SUPPORTING INFORMATION

N-H...N Hydrogen Bonds Involving Histidine Imidazole Nitrogen Atoms: A New Structural Role for Histidine Residues in Proteins

R. N. V. Krishna Deepak and Ramasubbu Sankararamakrishnan*

Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India

Figure S1

Figure S1: The three examples of histidine residues from ultra high-resolution structures that satisfied the hydrogen bond geometric criteria for N-H...N δ /N ϵ type of interaction. All three examples resulted in positive interaction energies in quantum chemical calculations (see Table 1 in the main text). In all these three cases, the N δ atom of imidazole ring is protonated and this protonated nitrogen is also close to main-chain N-H hydrogen atom. The unique PDB IDs and the residue numbers are indicated in the figure.

Figure S2: Plot of $\chi 1$ versus $\chi 2$ distribution of histidine side-chain dihedral angles for (A) all histidine residues participating in N_{*i*+2}-H_{*i*+2}...N δ_i /N ϵ_i hydrogen bonds and (B) for all histidine residues whose imidazole nitrogen is not involved in N-H...N hydrogen bonds.