Supporting Information

General AMBER Force Field Parameters for Diphenyl Diselenides and Diphenyl Ditellurides

Mauro Torsello,^a Antonio C. Pimenta,^b Lando P. Wolters,^a Irina S. Moreira,^b Laura Orian^{a*} and Antonino Polimeno^a

^a Dipartimento di Scienze Chimiche Università degli Studi di Padova, Via Marzolo 1 35131 Padova Italy

^b CNC—Center for Neuroscience and Cell Biology, Universidade de Coimbra, Rua Larga, FMUC, Polo I, 1°andar, 3004-517 Coimbra, Portugal

Corresponding author: Dr. Laura Orian laura.orian@unipd.it

Table S1. Force-field parameters; values for Te analogue are given in brackets.^a This is the factor which divides the barriers. ^b New parameters

(p-NH₂-PhX) ₂									
bo	nds	ang	gles			dihedi	rals		
r _{eq}	b	θ_{eq}	а	IDIVF ^a	$V_{1}/2$	V ₂ /2	V ₃ /2	V ₄ /2	γ
x—	x ^b	x—x-	-ca ^b		ca-x-x-ca ^b				
2.330 (2.743)	109.0 (71.6)	104.53 (100.92)	67.13 (40.47)	1	-1.85 (-1.47)	-1.62 (-2.71)	-0.66 (-0.59)	0.00 (0.02)	180
х—	ca ^b	x—ca	-ca ^b			x—x—ca	-ca ^b		
1.948 (2.145)	143.5 (122.8)	124.14 (119.94)	86.16 (78.24)	1	1.43 (0.90)	-0.19 (-0.20)	-1.11 (-0.69)	0.13 (0.09)	180
ca-	-ca	ca–c	a—ca	x/ca—ca—ca					
1.387	478.4	119.97	67.18	x/ca/ha—ca—ca—ha					
ca-	-ha	ca–c	a—ha			ca/ha—ca-	-ca-nh		
1.087	344.3	120.01	48.46	4	_	14.5	_	_	180
hn-	-nh	ca–c	a—nh			ca–ca–r	1h—hn		
1.014	401.2	120.13	69.34	4	_	4.2	_	_	180
ca-	-nh	hn—n	h—hn						
1.364	449.0	114.85	40.05						
		ca—n	h—hn						
		116.13	49.08						

				(p-OC	CH3-PhX)2					
bo	nds	ang	gles		dihedrals					
r _{eq}	b	θ_{eq}	а	IDIVF ^a	$V_1/2$	V ₂ /2	V ₃ /2	V ₄ /2	γ	
x-	x ^b	x—x-	-ca ^b			ca-x-x	-ca ^b			
2.330 (2.743)	109.0 (71.6)	104.53 (100.92)	67.13 (40.47)	1	-1.85 (-1.47)	-1.62 (-2.71)	-0.66 (-0.59)	0.00 (0.02)	180	
х—(ca ^b	x—ca	-ca ^b			x—x—ca	-ca ^b			
1.948 (2.145)	143.5 (122.8)	124.14 (119.94)	86.16 (78.24)	1	-7.70 (1.26)	-0.11 (-0.18)	-1.40 (0.90)	0.21 (0.09)	180	
ca-	-ca	ca–c	a—ca	x/ca-ca-ca						
1.387	478.4	119.97	67.18			x/ca/ha—ca	-ca-ha			
ca-	-ha	ca–c	a—ha			ca/ha—ca-	-ca-os			
1.087	344.3	120.01	48.46	4	_	14.5	_	-	180	
ca-	-os	ca–c	a—os		ca–ca–os–c3					
1.373	372.4	119.20	69.79	2	_	1.8	_	_	180	
c3-	-os	h1-c	3–os	h1-c3-os-ca						
1.439	301.5	108.82	50.84	3	_	_	1.15	—	0	
c3-	-h1	c3—c	os—ca							
1.093	335.9	117.97	62.27							
		h1-c	3—h1							
		109.55	39.18							

Table S2. Force–field parameters; values for Te analogue are given in brackets. ^a This is the factor which divides the barriers. ^b New parameters

(p-CH ₃ -PhX) ₂										
bo	nds	ang	gles		dihedrals					
r _{eq}	b	θ_{eq}	a	IDIVF ^a	$V_{1}/2$	V ₂ /2	V ₃ /2	V ₄ /2	γ	
x-	x ^b	x—x-	-ca ^b			ca-x-x	-ca ^b			
2.330 (2.743)	109.0 (71.6)	104.53 (100.92)	67.13 (40.47)	1	-1.85 (-1.47)	-1.62 (-2.71)	-0.66 (-0.59)	0.00 (0.02)	180	
x-	ca ^b	x—ca	-ca ^b			x-x-ca	-ca ^b		1	
1.948 (2.145)	143.5 (122.8)	124.14 (119.94)	86.16 (78.24)	1	-1.25 (1.03)	0.12 (0.02)	-1.43 (-0.71)	0.16 (0.08)	180	
ca-	-ca	ca–c	a-ca	ca-ca-c3-hc						
1.387	478.4	119.97	67.18	6	_	_	-2.91	_	180	
ca-	-ha	ca—c	a—ha			x/ca/c3—ca	a—ca—ca			
1.087	344.3	120.01	48.46			x/ca/ha/c3—	ca—ca—ha	-		
c3-	-ca	ca–c	3-hc	4 – 14.5 – –			180			
1.513	323.5	110.15	46.96							
c3-	-hc	с3—с	a—ca							
1.092	337.3	120.63	63.84							
		hc-c	3-hc							
		108.35	39.43							

Table S3. Force–field parameters; values for Te analogue are given in brackets. ^a This is the factor which divides the barriers. ^b New parameters

Table S4. Force–field parameters; values for Te analogue are given in brackets. ^a This is the factor which divides the barriers. ^b New parameters

(p-Cl-PhX) ₂										
bo	nds	ang	gles		dihedrals					
r _{eq}	b	θ_{eq}	а	IDIVF ^a	$V_1/2$	V ₂ /2	V ₃ /2	V ₄ /2	γ	
x—	x ^b	x—x-	-ca ^b			ca-x-x	-ca ^b			
2.330 (2.743)	109.0 (71.6)	104.53 (100.92)	67.13 (40.47)	1	-1.85 (-1.47)	-1.62 (-2.71)	-0.66 (-0.59)	0.00 (0.02)	180	
х—	x-ca ^b x-ca-ca ^b			x-x-ca-ca ^b						
1.948 (2.145)	143.5 (122.8)	124.14 (119.94)	86.16 (78.24)	1	-0.62 (0.69)	0.17 (0.05)	-1.05 (-0.86)	0.16 (0.10)	180	
ca-	-ca ca-ca-ca		a–ca			x/ca—ca–	-ca—ca			
1.387	478.4	119.97	67.18			x/ca/ha—ca	-ca-ha			
ca-	-ha ca-ca-ha		a—ha	ca–ca–cl						
1.087	344.3	120.01	48.46	4	_	14.5		_	180	
ca-cl		ca—c	a-cl							
1.729	322.8	119.4	58.52							

				(p-N	O ₂ -PhX) ₂				
bonds angles				dihedrals					
r _{eq}	b	θ_{eq}	а	IDIVF ^a	$V_{1}/2$	V ₂ /2	V ₃ /2	V ₄ /2	γ
x—	x ^b	x—x-	-ca ^b			ca-x-x-	–ca ^b		
2.330 (2.743)	109.0 (71.6)	104.53 (100.92)	67.13 (40.47)	1	-1.85 (-1.47)	-1.62 (-2.71)	-0.66 (-0.59)	0.00 (0.02)	180
х—	ca ^b	x—ca	-ca ^b			x—x—ca-	–ca ^b		
1.948 (2.145)	143.5 (122.8)	124.14 (119.94)	86.16 (78.24)	1	11.96 (-1.21)	0.39 (0.40)	-0.33 (1.69)	0.02 (0.00)	180
ca-	-ca	ca—c	a—ca	x/ca-ca-ca					
1.387	478.4	119.97	67.18			x/ca/ha—ca	—ca—ha		
ca-	-ha	ca—c	a—ha			ca/ha—ca-	-ca-no	-	_
1.087	344.3	120.01	48.46	4	_	14.5	-	_	180
no	-0	-o ca-ca-no ca-ca-no		10-0					
1.219	761.2	119.54	66.88	4	_	2.4	-	_	180
ca-no		o-no-o							
1.468	322.6	125.13	77.15						
		ca-no-o							
		118.1	68.74						

Table S5. Force–field parameters; values for Te analogue are given in brackets. ^a This is the factor which divides the barriers. ^b New parameters

Table S6. Relevant interatomic distances (Å) and angles (°) of the fully optimized dichalcogenides; level of theory: B3LYP/6-311G(d,p),SDD. When available, parameters from the crystallographic structures taken from CSD are given in brackets.

	CSD	X–X'	Сх-Х	Cx-X-X'	Cx-X-X'-Cx'	$C_1 - C_X - X - X'$ $C_1' - C_X' - X' - X$
	Identifier		Cx'-X'	Сх'-Х'-Х	(Ψ)	(Φ 1,2)
(p-NH ₂ -PhSe) ₂	_	2.52	1.94 1.94	103 103	-81	94 94
(p-NH2-PhTe)2	_	2.86	2.12 2.12	101 101	-84	92 92
(p-CH ₃ O- PhSe) ₂	_	2.51	1.94 1.94	102 102	-79	93 95
(p-CH ₃ O- PhTe) ₂	BAJHAV	2.85 (2.715)	2.13 (2.139) 2.13 (2.143)	101 (99.8) 101 (100.3)	-82 (-81)	93 (12) 93 (20)
(p-CH ₃ -PhSe) ₂	QQQGBV01	2.50 (2.328)	1.95 (1.923) 1.95 (1.910)	102 (102.0) 102 (101.2)	80 (100)	87 (90) -96 (-73)
(p-CH ₃ -PhTe) ₂	DPTOTE	2.84 (2.696)	2.13 (2.125) 2.13 (2.131)	100 (101.5) 100 (100.0)	83 (86)	90 (37) 90 (37)
(PhSe) ₂	YUXPIR	2.50 (2.307)	1.95 (1.946) 1.95 (1.934)	101 (102.4) 101 (103.5)	80 (85)	-96 (-23) 87 (0)
(PhTe)2	DPHDTE01	2.84 (2.707)	2.14 (2.131) 2.14 (2.115)	100 (100.7) 100 (97.7)	-85 (-90)	-90 (-84) 92 (90)
(p-Cl-PhSe)2	CLPHSE	2.50 (2.332)	1.95 (1.929) 1.95 (1.911)	101 (98.6) 101 (98.9)	-79 (-74)	-85 (-61) 98 (74)
(p-Cl-PhTe) ₂	CLPHTE01	2.84 (2.680)	2.14 (2.144) 2.14 (2.160)	100 (99.6) 100 (101.6)	-82 (-89)	-88 (-13) -88 (-10)
(p-NO ₂ -PhSe) ₂	DUWKEL	2.49 (2.302)	1.96 (1.921) 1.96 (1.921)	101 (103.2) 101 (103.2)	-82 (-88)	103 (23) 103 (23)
(p-NO ₂ -PhTe) ₂	_	2.834	2.140 2.140	99.2 99.2	-82	98 98

Table S7. Molecular dipole moments in Debye calculated with *ab initio* density and dipole integrals using the B3LYP/cc-pVTZ(-PP) *open/closed* geometry (A) and from RESP charges using the MM equilibrium geometry (B). Values for the Te compounds are given in parentheses.

		(p-NH2-PhX)2	(p-OCH3-PhX)2	(p-CH ₃ -PhX) ₂	(PhX) ₂	(p-Cl-PhX) ₂	(p-NO ₂ -PhX) ₂
		5.22	1.74	3.35	2.81	0.32	4.59
А	open	(4.80)	(1.11)	(2.95)	(2.39)	(0.46)	(5.21)
	closed	4.26	1.76	2.66	2.11	0.90	5.10
		(2.34)	(1.40)	(2.49)	(1.86)	(1.10)	(5.73)
В	ММ	4.55	1.35	3.11	2.54	0.60	5.02
	IVIIVI	(3.00)	(1.51)	(2.82)	(2.29)	(0.84)	(5.70)

Table S8. σ_{GAFF} values vs vdW radii for C, N, O, P, S, F, Cl, Br, I atoms; values for Se and Te are extrapolated and are those used in the work. For GAFF parameters O is the TIP3P water oxygen.

Atom	VDW radius / Å	$\sigma_{GAFF}/~{\rm \AA}$
С	1.70	1.90
N	1.55	1.82
O ^a	1.52	1.76
F	1.47	1.75
Р	1.80	2.10
S	1.80	2.00
Cl	1.75	1.948
Se	1.90	2.12
Br	1.85	2.02
Те	2.06	2.26
Ι	1.98	2.15

Figure S1. Energy profiles at B3LYP/6-311G(d,p),SDD level of theory for the rotation of Ψ of all Se (a) and Te (b) diphenyl compounds.

Figure S2. Trajectories a (c) and distributions b (d) in chloroform of (PhSe)₂ (red) and (PhTe)₂ (blue).

Figure S3. Distributions (1250 structures) in chloroform of $(PhSe)_2$