1317	-0.0394	-0.2411	-0.1317	-0.0394	-0.1317	0.2411	0.0394			
H15				-0.4130	-0.0745	-0.2974	-0.4130	-0.0745	-0.2974	-0.0745	0.4130	0.2974			
H16				-0.3568	0.1097	-0.5314	-0.3568	0.1097	-0.5314	0.1097	0.3568	0.5314			

Table S7. The positions of symmetrically non-equivalent atoms obtained from CRYSTAL09 optimisation of **IV**. Unit cell parameters were constrained during optimisation procedure (a = 11.3206 Å, b = 11.3206 Å, c = 6.3023 Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$; Space group: **S1S2S3S4**, **S1*S2*S3*S4***: *P*-42₁*c*; **S1*S2S3S4**, **S1*S2*S3*S4**: *P*2₁).

Atom	\$1\$2\$3\$4			S1*S2S3S4			S1*S2*S3S4			S1*S2*S3*S4			S1*S2*S3*S4*		
/	X	Y	Ζ	X	Y	Ζ	X	Y	Ζ	X	Y	Ζ	X	Y	Ζ
Si1	0.0000	0.0000	0.0000	0.2500	0.0000	0.2500	0.2500	0.0000	0.2500	0.2500	0.0000	0.2500	0.0000	0.0000	0.0000
S1	-0.0525	0.3384	0.3399	0.3601	-0.2763	0.7052	0.3601	-0.2763	0.7052	0.3601	-0.2763	0.7052	-0.0802	0.2908	0.4455
C1	0.0070	0.2373	0.1570	0.3642	-0.1420	0.5676	0.3642	-0.1420	0.5676	0.3642	-0.1420	0.5676	-0.0869	0.1499	0.3288
C2	-0.0443	0.1282	0.1694	0.2782	-0.1329	0.4168	0.2782	-0.1329	0.4168	0.2782	-0.1329	0.4168	-0.0082	0.1367	0.1675
C3	-0.1340	0.1243	0.3303	0.2061	-0.2382	0.4128	0.2061	-0.2382	0.4128	0.2061	-0.2382	0.4128	0.0607	0.2424	0.1364
C4	-0.1499	0.2283	0.4339	0.2378	-0.3223	0.5547	0.2378	-0.3223	0.5547	0.2378	-0.3223	0.5547	0.0338	0.3318	0.2706

H1	0.0782	0.2653	0.0545	0.4302	-0.0774	0.6125	0.4302	-0.0774	0.6125	0.4302	-0.0774	0.6125	-0.1475	0.0855	0.3935
H3	-0.1825	0.0445	0.3696	0.1317	-0.2487	0.3068	0.1317	-0.2487	0.3068	0.1317	-0.2487	0.3068	0.1284	0.2500	0.0164
H4	-0.2086	0.2482	-0.4362	0.1963	-0.4069	0.5852	0.1963	-0.4069	0.5852	0.1963	-0.4069	0.5852	0.0734	0.4187	0.2809
S2				0.2391	0.3440	0.5805	0.5263	0.1101	-0.2052	0.5263	0.1101	-0.2052			
C5				0.2867	0.2344	0.4024	0.3920	0.1142	-0.0676	0.3920	0.1142	-0.0676			
C6				0.2218	0.1329	0.4168	0.3829	0.0282	0.0832	0.3829	0.0282	0.0832			
C7				0.1315	0.1424	0.5750	0.4882	-0.0439	0.0873	0.4882	-0.0439	0.0873			
C8				0.1285	0.2480	0.6768	0.5723	-0.0122	-0.0547	0.5723	-0.0122	-0.0547			
H5				0.3611	0.2529	0.3004	0.3274	0.1802	-0.1125	0.3274	0.1802	-0.1125			
H7				0.0733	0.0696	0.6159	0.4987	-0.1183	0.1932	0.4987	-0.1183	0.1932			
H8				0.0725	0.2757	0.8059	0.6569	-0.0537	-0.0852	0.6569	-0.0537	-0.0852			
S3				0.5940	0.0109	-0.0805	0.2391	0.3440	0.5805	-0.0263	-0.1101	-0.2052			
C9				0.4844	-0.0367	0.0976	0.2867	0.2344	0.4024	0.1080	-0.1142	-0.0676			
C10				0.3829	0.0282	0.0832	0.2218	0.1329	0.4168	0.1171	-0.0282	0.0832			
C11				0.3924	0.1185	-0.0750	0.1315	0.1424	0.5750	0.0118	0.0439	0.0873			
C12				0.4980	0.1215	-0.1768	0.1285	0.2480	0.6768	-0.0723	0.0122	-0.0547			
H9				0.5029	-0.1111	0.1996	0.3611	0.2529	0.3004	0.1726	-0.1802	-0.1125			
H11				0.3196	0.1767	-0.1159	0.0733	0.0696	0.6159	0.0013	0.1183	0.1932			
H12				0.5257	0.1776	-0.3059	0.0725	0.2757	0.8059	-0.1569	0.0537	-0.0852			
S4				-0.0940	-0.0109	-0.0805	-0.0940	-0.0109	-0.0805	0.2391	0.3440	0.5805			
C13				0.0156	0.0367	0.0976	0.0156	0.0367	0.0976	0.2867	0.2344	0.4024			
C14				0.1171	-0.0282	0.0832	0.1171	-0.0282	0.0832	0.2218	0.1329	0.4168			
C15				0.1076	-0.1185	-0.0750	0.1076	-0.1185	-0.0750	0.1315	0.1424	0.5750			
C16				0.0020	-0.1215	-0.1768	0.0020	-0.1215	-0.1768	0.1285	0.2480	0.6768			
H13				-0.0029	0.1111	0.1996	-0.0029	0.1111	0.1996	0.3611	0.2529	0.3004			
H15				0.1805	-0.1767	-0.1159	0.1805	-0.1767	-0.1159	0.0733	0.0696	0.6159			
H16				-0.0257	-0.1776	-0.3059	-0.0257	-0.1776	-0.3059	0.0725	0.2757	0.8059			

Table S8. The results of topological analysis of electron density around sulphur atom. $\rho(\mathbf{r})$ donates to electron density, $L(\mathbf{r})$ – negative Laplacian of electron density, $L(\mathbf{r}_{CP}) / \rho(\mathbf{r}_{CP})$ indicates nucleophilic/electrophilic powers of CC/CD).

IV

	$\rho(\mathbf{r}_{\mathrm{CP}})$ /	$L(\mathbf{r}_{\rm CP})$ /	$(L(\mathbf{r}_{\rm CP}) /$		$ ho(\mathbf{r}_{\mathrm{CP}})$ /	$L(\mathbf{r}_{\rm CP})$ /	$(L(\mathbf{r}_{\rm CP}) /$
	$e \cdot \text{\AA}^{-3}$	$e \cdot \text{\AA}^{-5}$	$ ho(\mathbf{r}_{\mathrm{CP}}))$ / Å ⁻²		$e \cdot \text{\AA}^{-3}$	$e \cdot \text{\AA}^{-5}$	$ ho(\mathbf{r}_{\mathrm{CP}}))$ / Å ⁻²
CC1 (3,-3)	1.25	11.45	9.19	CC1 (3,-3)	1.24	11.31	9.12
CC2 (3,-3)	1.24	11.42	9.17	CC2 (3,-3)	1.24	11.32	9.13
CD1 (3,+1)	0.35	-1.69	-4.84	CD1 (3,+1)	0.35	-1.69	-4.85
CD2 (3,+1)	0.86	0.94	1.09	CD2 (3,+1)	0.86	1.01	1.17
CD3 (3,+1)	0.86	0.84	0.98	CD3 (3,+1)	0.86	0.84	0.97
CD4 (3,-1)	1.23	10.68	8.71	CD4 (3,-1)	1.22	10.59	8.66
CD5 (3,-1)	0.34	-1.43	-4.26	CD5 (3,-1)	0.33	-1.42	-4.23
CD6 (3,-1)	0.34	-1.40	-4.17	CD6 (3,-1)	0.34	-1.42	-4.23

Figure S7. ¹H NMR spectrum of cocrystal III+IVa.

Figure S8. ¹H NMR spectrum of cocrystal III+IVb.

Figure S9. ¹H NMR spectrum of cocrystal III+IVc.