Mercury Export from Mainland China to Adjacent Seas and Its Influence on the Marine Mercury Balance

Maodian Liu,[†] Long Chen,[†] Xuejun Wang,^{*,†} Wei Zhang,^{*,‡} Yindong Tong,[§] Langbo Ou,[†] Han Xie,[†] Huizhong Shen,[†] Xuejie Ye,[†] Chunyan Deng[†] and Huanhuan Wang[†]

[†]Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing 100871, China [‡]School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China

[§]School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China

Supporting Information

34 pages, 8 tables, 6 figures

*Corresponding Author: Xuejun Wang, xjwang@urban.pku.edu.cn; Wei Zhang,

zhw326@ruc.edu.cn

Mercury Discharges from Rivers

Details of the estimation methods are provided in the Methods section. The areas of the four adjacent seas and major rivers in China are presented in Figure S1. The Hg concentrations in China's river mouths are provided in Table S1. The Hg concentrations of each river are assumed to have remained unchanged every five years. The Hg fluxes of the eight rivers were used to estimate the contributions from all the rivers according to their proportions in the total riverine water discharge. Among the eight major rivers, the Yangtze River, Pearl River and Yellow River were the three largest rivers in China, comprising 76% of the total riverine water discharge. Therefore, the annual variations in the Hg that was discharged from these three rivers from 1984 to 2013 are presented.

Mercury Discharges from Industrial Wastewater and Domestic Sewage

The ratio of Hg(D) to Hg(P) was set to 3:7 based on the literature because of a lack of sediment concentration data from industrial wastewater and domestic sewage.¹⁻⁷ The method that was developed by Ye et al. was applied to estimate the historical trends of Hg discharge from industrial wastewater and domestic sewage.⁸ The trends of Hg concentrations in the total wastewater discharge from 1980 to 2010 according to a previous study were used to estimate the variations in the trends from 1984 to 2013 because annual Hg concentration data were limited for each sector of wastewater discharge.⁹ Industrial wastewater data for coastal cities and domestic sewage data for coastal provinces from the China Environmental Statistics Yearbook were used to estimate the Hg flux that was exported into the seas from these two sources.¹⁰

Mercury Discharges from Groundwater

A ratio of 3:7 was set as a proportion of Hg(D) and Hg(P), as reported in a previous study, because of a lack of sediment concentration data for groundwater in China.¹¹ The Hg fluxes that were exported into the four seas were estimated based on the lengths of the coastlines. When calculating the annual change in the Hg flux from groundwater, the groundwater discharge was estimated based on the riverine water discharge (see Methods), and the Hg concentration was assumed to be invariant from 1984 to 1995, from 1996 to 2005, and from 2006 to 2013, respectively.

Mercury Export from Non-point Sources

The weighted means of the erosion moduli were calculated based on the results of various previous studies in the study area. The SEs of the mean erosion moduli were estimated for each erosion modulus and their study area. All the Hg concentration data for the coastal soil were the average concentrations of certain administrative regions. The Hg concentrations of the coastal soil in China did not change obviously in recent years. For example, the average Hg concentrations of Hebei Province were 38 ± 25 µg/kg in 2010^{12} and 36 ± 39 µg/kg in 1990.¹³ The average Hg concentrations in the topsoil of Tianjin City were 73 ± 35 µg/kg in 2009^{14} and 84 ± 127 µg/kg in 1990.¹³ Luo et al. investigated the Hg concentrations of soil in South China and found that the concentrations ranged from 31 to 150 µg/kg from 2011 to 2013, while the Hg concentrations of soil in South China ranged from 78 to 150 µg/kg in 1990.¹⁵

Mercury Exportation from Coastal Erosion

The weighted means of the erosion rates along the coastlines of the four seas were obtained based on the lengths of the coastlines from different studies. The SEs of the mean erosion rates were estimated for each erosion rate and study length.

Mercury Mass Balance of China's Seas

The box model was applied to simulate the Hg mass balance of China's four adjacent seas. Some of the Hg(P) was deposited in the sea margin, and additional proportions were transported to the open Pacific Ocean. The ratios of suspended sediment that was deposited in China's seas and the sea margin sediments that were transported to the open ocean were adopted according to Oguri et al.¹⁶

time	[Hg(T)] (ng/L)	[Hg(D)] (ng/L)	[Hg(P)] (ng/L)	reference
Songhua River ^a				
2005.12	50 ± 29	13 ± 5.9^{b}	37 ± 26	17
2009.9	3.2 ± 1.1	2.1 ± 0.5	1.1 ± 1.1	18
Liao River				
2006.5	30			19
2006.7	80			19
2006.9	40			19
2006.5	27			19
2006.7	92			19
2006.9	11			19
Luanhe River				
2008.4	240			20
2008.4	220			20
Haihe River				
2010.Summer	10 ± 7.8			21
2001	710			22
2005	140 (120-240)			22
2004.8	110 ± 100			23
Yellow River				
1984.5	75			24
1984.8	100			24
2005.5	110			25
2005.9	160			25
2005.5	110	34	73	26
2005.9	160	78	80	26
2005.11	65	27	38	26
2006-2007.Spring	48 (22-89)			27
2006-2007.Summer	67 (38-140)			27
2006-2007.Autumn	43 (34-67)			27
2006-2007.Winter	41 (17-56)			27
2008.12	190	110	78	28
2009.1	320	120	200	28
2009.2	210	120	86	28
2009.3	240	140	98	28
2009.4	280	140	140	28
2009.5	240	130	110	28
2009.6	130	120	12	28
2009.7	150	130	23	28
2009.8	230	110	120	28
2009.9	180	110	65	28

Table S1. Hg Concentrations in Mouths of Chinese Rivers

2009. 10	150	110	42	28
2009.11	160	110	53	28
2011.5		98		29
2011.8		47		29
Yangtze River				
1985.8	18	2	16	30
	24	6	18	30
	20	1	19	30
	42	20	22	30
	36	18	18	30
1986.3	48	2	46	30
	44	1	43	30
	54	1	53	30
	50	1	49	30
	81	27	54	30
1984	23			31
1985	23			31
1986	24			31
1987	28			31
1988	30			31
1989	85			31
1990	36			31
1991	40			31
1992	64			31
1993	72			31
1994	45			31
1995	40			31
1996	32			31
1997	76			31
1998	28			31
1999	36			31
2000	66			31
2001	55			31
2002	24			31
2003	30			31
2004	40			31
2005	34			31
2006	70	46±11		31
2006.1		40		31
2006.2		40		31
2006.3		38		31
2006.4		56		31
2006.5		70		31
2000.3		72		31

S6

2006.7		52		31
2006.8		43		31
2006.9		41		31
2006. 10		42		31
2006.11		37		31
2006.12		35		31
2006-2007.Spring	130 (40-350)			27
2006-2007.Summer	140 (39-240)			27
2006-2007.Autumn	150 (30-260)			27
2006-2007.Winter	130 (31-230)			27
2008.8		(37–610) ^c	(51–640)	32
2009.5		$(13-53)^{d}$		33
2009.8		(5-180)		33
2010.4		52		29
2011.6		69		29
2011.8		68		29
2013.1	50			34
2013.2	80			34
2013.3	160			34
2013.4	80			34
2013.5	50			34
2013.6	80			34
2013.7	120			34
2013.8	150			34
2013.9	50			34
2013. 10	120			34
2013.11	50			34
2013.12	120			34
Qiantang River				
2001-2004	100 ± 70			35
2011.8		21		36
		22		36
		63		36
		58		36
		48		36
		61		36
		55		36
2012		8 ± 3		37
Minjiang River				
2008	140			38
2012	170 (13-730)			39
Pearl River				
1980.8	34	3	30	40
1980.8	41	5	35	40

1980.8	33	2	30	40
1980.8	38	2	35	40
1982	30 ± 19			41
1981	24			42
1986	14			42
1990	60			42
1995	42			42
2002	18			42
2006-2007.Spring	36 (21-47)			27
2006-2007.Summer	16 (4-35)			27
2006-2007.Autumn	26 (12-43)			27
2006-2007.Winter	23 (15-34)			27
2009	17 ± 3.4	12 ± 2.2	5.9 ± 4.4	43
2009	24 ± 4.4	15 ± 6.1	8.2 ± 2.6	43
2009	24 ± 10	16 ± 3.7	8 ± 7.3	43
2009	18 ± 3.6	13 ± 3.9	5.5 ± 5.2	43
2009	21 ± 6.7	14 ± 4.5	6.9 ± 5.1	43
2009	17 ± 3.8	9 ± 1.7	8 ± 4.8	43
2009	17 ± 5.7	6.3 ± 2.2	11 ± 5.5	43
2009	19 ± 5.0	7.9 ± 5.9	11 ± 10	43

a. Hg concentrations of Songhua River are used for calculating K_D value.

b. While a literature just provided the concentrations of Hg(T) (ng/L) and Hg(D) (ng/L), [Hg(T)] - [Hg(D)] is used to estimate the concentration of Hg(P) (ng/L).^{43, 44} c. Outliers were removed when estimating the annual changes of Hg fluxes of Yangtze River (Z = 5.15).

d. If an article just provided the range of Hg concentration, the midrange value is used for estimating the mean.⁴⁵ Same method was adopted for other pathways.

Table S2. Hg Concentrations in Industrial Wastewater in Major Industry Sectors

in China

	[Hg(T)] (µg/L)	reference	[Hg(T)] (µg/L)	reference
Agricultural Services				
	0.39 ± 0.72	46	0.013 ± 0.007	47
	0.14 ± 220	9	0.82	48
Mining and Washing o	of Coal			
	52	а		
Mining and Processing	g of Ferrous Metal Ores			
	0.22	49		
Mining and Processing	g of Non-ferrous Metal O	Pres		
	0.68	50	11	3
	50	51	6.5	4
	0.62	1	2.1	5
	(0.058-7.0)	2	0.34	52
	(0.025-7.0)	2	17 (6.7-30)	53
	(0.02-11)	2	0.12	54
Mining and Processing	g of Non-metal Ores			
	7.4	55		
Manufacture of Textile	e, Manufacture of Textile	Wearing		
	1.3	56	24	56
	5.9	56	67	56
	22	56	0.083	49
Printing, Reproduction	n of Recording Media			
	1.6	57	0.19	57
Manufacture of Article	es for Culture, Education	and Sport Activ	ity	
	0.26	57		
Manufacture of Raw C	Chemical Materials and C	Chemical Produc	ts	
	0.15	57	0.15 ± 0.010	58
	0.21 ± 0.029	58	0.45 ± 0.023	58
	0.096 ± 0.003	58	24	59
	0.13 ± 0.009	58	49	60
Smelting and Pressing	of Ferrous Metals			
	0.22	49		
Smelting and Pressing	of Non-ferrous Metals			
	5.8	51	0.442 ± 0.121	61
	43	51		
Manufacture of Electr	ical Machinery, Instrume	nt and General I	Equipment	
	73	62	790	62
	46	62	510	62
	55	62	93	62
Waste Recycle				

25	6		
Production and Supply of Electric Power a	and Heat		
57 ± 0.64	63	12	64
32	64	390	65

a. Estimation of the Hg concentration in wastewater of coal mining and washing is made by multiplying the coal washing rate (51%),⁶⁶ the removal rate of Hg (30%),⁶⁷ the average Hg concentration of coal in China (0.19 mg/kg),⁶⁸ coal output (2.5×10^9 t in *China Energy Statistical Yearbook* in 2012) and wastewater generated by coal mining and washing (1.4×10^9 t in *China Environment Statistical Yearbook* in 2012).^{10,69}

	$[Hg(T)] (\mu g/L)$	reference	[Hg(T)] (µg/L)	reference
non-treated discha	rge			
	1.2 ± 0.60	7	1.1	70
	(0.41-0.77)	71	3.0	72
	0.55 ± 0.10	73	17	72
	0.53	70	2.8	72
	0.54	70	1.7	72
	0.61	70	3.2	72
	1.0	70	0.88	72
	0.21	70	2.6	72
	1.3	70	2.0	72
	2.2	70	3.2	72
	0.33	70	3.3	72
	0.21	70	4.5	72
	0.63	70	2.1	72
	1.8	70	0.99	72
	1.0	70	3.1	72
	1.3	70	2.0	72
	1.4	70	0.97	72
	0.87	70	0.37	72
	1.2	70	0.55	72
	1.9	70	1.1	57
	0.89	70	5.2	57
	1.5	70	0.41	74
	1.5	70	0.31	75
	1.5	70	0.20	49
treated discharge				
2	0.022 ± 0.0064	7	0.03	74
	(0.39-0.57)	71	0.04	75
	0.13 ± 0.10	73	0.11	49
	0.17	72		

Table S3. Hg Concentrations in Domestic Sewage from Urban Areas

place	time	[Hg(D)] (ng/L)	reference
Bohai Sea			
Tianjin	2008	16 (10-47)	48
southern Jilin province	1999	10	76
Nenjiang basin	1999	49	76
Second Songhua river basin	1999	24	76
Tumen river basin	1999	10	76
Mudanjiang river basin	1999	10	76
Hebei plain	2008	17	77
Yellow Sea			
Shaying river basin	2007-2009	40	78
the Beijing-Hangzhou Grand Canal	2000	220	79
Yalu river basin	1999	10	76
East China Sea			
southern Yangtze river delta	1998	15 ± 12	80
	1998	18 ± 12	80
	1998	8.2 ± 5.2	80
	1998	20 ± 12	80
	1998	6.7 ± 2.0	80
	1998	12 ± 9.3	80
eastern Jianghan plain	1999	11	54
Poyang Lake	1999	9.6	54
Southern Yangtze river delta	1994	11	81
South China Sea			
Foshan	2008	50	82
Pearl river delta	2011	160(10-950) [Hg(T)]	83

Table S4. Hg Concentrations in Groundwater

place	time	study area (km ²)	erosion modulus (ton/km ² ·a)	reference
Bohai Sea				
region surrounding the Bohai Sea	2012	500000	1500	84
Hebei province	2010	190000	550	85
Fuxin city	2015	10000	1900	86
Luanping county	2011	3200	3800	87
Beijing city	2004	4000	2400	88
western Pingquan county	2011	19	2400	89
Xihe basin	2011	29	710	90
Yellow Sea				
Taizhou city	2012	4	150	91
	2012	5.4	3000	91
	2012	16	500	91
Yimeng mountain area	2011		4200	92
Yimeng mountain area	2010		4700	93
downtown of Qingdao city	2005	190	280	94
Chengyang district	2005	550	350	94
Laoshan district of Qingdao	2005	390	1100	94
Huangdao district of Qingdao	2005	270	510	94
Laixi city of Qingdao	2005	1500	440	94
Jimo city of Qingdao	2005	1800	480	94
Pingdu city of Qingdao	2005	3200	580	94
Jiaozhou city of Qingdao	2005	1300	580	94
Jiaonan city of Qingdao	2005	1800	980	94
East China Sea				
Changting county, Fujian	2007	980	980	95
Xiazhuang village of Zhangzhou city	2005		2500	96
Taihu Basin	2008	23000	2000	97
Zhejiang province	2014	98000	400	98
Fujian province	2014	120000	300	98
Jurong city	2011		2600	99
South China Sea				
Guangdong province	2009	180000	2200	100
Guangdong province	2014	180000	720	101
Dongping town of Yangjiang city	2004	16	5300	102
Conghua distrct	2011	2000	1900	103
Raoping county	2013	1700	1600	104
Dongjiang river basin	2010	35000	1900	105
Songtao reservoir basin	2009	14000	370	106

Table S5. Erosion Modulus of Different Regions in China, Non-point Source

Note: Erosion modulus means the mass of soil eroded by waterpower in a given time

and area, with the unit of $t/km^2 \cdot yr$.

place	time	study length	erosion rate	reference
		(km)	(m/yr)	
Bohai sea				
beach of Beidaihe	2012	12	2.5	107
Tianjin Binhai New Area	2009	270	0.26	108
east coast of Laizhou bay	2008	150	2.5	109
Qinhuangdao city	2009	140	2.5	110
Qinhuangdao city	2012	160	2.8	111
Qinhuangdao city	2008	130	1.9	112
Jinmeng bay of Qingdao	2014	3.4	1.6	113
Hebei province	2008	37	0.7	114
Beach surrounding Bohai sea	2013	2700	1.5	115
Laizhou bay	2006	190	2	116
Feiyan beach	2005	37	0.21	117
east coast of Laizhou bay	2006	210	3.5	118
south coast of Laizhou bay	2006	110	27	119
Beihai beach of Gaizhou	2014	1.9	0.7	120
Tengfangshen beach of yingkou	2014	1.5	0.9	120
Yingchengzi beach of Dalian	2014	1.7	0.8	120
Zhujiatun beach of Jinzhou	2014	14	0.8	120
Daizi beach of Lvshun	2014	1.5	3	120
Liaodong bay	2005	140	2.5	121
Shandong province	2013	1600	1.5	122
Yellow river delta	2005		400	123
Yellow sea				
Old Yellow river estuary	2002		43	124
Old Yellow river estuary	2013	320	6.3	125
Lv si shore	2002		20	124
Lv si shore	2009	14	20	126
Xiuzhen-Xinzhuang shore	2002		15	124
south coast of Shandong	2000	33	1	127
Lingshan bay	2012		7	128
Weihai city	2012	120	1.5	129
Xuejia island	2002	18	0.021	130
Shandong province	2013	1600	1.5	122
Liangshui bay of Dalian city	2014	15	1.4	120

Table S6. Erosion Rates of Different Regions in China, Coastal Erosion

Bofengzi bay of Lvshun city	2014	5.4	4.7	120
Chengtou mountain	2014	2	2	120
Longkou-Chefoo shore	2014	170	2.2	131
East China sea				
Zhejiang province and Shanghai city	2011		4	132
Luchao-Zhong harbor	1993		50	133
Dongshan island of Fujian	2015	22	2.7	134
Fujian province	2011	1	3	132
Fujian province	2009	4600	1	135
South coast of Fujian	2006	1300	1.6	136
Southeast coast of Xiamen	2001	7.6	2	137
Longfengtou bay	2013	0.22	11	138
Banyue bay	2013	2.5	6.2	139
South China sea				
Silver beach	2011	5	10	140
west coast of Haikou bay	2013	8	23	141
Boao beach of Hainan	2011	2.5	4.7	142
Bangtang bay of Hainan	2003	4	12	143
Hainan province	2003	240	5.7	144
Lanqing bay	2014	82	2.3	145
Leizhou Peninsula	2008	1100	2	146
east coast of Moyang river estuary shore	2012		15	147
Nanhai district	2007	2	20	148
Guangdong province	2011		9	132
Sanya bay	2007	3.4	0.4	149
Shantou city	2008	15	1.4	150
Xiangshan-Changweijiao beach of Xiamen	2013	1.5	7.9	138

Note: erosion rate means the speed of coastline erosion by sea wave, with the unit of

m/yr.

place	sample size	mean \pm SD
		$[Hg(T)] (\mu g/kg)$
Liaoning province	116	37 ± 24^{a}
Hebei province	148	36 ± 39
Tianjin city	41	84 ± 130
Shandong province	117	19 ± 12
Jiangsu province	83	290 ± 720
Shanghai city	20	95 ± 52
Zhejiang province	76	86 ± 67
Fujian province	87	93 ± 81
Guangdong province	167	78 ± 85
Guangxi province	150	150 ± 170

Table S7. Hg Concentrations in Coastal Soil

a. The data is acquired from Chinese Soil Element Background Value 1990.¹³

Table S8. Parameters of Chinese	Adjacent Seas Used to	Develop the Marine Hg

Mass Balance Model	Mass	Balance	Model
---------------------------	------	---------	-------

parameter (unit)	value	reference
atmosphere		
air/sea Hg(0) exchange (ng/m^2h)	2.4(2.3-2.5)	151, 152
dry deposition (ng/m ² h)	1.3	153
wet deposition (ng/m^2h)	2.1	153
seawater		
area of Bohai Sea (km ²)	7.7×10^4	154
area of Yellow Sea (km ²)	3.8×10 ⁵	155
area of East China Sea (km ²)	7.7×10^{5}	155
area of South China Sea (km ²)	3.5×10^{6}	156
average depth of Bohai Sea (m)	20	154
average depth of Yellow Sea (m)	44	155
average depth of East China Sea (m)	370	155
average depth of South China Sea (m)	1200	157
oceanic current of Bohai Sea to Yellow Sea (Sv)	4.8×10 ⁻³	153
oceanic current of Yellow Sea to East China Sea (Sv)	0.32	153
oceanic current of East China Sea to North Pacific Ocean (Sv)	1.2	158
oceanic current of North Pacific Ocean to South China Sea (Sv)	6.4	159
oceanic current of South China Sea to East China Sea (Sv)	1.2	159
oceanic current of South China Sea to other oceans (Sv)	1.7	159
Hg in Bohai Sea water (ng/L)	41	160-163
Hg in Yellow Sea water (ng/L)	1.7	164
Hg in East China Sea water (ng/L)	2.2	165
Hg in South China Sea water (ng/L)	1.2	166
Hg in North Pacific Ocean water (ng/L)	0.35	167
sediment		
Hg in Bohai Sea sediment (ng/g)	33(24-39)	168-170
Hg in Yellow Sea sediment (ng/g)	24(15-30)	168, 169, 171
Hg in East China Sea sediment (ng/g)	29(18-37)	168, 172
Hg in South China Sea sediment (ng/g)	37(2.0-88)	173, 174
Hg evasion from sediment $(ng/m^2 \cdot h)$	0.83 ^a	175
sediment transport rate $(g/m^2 \cdot h)$	0.10	16
suspended sediment deposition in continental shelf (%)	40 ^b	16
suspended sediment deposition in open ocean (%)	60 ^b	16
fishing		
Hg in fish of Bohai Sea (μg/g)	0.54	176
Hg in fish of Yellow Sea ($\mu g/g$)	0.19	177
Hg in fish of East China Sea ($\mu g/g$)	3.0×10 ⁻²	178
Hg in fish of South China Sea ($\mu g/g$)	0.15	179
fishing in Bohai Sea (t/yr)	2.0×10^{6}	180

fishing in Yellow Sea (t/yr)	2.3×10 ⁶	180
fishing in East China Sea (t/yr)	5.1×10^{6}	180
fishing in South China Sea (t/yr)	3.3×10^{6}	180

a. Due to the lack of study of Hg evasions from oceanic sediment in Chinese adjacent seas, the study of Boszke is referenced and the average Hg volatilization rate (0.83 $ng/m^2 \cdot h.$) is adopted.¹⁷⁵

b. According to previous study,¹⁶ 40% of the sediment would deposit in continental shelf and 60% would deposit in the open ocean near China.



Figure S1. Study area of the four adjacent seas (including Bohai Sea, Yellow Sea,

East China Sea and South China Sea)

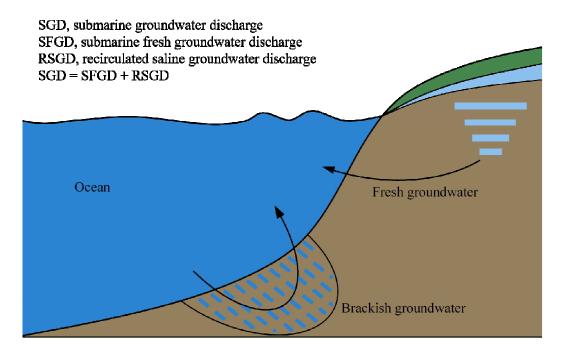


Figure S2. Schematic depiction (no scale) of SGD, SFGD and RSGD (built on previous study).¹⁸¹ SFGD is used to calculate the Hg flux from groundwater discharged into the seas

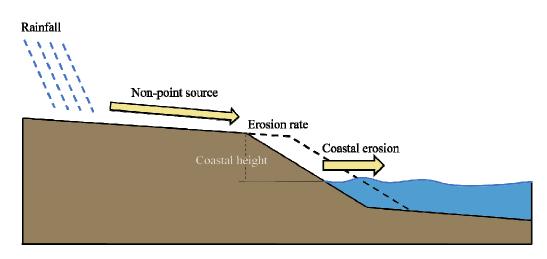


Figure S3. Schematic depiction (no scale) of non-point source and coastal erosion

contributions

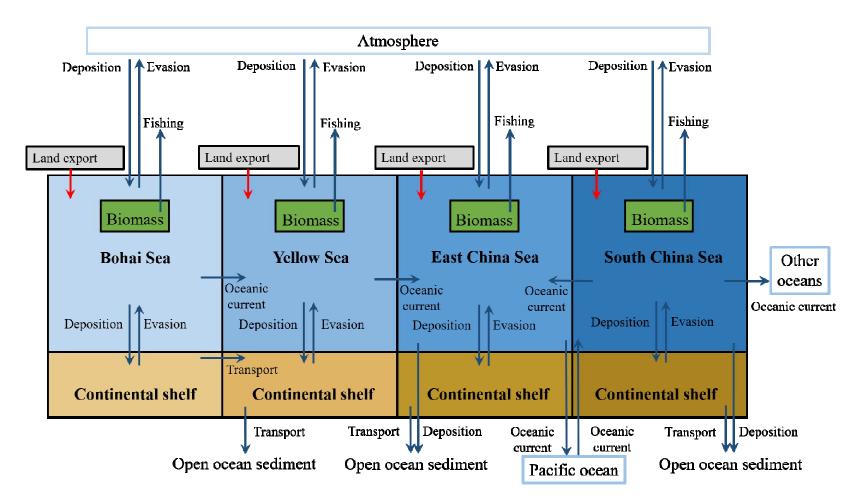


Figure S4. Schematic model of Hg mass balance in the four adjacent seas

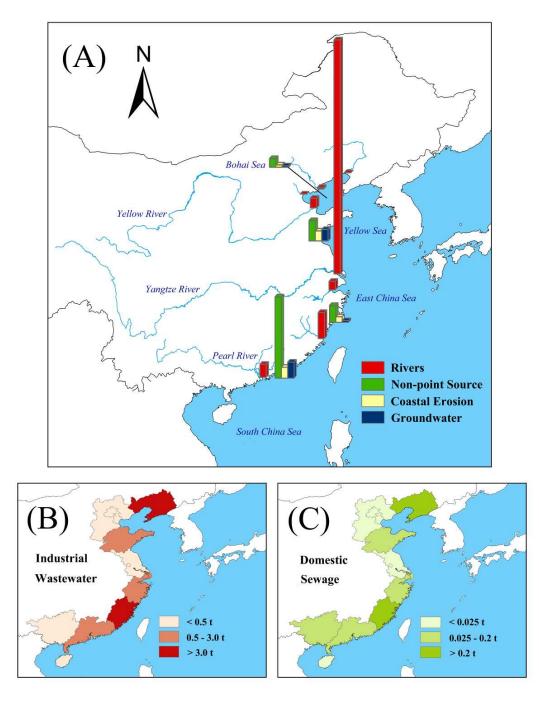


Figure S5. Total Hg exported from mainland China in 2012

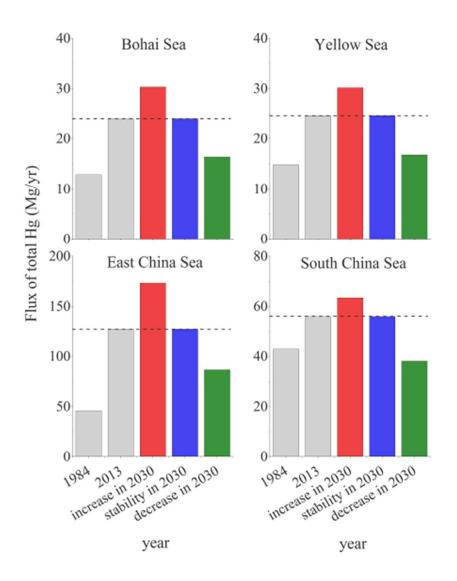


Figure S6. Total Hg exported from mainland China into adjacent seas in 1984 and 2013, and prediction in 2030

References

1. Li, P.; Feng, X.; Qiu, G., The preliminary study of mercury pollution in Wuchuan Mercury Mining Area, Guizhou Province. *Environmental Chemistry* **2008**, *27*, (1), 96-99 (in Chinese).

2. Qiu, G.; Feng, X.; Wang, S.; Xiao, T., Mercury contaminations from historic mining to water, soil and vegetation in Lanmuchang, Guizhou, southwestern China. *Science of the total environment* **2006**, *368*, (1), 56-68.

3. Horvat, M.; Nolde, N.; Fajon, V.; Jereb, V.; Logar, M.; Lojen, S.; Jacimovic, R.; Falnoga, I.; Liya, Q.; Faganeli, J., Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. *Science of the Total Environment* **2003**, *304*, (1), 231-256.

4. Zhang, G.; Liu, C.; Wu, P.; Yang, Y., The geochemical characteristics of mine-waste calcines and runoff from the Wanshan mercury mine, Guizhou, China. *Applied geochemistry* **2004**, *19*, (11), 1735-1744.

5. Li, P.; Feng, X.; Qiu, G.; Shang, L.; Wang, S., Mercury pollution in Wuchuan mercury mining area, Guizhou, Southwestern China: The impacts from large scale and artisanal mercury mining. *Environment international* **2012**, *42*, 59-66.

6. Li, Z.; Feng, X.; Tang, S.; Wang, S.; Li, P., Mercury in landfill leachate and itsremoval by the on-site sewage treatment plant. *Earth and Environment* **2005**, *33*, (2), 52-56 (in Chinese).

7. Li, H.; Mao, Y.; Li, Y.; Ma, Y.; Wang, X.; Song, D., Occurrence and mass balance of mercury at a sewage treatment plant. Part I: total mercury. *Environmental Chemistry* **2014**, *33*, (7), 1059-1065 (in Chinese).

8. Ye, X.; Hu, D.; Wang, H.; Chen, L.; Xie, H.; Zhang, W.; Deng, C.; Wang, X., Atmospheric mercury emissions from China's primary nonferrous metal (Zn, Pb and Cu) smelting during 1949–2010. *Atmospheric Environment* **2015**, *103*, (1), 331-338.

9. Xin, S.; Li, H.; Su, D., Concentration characteristics and historical changes of heavy metals in irrigation sewage in China. *Journal of Agro-Environment Science* **2011**, *30*, (11), 2271-2278 (in Chinese).

10. China Environmental Statistics Yearbook. NBS: Beijing, China, 2004-2013.

11. Ganguli, P. M.; Swarzenski, P. W.; Dulaiova, H.; Glenn, C. R.; Flegal, A. R., Mercury dynamics in a coastal aquifer: Maunalua Bay, Oʻahu, Hawaiʻi. *Estuarine, Coastal and Shelf Science* **2014**, *140*, 52-65.

12. Song, Z.; Luan, W.; Cui, X.; Li, S.; Wang, W.; Li, W., An analysis of the sources of heavy metals in soils of eastern Hebei Plain. *Geology in China* **2010**, *37*, (5), 1530-1538 (in Chinese).

13. Zhu, Z.; Lu, L.; Yao, X.; Zhang, W.; Liu, W., *Background valua of elements in Chinese soil*. 1990 (in Chinese).

14. Zheng, W.; Wu, G.; Su, R.; Li, C.; Liang, P., Mobility and contamination assessment of mercury in coal fly ash, atmospheric deposition, and soil collected from Tianjin, China. *Environmental Toxicology* & Chemistry **2011**, *30*, (9), 1997–2003.

15. Yao, L.; Lei, D.; Long, W.; Xu, G.; Wang, S.; Hao, J., Mercury concentrations in forest soils and stream waters in northeast and south China. *Science of the Total Environment* **2014**, *496*, 714-720.

16. Oguri, K.; Matsumoto, E.; Yamada, M.; Saito, Y.; Iseki, K., Sediment accumulation rates and budgets of depositing particles of the East China Sea. *Deep Sea Research Part II: Topical Studies in Oceanography* **2003**, *50*, (2), 513-528.

17. Zhang, F.; Yan, B.; He, Y.; Li, H., Speciation of mercury in water and sediments from the Songhua River during the icebound season. *Wetland Science* **2007**, (1), 58-63 (in Chinese).

18. Wang, S.; Xing, D.; Wei, Z.; Jia, Y., Spatial and seasonal variations in soil and river water mercury in a boreal forest, Changbai Mountain, Northeastern China. *Geoderma* **2013**, *206*, 123-132.

19. Liu, J.; Sun, Q.; Mo, C.; Guo, N., The pollution statusand characteristics of Daliaohe Estuary and its adjacent sea area. *Fisheries Science* **2008**, *27*, (6), 286-289 (in Chinese).

20. Li, Y.; Liu, J.; Cao, Z.; Lin, C.; Yang, Z., Spatial distribution and health risk of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in the water of the Luanhe River Basin, China. *Environmental monitoring and assessment* **2010**, *163*, (1-4), 1-13.

21. Tong, Y.; Zhang, W.; Chen, C.; Chen, L.; Wang, W.; Hu, X.; Wang, H.; Hu, D.; Ou, L.; Wang, X., Fate modeling of mercury species and fluxes estimation in an urban river. *Environmental Pollution* **2014**, *184*, 54-61.

22. Liu, C.; Wang, Z.; Huang, W.; Yu, G. a., Water and sediment pollution at river mouths of Haihe River basin. *Shuili Xuebao* **2007**, *38*, (8), 920-925 (in Chinese).

23. Xiong, D. Distribution and eco-environmental behavior of typical pollutions in Haihe River mainstream and adjacent sea. South China University of Tropical Agriculture, 2005 (in Chinese).

24. Zheng, S.; Zhang, S.; Pang, X., The distribution of mercury in estuary of Yellow River. *Marine Science* **1987**, *4*, 26-29 (in Chinese).

25. Liu, R.; Wu, X.; Qin, J.; Sun, P.; Wang, Y.; Gu, Y.; Cui, W., The variation characters of ceavy metal content in Huanghe Estuary water. *Periodical of Ocean University of China* **2008**, *38*, (1), 157-162 (in Chinese).

26. Wu, X. The distribution characteristic of heavy metals from river to sea in Huanghe. Ocean University of China, 2007 (in Chinese).

27. Zhang, Y. Heavy metal' process in water and pollution risk assessment in surface sediments of the Yellow River Estuary, Yangtze Estuary and Pearl River Estuary. Third Institute of Oceanography, State Oceanic Administration, 2013 (in Chinese).

28. Zhang, X.; Chen, H.; Yao, Q.; Zhang, X., The Seasonal Changes and Flux of Trace Elements in the Lower Reaches of Yellow River. *Periodical of Ocean University of China* **2013**, *43*, (8), 69-75 (in Chinese).

29. Zhang, X. Distribution characteristics and controlling factors of heavy metals in the Yangtze River Estuary, the Yellow River Estuary and adjacent sea. Ocean University of China, 2013 (in Chinese).

30. Zhang, S.; Zheng, S.; Pang, X., Mercury in the Changjiang River Estuary water. *Marine Sciences* **1989**, *5*, 40-43 (in Chinese).

31. An, Q.; Wu, Y.; Wang, J.; Li, Z., Assessment of dissolved heavy metal in the Yangtze River estuary and its adjacent sea, China. *Environmental monitoring and assessment* **2010**, *164*, (1-4), 173-187.

32. Bi, C.; Chen, Z.; Shen, J.; Sun, W., Variations of mercury distribution in the water column during the course of a tidal cycle in the Yangtze Estuarine intertidal zone, China. *Science China Chemistry* **2012**, *55*, (10), 2224-2232.

33. Li, L.; Ping, X.; Shen, X., Spatial and temporal distribution and pollution evaluation of the dissolved heavy metals in the Changjiang Esturay. *Journal of Zhejiang University* **2011**, *38*, (5), 541-549 (in Chinese).

34. Wu, J., Evaluation of mercury concentration in Yangtze River Estuary. *Journal of Anhui Agri. Sci.* **2014**, *42*, (19), 6339-6340 (in Chinese).

35. Su, S.; Zhi, J.; Lou, L.; Huang, F.; Chen, X.; Wu, J., Spatio-temporal patterns and source apportionment of pollution in Qiantang River (China) using neural-based modeling and multivariate statistical techniques. *Physics and Chemistry of the Earth, Parts A/B/C* **2011**, *36*, (9), 379-386.

36. Li, J.; Cui, Y.; Xiao, L.; Hao, H.; Xue, J., Analysis and evaluation on the heavy metal pollution of seawater and marine organisms from Zhoushan Sea area and north bank in the Hangzhou Bay. *Marine Science Bulletin* **2013**, *32*, (4), 440-445(in Chinese).

37. Qian, T., Multivariate Statistical Analysis of Water Quality in Main and Tributary Stream of Qiantangjiang River in Hangzhou. *Environmental Monitoring in China* **2015**, *31*, (2), 74-77 (in Chinese).

38. Du, J.; Zhao, J.; Chen, B.; Chen, M.; Zhou, T.; Ma, Z.; Yu, Y.; Hu, W., Assessing ecological risks of heavy metals to marine organisms in Chinese offshore and Fujian main bays by species sensitivity distributions. *Asian Journal of Ecotoxicology* **2013**, *4*, 554-560 (in Chinese).

39. Lin, J., Studies on the content change of heavy metals in seawater of Minjiang Estuary. *Journal of Fujian Fisheries* **2013**, *35*, (3), 203-210 (in Chinese).

40. Luo, W.; He, Q.; Fang, P.; Chen, G., Study on the form of Hg, Cd in the adjacent sea of Pearl River Estuary. *Enviromental Chemistry* **1982**, *1*, (3), 245-250 (in Chinese).

41. He, Y.; Liu, Q.; Huang, C., Research of Hg contents in Guangdong off-shore sea water and sediment and studies of their correlation. *Marine Environmental Science* **1982**, *1*, (2), 41-48 (in Chinese).

42. He, G.; Yuan, G.; Li, F., Effect of economic development on water quality in Zhujiang Estuary. *Marine Environmental Science* **2005**, *23*, (4), 50-52 (in Chinese).

43. Liu, J.; Feng, X.; Zhu, W.; Zhang, X.; Yin, R., Spatial distribution and speciation of mercury and methyl mercury in the surface water of East River (Dongjiang) tributary of Pearl River Delta, South China. *Environmental Science and Pollution Research* **2012**, *19*, (1), 105-112.

44. Schuster, P. F.; Striegl, R. G.; Aiken, G. R.; Krabbenhoft, D. P.; Dewild, J. F.; Butler, K.; Kamark, B.; Dornblaser, M., Mercury export from the Yukon River basin and potential response to a changing climate. *Environmental science & technology* **2011**, *45*, (21), 9262-9267.

45. Amos, H. M.; Jacob, D. J.; Kocman, D.; Horowitz, H. M.; Zhang, Y.; Dutkiewicz, S.; Horvat, M.; Corbitt, E. S.; Krabbenhoft, D. P.; Sunderland, E. M., Global biogeochemical implications of mercury discharges from rivers and sediment burial. *Environmental science & technology* **2014**, *48*, (16), 9514-9522.

46. Zhao, L. Study on mercury pollution and security of the sideline aquatic products in suburb of Chengdu. Chengdu University of Technology, 2010 (in Chinese).

47. Zhao, Z.; Wang, Y.; Mu, Z.; Wang, D., Temporal and spatial variation of mercury in water of agro-forestry and livestock compound watershed in the Three Gorges Reservoir area. *Environment Science* **2015**, *36*, 136-142 (in Chinese).

48. Wu, G.; Cao, S., Mercury and cadmium contamination of irrigation water, sediment, soil and shallow groundwater in a wastewater-irrigated field in Tianjin, China. *Bulletin of environmental contamination and toxicology* **2010**, *84*, (3), 336-341.

49. Fan, M.; Nan, Y.; Ding, G.; Li, Y., Invastgation of drain outlet in Toutunhe River Basin in Xinjiang Province. *Groundwater* **2008**, *30*, (3), 32-33 (in Chinese).

50. Ding, Z.; Wang, W.; Qu, L.; Tang, Q.; Liu, C. e.; Cheng, J.; Hu, W., Mercury pollution and its ecosystem effects in Wanshan Mercury Miner Area, Guizhou. *Environment Science* **2004**, *25*, (2), 111-114 (in CHinese).

51. Li, J., Disposal and reuse of heavy metal wastewater from Huludao zinc plant. *Nonferrous Metals* **2002**, *54*, (4), 117-119 (in Chinese).

52. Liu, Y.; Ying, B.; Lin, H.; Yue, F.; Ming, L., Pollution characteristics of heavy metals in typical tin mineral processing plant of Yunnan, China. *The Chinese Journal of Nonferrous Metals* **2015**, *24*, (4),

1084-1090 (in Chinese).

53. Li, Z. Water quality analysis and treatment tecnology research of acid mine drainage from Banpo antimony mine in Guizhou province. Guizhou Normal University, 2014 (in Chinese).

54. Yang, B.; Lan, C.; Yang, C.; Liao, W.; Chang, H.; Shu, W., Long-term efficiency and stability of wetlands for treating wastewater of a lead/zinc mine and the concurrent ecosystem development. *Environmental Pollution* **2006**, *143*, (3), 499-512.

55. Wang, J.; Liu, Y., The research and industry practice of wastewater cleansing and recycling in a mercury antimony intergrowth sulphide ore flotation plant. *Mining & Metallurgy* **2002**, *11*, (B07), 278-280 (in Chinese).

56. Chen, J., Survival Development and Water Pollution Control of Dyeing and Printing Enterprises in Taihu Basin. *Textile Dyeing and Finishing Journal* **2013**, *35*, (9), 7-12 (in Chinese).

57. Lin, H.; Lan, R.; Ke, Z.; Jian, X.; Li, J., Simple analysis of vocation which releases the mercury in the municipality waste water pipe. *Environmental Science and Management* **2007**, *32*, (1), 9-12 (in Chinese).

58. Liang, L.; Jiang, G.; Hu, J., Determination of inorganic mercury and total organomercury in chemical wastewater by Cold Generation-Atomic Fluorescence Spectrometry. *Chinese Journal of Analytical Chemistry* **2001**, *29*, (4), 403-405 (in Chinese).

59. Wang, F.; Jiang, W.; Fang, Y.; Cheng, C., Preparation of Fe 3 O 4 magnetic porous microspheres (MPMs) and their application in treating mercury-containing wastewater from the polyvinyl chloride industry by calcium carbide method. *Chemical Engineering Journal* **2015**, *259*, 827-836.

60. Huang, Y.; Zhao, Z.; Xu, M.; Gao, Y., Biological approaches for disposing and reusing chemical wastewater. *Ecological Engineering* **2000**, *16*, (2), 281-292.

61. Wu, Q.; Wang, S.; Hui, M.; Wang, F.; Zhang, L.; Duan, L.; Luo, Y., New insight into atmospheric mercury emissions from zinc smelters using mass flow analysis. *Environmental Science & Technology* **2015**, *49*, (6), 3532-3539.

62. Cao, S.; Yuan, Q.; Mei, Z.; He, R.; Yu, S.; Li, S., Test report on treatment of heavy metal-containing wastewater from a battery factory. *Industrial Water & Wastewater* **2001**, *32*, (1), 26-28 (in Chinese).

63. Wang, J.; Xu, Z.; He, S.; Yang, B.; Wang, Z.; Yu, Y.; Mao, J., Analysis of heavy metal contentin wastewater and sludge from FGD system of coal-fired power plants. *Thermal Power Generation* **2010**, *39*, (5), 54-58 (in Chinese).

64. Shi, Y.; Du, J.; Wang, H.; Wang, X.; Tian, G.; Zhang, F.; Sang, J., Study on co-oxidation of gaseous elemental mercury of coal-fired flue gas by wastewater injection. *Journal of Environmental Engineering Technology* **2014**, *4*, (3), 205-211 (in Chinese).

65. Yu, L.; Qu, Y.; Gu, J.; Qi, X.; Han, Z., Study and analysis of mercury migration and transformation from coal-fired power plants based on field tests. *Environmental Science & Technology* **2014**, *37*, (120), 465-470 (in Chinese).

66. Gu, Y.; Yu, W.; Ma, X., Comparative Study on Current Situation of Coal Preparation and Policy at Home and Abroad. *Coal Preparation Technology* **2012**, *4*, 110-116 (in Chinese).

67. Wu, Y.; Streets, D.; Wang, S.; Hao, J., Uncertainties in estimating mercury emissions from coal-fired power plants in China. *Atmospheric Chemistry and Physics* **2010**, *10*, (6), 2937-2946.

68. Streets, D. G.; Hao, J.; Wu, Y.; Jiang, J.; Chan, M.; Tian, H.; Feng, X., Anthropogenic mercury emissions in China. *Atmospheric Environment* **2005**, *39*, (40), 7789-7806.

69. China Energy Statistical Yearbook. NBS: Beijing, China, 2012.

70. Lin, H.; Zhao, L.; Ke, Z.; He, J.; Li, J., The study on contribution of mercury from living community

to municipal sewage. Environment Science and Management 2008, 33, (9), 71-74 (in Chinese).

71. Wu, Z. Study of mercury form distribution in different stages of urban sewage treatment plant. Jilin University, 2014 (in Chinese).

72. Chen, C.; Zhang, Y.; Hu, X.; Yang, X.; Gu, L.; Chen, Q., The Analysis of Available Ingredients and Heavy Metal Lead andMercury of Domestic Sewage in Xinxiang City. *Journal of Anhui Agri. Sci.* **2007**, *34*, (22), 5933-5934 (in Chinese).

73. Lu, J.; Chen, P.; Yue, X., Study on the variation of heavy metals in the traditional municipal activated sludge wastewater treatment process. *Environmental Pollution & Control* **2008**, *30*, (5), 29-32 (in Chinese).

74. Kang, D.; Luo, L.; Wang, X. C.; Du, J. In *Investigation of Cu, Zn, Mn, Cr, Hg and As migration in domestic wastewater treatment plant*, Mechanic Automation and Control Engineering (MACE), 2010 International Conference on, 2010; IEEE: 2010; pp 2086-2089.

75. Zhao, J. L.; Jiang, Y. X.; Yan, B.; Wei, C.; Zhang, L. J.; Ying, G. G., Multispecies acute toxicity evaluation of wastewaters from different treatment stages in a coking wastewater - treatment plant. *Environmental toxicology and chemistry* **2014**, *33*, (9), 1967-1975.

76. Zeng, Z.; Zeng, X., Form of mercury in underground water and its relation with human health. *Yunnan Environmental Science* **1999**, *18*, (3), 49-50 (in Chinese).

77. Chen, W. Shallow groundwater geochemical evaluation of Hebei Plain. Inner Mongolia Agricultural University, 2008 (in Chinese).

78. Ni, T.; Diao, W.; Xu, J.; Liu, N., Non-carcinogenic risk assessment of eight metals in the source groundwater of Shaying River Basin. *Ecotoxicology* **2011**, *20*, (5), 1117-1123.

79. Weng, H.; Chen, X., Impact of polluted canal water on adjacent soil and groundwater systems. *Environmental Geology* **2000**, *39*, (8), 945-950.

80. Zeng, Z., Background value and formative factor of mercury in groundwater of the middle and lower reaches of Yangtze river. *Jiangsu Environmental Science and Technology* **1998**, *11*, (3), 12-15 (in Chinese).

81. Zeng, Z., formation and distribution of chalcophile elements of groundwater in the middle and lower reaches of Yangtze river. *Hydrogeology and Engineering Geology* **1994**, *21*, (6), 43-47 (in Chinese).

82. Huang, G.; Chen, Z.; Sun, J., Water quality assessment and hydrochemical characteristics of groundwater on the aspect of metals in an old town, Foshan, south China. *Journal of Earth System Science* **2014**, *123*, (1), 91-100.

83. Zhang, Y. Study on natural background levels in groundwater of Pearl River Delta. Chinese Academy of Geological Sciences, 2011 (in Chinese).

84. Xu, L.; Xu, X.; Meng, X., Risk assessment of soil erosion in different rainfall scenarios by RUSLE model coupled with Information Diffusion Model: A case study of Bohai Rim, China. *Catena* **2013**, *100*, 74-82.

85. Yue, S.; Shen, W.; Qiao, G., Analysis of soil erosion and spatial and temporal distribution of Hebei Province. *South-to-north Water Transfers and Water Science & Technology* **2010**, *8*, (3), 83-87 (in Chinese).

86. Li, X.; Yang, J.; Wen, H.; Yao, Y.; Xue, Z.; Wei, Z., Estimation of soil erosion amount based on RUSLE Model-A case study in Fuxin City of Liaoning Province. *Bulletin of Soil and Water Conservation* **2015**, *35*, (1), 199-204 (in Chinese).

87. Jiang, Q.; Xie, Y.; Zhang, Y.; Zhang, Y., Soil erosion and its differentiation of a small watershed in

water source areas of Beijing City and Tianjin City. *Bulletin of Soil and Water Conservation* **2011**, *31*, (1), 249-255 (in Chinese).

88. Yang, Z.; Zheng, D.; Li, Y., Value estimation of economic loss of soil erosion in Beijing region. *Journal of Soil and Water Conservation* **2004**, *18*, (3), 175-178 (in Chinese).

89. Jiang, Q.; Xie, Y.; Zhang, Y.; Zhang, H.; Hao, X., Soil erosion in a small watershed in water source areas of Beijing and Tianjin: Spatial simulation. *Chinese Journal of Ecology* **2011**, *30*, (8), 1703-1711 (in Chinese).

90. Xu, J.; Shi, M.; Wang, X.; Hu, Y.; Du, Z.; Jiang, C., Comparison of soil erosion monitoring methods in Xihe River Basin in Liaoning Province. *Bulletin of Soil and Water Conservation* **2011**, *31*, (2), 103-107 (in Chinese).

91. Ji, L.; Wang, Q.; Pi, Y.; Li, Y., Application of soil erosion modulus and universal soil loss equation in assessment of environment impact—taking example for Taizhou Ecological Tourism Area of Jiangsu Province. *Acta Agriculturae Jiangxi* **2012**, *24*, (2), 147-149 (in Chinese).

92. Zhang, M.; Yang, H.; Zhou, J.; Xu, L.; Sui, Z., Effects of soil erosion on soil quality in the rocky mountain areas of northern China. *Journal of Soil and Water Conservation* **2011**, *25*, (2), 218-221 (in Chinese).

93. Zhang, M.; Yang, H.; Xu, C. a.; Yang, J.; Liu, X., A preliminary study on soil erosion in Yimeng Mountainous area using 137Cs tracer. *Acta Pedologica Sinica* **2010**, (3), 408-414 (in Chinese).

94. Sun, X.; Zhang, D.; Yan, F.; Hu, X., Analysis of background value of soil erosion in Qingdao City based on grid cells. *Soil and Water Conservation in China* **2010**, (10), 58-61 (in Chinese).

95. Cao, S.; Zhong, B.; Yue, H.; Zeng, H.; Zeng, J., Development and testing of a sustainable environmental restoration policy on eradicating the poverty trap in China's Changting County. *Proceedings of the National Academy of Sciences* **2009**, *106*, (26), 10712-10716.

96. Hong, H.; Yang, Y.; Huang, J., Prediction of soil erosion at small watershed level based on GIS and Universal Soil Loss Equation (USLE). *Journal of Xiamen University* **2005**, *44*, (5), 675-679 (in Chinese).

97. Zeng, H.; Wu, J.; Lin, L., Using 137Cs tracer technique to investigate soil erosion distribution and total erosion amount in Taihu Lake catchment. *Marine Geology & Quaternary Geology* **2008**, *28*, (2), 79-85 (in Chinese).

98. Chen, S.; Yang, X.; Xiao, L.; Cai, H., Study of soil erosion in the southern Hillside Area of China based on RUSLE Model. *Resources Science* **2014**, *36*, (6), 1288-1297 (in Chinese).

99. Wang, L.; Yang, H.; Zhang, M.; Chen, J.; Wang, X.; Yang, B., Study on the soil erosion of different soil types in Zhenjiang City by 137Cs. *Soil and Water Conservation in China* **2011**, (6), 26-28 (in Chinese).

100. Li, L.; Wang, Y.; Liu, C., Effects of land use changes on soil erosion in a fast developing area. *International Journal of Environmental Science and Technology* **2014**, *11*, (6), 1549-1562.

101. Tang, X.; Guan, D., Organic carbon stocks and erosion in the soils of Guangdong, South China. *Environmental Earth Sciences* **2014**, *72*, (7), 2597-2606.

102. Ye, Y., Selection on modulus of soil erosion and water loss in Yangjiang Nuclear Power Project. *Electric Power Environmental Protection* **2004**, *20*, (2), 45-46 (in Chinese).

103. Tan, J.; Wang, Z., Estimation of soil erosion in Conghua City based on GIS and RUSLE. *Pearl River* **2011**, *32*, (2), 37-41 (in Chinese).

104. Zhang, X.; Chen, Y.; Chen, H.; Li, J., Evaluation on soil erosion of Huanggang River Basin in eastern Guangdong based on GIS and RUSLE. *Soil and Water Conservation in China* **2013**, (2), 34-37 (in Chinese).

105. Pan, M.; Wu, Y.; Ren, F.; Dong, Y.; Jiang, Y., Estimating soil erosion in the Dongjiang River Basin based on USLE. *Journal of Natural Resources* **2010**, *25*, (12), 2154-2164 (in CHinese).

106. Zeng, H.; Yang, S.; Wang, L.; Zheng, D.; Zhang, C.; Wang, X.; Gao, Y., The situation and control scheme of soil erosion in Songtao Reservoir Basin of Hainan Island. *Geographical Research* **2009**, *28*, (5), 1197-1207 (in Chinese).

107. Qiu, R.; Yang, Y.; Zhuang, Z.; Su, D.; Liu, J., Environmental investigation for nourishment of Beidaihe Beach. *Marine Geology Frontiers* **2013**, *29*, (2), 17-22 (in Chinese).

108. Li, J.; Han, C.; Kang, H.; Pei, Y.; Li, J.; Wang, H., Causal analysis on the resent spatio-temporal changes of the shorelines in Binhai New Area, Bohai Bay. *Geological Survey and Research* **2010**, *33*, (1), 63-70 (in Chinese).

109. Du, G.; Liu, J.; Wang, Z.; Xing, X., Study on the coastal buffer area-A case of eastern coast of Laizhou Bay. *Ludong University Journal* **2008**, *24*, (2), 172-178 (in Chinese).

110. Qiu, R.; Yang, Y.; Zhuang, Z.; Bao, M.; Liu, J., Coastal erosion disaster and countermeasures on sandy beach in Hebei Province. *Transactions of Oceanology and Limnology* **2009**, (2), 162-168 (in Chinese).

111. Liu, S., Dynamic study on Qinhuangdao coastal erosion. *Journal of EMCC* **2012**, *22*, (1), 25-28 (in Chinese).

112. Kong, F., The research on costal erosion of Qinhuangdao and the suggestions of prevention and restoration. *Urban Development Research* **2008**, (1), 73-76 (in Chinese).

113. Liu, X.; Zhuang, Z.; Xie, Y.; Yang, Y.; Qiu, R., Beach erosion and beach nourishment of Jinmeng Bay beach in Qinhuangdao. *Marine Geology Frontiers* **2014**, *30*, (3), 71-79 (in Chinese).

114. Han, X.; Gao, W.; Chu, Y., Investigation of the natural sandy coast erosion: A case study of Hebei Province. *Marine Geology & Quaternary Geology* **2008**, *28*, (3), 23-29 (in Chinese).

115. Zhuang, Z.; Yang, Y.; Liu, H., Sandy beach erosion and beach nourishment in circum-Bohai Bay. *Marine Geology Frontiers* **2013**, (2), 1-9 (in Chinese).

116. Wang, W.; Zhang, S.; Ji, Y., The variation and control reason of coastline in Jiaozhou Bay *Marine Geology Letters* **2006**, *22*, (9), 7-10 (in Chinese).

117. Chen, S.; Zhang, G.; Chen, X.; Zhang, J.; Xu, C., Coastal erosion feature and mechanism at Feiyantan in the Yellow River Delta. *Marine Geology & Quaternary Geology* **2006**, *25*, (3), 9-14 (in Chinese).

118. Du, G.; Wang, Q.; Sun, Z., Research of LOICZ and the buffer area in the eastern coast of Laizhou Bay. *Geographical Research* **2006**, *25*, (5), 853-864.

119. Feng, A.; Xia, D.; Gu, D.; Hao, S.; Li, C., Study on process and cause of the coastal erosion along the south coast of the Laizhou Bay. *Advances in Marine Science* **2006**, *24*, (1), 83-90 (in Chinese).

120. Yu, D.; Jiang, Y.; Song, Z., Distribution and development of coast erosion in Liaodong Peninsula. *Bulletin of Soil and Water Conservation* **2014**, *34*, (2), 34-37 (in Chinese).

121. Wang, Y.; Li, S.; Miao, L., Erosion disaster of east and west sandy coasts of Liaodong Bay and its prevention and control. *Coastal Engineering* **2005**, *24*, (1), 9-18 (in Chinese).

122. Li, B.; Zhuang, Z.; Cao, L.; Du, F., Countermeasures against coastal erosion for protection of the sandy coast in Shandong Province. *Marine Geology Frontiers* **2013**, *29*, (5), 47-55 (in Chinese).

123. Zhao, S.; He, Y.; Liang, F. In *Integrating remote sensing (RS) and GIS for study of evolution and change of coastal line of Yellow River Delta*, Optics & Photonics 2005, 2005; International Society for Optics and Photonics: 2005; pp 58850S-58850S-8.

124. Zhang, R.; Lu, L., The mechanism and trend of coastal erosion of Jiangsu Province in China.

Geographical Research 2002, 21, (4), 469-478 (in Chinese).

125. Wang, Z.; Xu, S.; Jiang, Y.; Mei, J.; Lv, T., Remote sensing based dynamic monitoring of coastline change and coastal erosion and deposition of the abandoned Yellow River delta in northern area of Jiangsu Province. *South-to North Water Transfers and Water Science & Technology* **2013**, (1), 136-139 (in Chinese).

126. Ha, C.; Chen, S.; Zhang, W.; Gu, G., Sediment dynamics characteristics and erosion processes at the Lusi Coast. *Marine Science Bulletin* **2009**, *28*, (3), 53-61 (in Chinese).

127. Zhuang, Z.; Yin, P., Coastal erosion and itsinfluence on southern Shandong sandy coast. *Marine Geology & Quaternary Geology* **2000**, *20*, (3), 15-21 (in Chinese).

128. Cui, M.; Niu, X.; Zhang, X., The Origin and Countermeasures of Coastal Erosion of Qingdao City. *Chinese Agricultural Science Bulletin* **2012**, *28*, (05), 283-288 (in Chinese).

129. Yang, J.; Li, G.; Gong, L.; Wang, N.; Zhang, B., Status and causes of beach erosion in Weihai, Shandong Province. *Periodical of Ocean University of China* **2012**, *12*, 97-106 (in Chinese).

130. Zhang, J.; Yin, P., Quantitative study on the evolution of the Xuejiadao headland-bay coast erosion. *Acta Oceanologica Sinica* **2002**, *24*, (3), 60-67 (in Chinese).

131. Wang, J.; Zhang, J.; Zhou, X.; Xu, H.; Tian, Z.; Zhang, J.; Ma, Y., Study on remote sensing monitoring of erosion along the coast between Longkou and Zhifu, Yantai. *Coastal Engineering* **2014**, *33*, (1), 51-59 (in Chinese).

132. Guo, T.; Zhao, X., Simply analyse of coastline erosion. *Ecological Environment* **2011**, *31*, (5), 37-39 (in Chinese).

133. Xia, D.; Wang, W.; Wu, G.; Cui, J.; Li, F., Coastal erosion in China. *Journal of Geographical Sciences* **1993**, *48*, (5), 468-475 (in Chinese).

134. Liu, Y.; Gao, S.; Li, P.; Gao, W.; Li, S.; Li, P.; Duan, B.; Du, J., Characteristics and genesis of geological hazards in the Dongshan Island, Fujian Province. *Haiyang Xuebao* **2015**, *37*, (1), 137-146 (in Chinese).

135. Li, B.; Cai, F.; Cao, L.; Liu, J.; Lei, G., Causes of beach erosion in Fujian and preventions. *Journal of Oceanography in Tanwan Strait* **2009**, *28*, (2), 156-162 (in Chinese).

136. Lin, J., Environment geology of the foreland coast margin migration a case study: South Fujian Province, China. *Jour nal o f Geo log ical Haza rds a nd Env iro nment Preserv ation* **2006**, *17*, (1), 29-34 (in Chinese).

137. Chen, J.; Cai, F., Coast evolution and sand transportation in east-southern Xiamen Island. *Journal of Oceanography in Tanwan Strait* **2001**, *20*, (2), 135-141 (in Chinese).

138. Wei, G.; Cai, F.; Qi, H.; Liu, J., Taking three typical nourished beaches for example to explore the character and mechanism of erosional hot spot at nourished beach. *Journal of Applied Oceanography* **2013**, (1), 52-60 (in Chinese).

139. Liu, J.; Cai, F.; Zheng, J.; Qi, H.; Lei, G., Study on the effects of harbor breakwater on beach in Banyue Bay of Fujian province and the nourishment countermeasure. *The Ocean Engineering* **2013**, *31*, (6), 110-117 (in Chinese).

140. Huang, H.; Dai, Z.; Sheng, K., Coastal erosion and associated response to the sea-level rise of Yintan, Beihai, Guangxi Province. *Journal of Oceanography in Tanwan Strait* **2011**, *30*, (2), 275-279 (in Chinese).

141. Zhou, H.; Chen, S.; Zhong, X.; Wang, D.; Chen, Y.; Gu, G., Sedimentary characteristics and stability analysis of the beach in west coast of Haikou Bay. *journal of Tropical Oceanography* **2013**, *32*, (1), 26-34 (in Chinese).

142. Wang, J.; Wu, C.; Yang, S.; Chen, Y.; Chen, S.; Zhang, W., Vulnerability analysis and scouring &

silting evolvement of Yudaisha Beach in Bo'ao, Hainan Island. *Shanghai Land & Resoures* **2011**, *32*, (3), 41-45 (in Chinese).

143. Xiao, Y.; Qiu, S., Inquiring into the coastal erosion mechanism and countermea sures for Bangtang Bay in Hainan. *Journal of South China Normal University* **2003**, (2), 124-129 (in Chinese).

144. Huang, S.; Luo, Z., Research on sandcoast erosion in Hainan Island. *Journal of Guangzhou University* **2003**, *2*, (5), 449-454 (in Chinese).

145. Bao, M.; Sun, W.; Ma, Y.; Zhang, J., Remote sensing monitoring and analysis of the changes in coastline and adjacent landscapes along the Qinglan Bay in the last 40 years. *Coastal Engineering* **2014**, *33*, (2), 66-76 (in Chinese).

146. Li, Z., Study on ecological enviroment vulnerability of coastal zone in Leizhou Peninsula. *Resource Development & Market* **2008**, *24*, (10), 905-907 (in Chinese).

147. Zhang, F.; Zhan, W.; Yao, Y.; Sun, J.; Zhan, M., Current situation and causes of coastal erosion in eastern Moyang River Estuary. *Journal of Tropical Oceanography* **2012**, *31*, (2), 41-46 (in Chinese).

148. Liu, M.; Zheng, X.; Han, L.; Lin, D.; Luo, Y.; Fang, H.; Ke, D.; Peng, X.; Chen, J., The status, reasons and countermeasures for the coastal erosion of the important coasts in the south China Sea. *Marine Science Bulletin* **2007**, *26*, (4), 80-84 (in Chinese).

149. Li, X.; Liang, H., Reasons and prevention measure of coast erosion of Sanya Bay. *Ocean Development and Management* **2008**, *25*, (12), 103-106.

150. Zhou, Y., Primary geological hazards to the continental coast in Shantou. *Tropical Geography* **2008**, *28*, (4), 331-337 (in Chinese).

151. Ci, Z.; Zhang, X.; Wang, Z., Elemental mercury in coastal seawater of Yellow Sea, China: Temporal variation and air–sea exchange. *Atmospheric Environment* **2011**, *45*, (1), 183-190.

152. Tseng, C. M.; Lamborg, C. H.; Hsu, S. C., A unique seasonal pattern in dissolved elemental mercury in the South China Sea, a tropical and monsoon-dominated marginal sea. *Geophysical Research Letters* **2013**, *40*, (1), 167-172.

153. Ci, Z.; Zhang, X.; Wang, Z.; Wang, C., Mass balance of mercury for the Yellow Sea downwind and downstream of East Asia: the preliminary results, uncertainties and future research priorities. *Biogeochemistry* **2014**, *118*, (1-3), 243-255.

154. Gao, X.; Zhou, F.; Chen, C. T. A., Pollution status of the Bohai Sea: An overview of the environmental quality assessment related trace metals. *Environment International* **2014**, *62*, (4), 12-30.

155. Zhang, G.; Zhang, J.; Liu, S., Characterization of nutrients in the atmospheric wet and dry deposition observed at the two monitoring sites over Yellow Sea and East China Sea. *Journal of Atmospheric Chemistry* **2007**, *57*, (1), 41-57.

156. WANG, Tracing the life history of a marginal sea——On "The South China Sea Deep" Research Program. *Chinese Science Bulletin* **2012**, *57*, (24), 3093-3114.

157. Wang, J.; Zhang, J.; Yang, J., Numerical simulation and preliminary analysis on ocean waves during Typhoon Nesat in South China Sea and adjacent areas. *Chinese Journal of Oceanology & Limnology* **2014**, *32*, (3), 665-680.

158. Lee, H. J.; Jung, K. T.; Foreman, M.; Chung, J. Y., A three-dimensional mixed finite-difference Galerkin function model for the oceanic circulation in the Yellow Sea and the East China Sea. *Continental Shelf Research* **2000**, *20*, (8), 863-895.

159. Fang, G.; Wei, Z., Water, heat and salt transport in Chinese adjacent sea: the result of global gridding model changed. *Science in China (Series D)* **2002**, *32*, (12), 969-977 (in Chinese).

160. Wang, C.; Wang, X., Spatial distribution of dissolved Pb, Hg, Cd, Cu and as in the Bohai sea. *Journal of Environmental Sciences* **2007**, *19*, (9), 1061-1066.

161. Wang, S.; Jia, Y.; Wang, S.; Wang, X.; Wang, H.; Zhao, Z.; Liu, B., Total mercury and monomethylmercury in water, sediments, and hydrophytes from the rivers, estuary, and bay along the Bohai Sea coast, northeastern China. *Applied Geochemistry* **2009**, *24*, (9), 1702-1711.

162. Gao, X.; Zhou, F.; Chen, C., Pollution status of the Bohai Sea: an overview of the environmental quality assessment related trace metals. *Environment international* **2014**, *62*, 12-30.

163. Peng, S., The nutrient, total petroleum hydrocarbon and heavy metal contents in the seawater of Bohai Bay, China: Temporal–spatial variations, sources, pollution statuses, and ecological risks. *Marine Pollution Bulletin* **2015**, *95*, (1), 445-451.

164. Ci, Z.; Zhang, X.; Wang, Z.; Niu, Z.; Diao, X.; Wang, S., Distribution and air-sea exchange of mercury (Hg) in the Yellow Sea. *Atmospheric Chemistry and Physics* **2011**, *11*, (6), 2881-2892.

165. Ruan, Z., Distribution of mercury in the surface water, in a section of Pacific Ocean. *Donghai Marine Science* **1990**, *3*, 66-69 (in Chinese).

166. Fu, X.; Feng, X.; Zhang, G.; Xu, W.; Li, X.; Yao, H.; Liang, P.; Li, J.; Sommar, J.; Yin, R., Mercury in the marine boundary layer and seawater of the South China Sea: Concentrations, sea/air flux, and implication for land outflow. *Journal of Geophysical Research: Atmospheres (1984–2012)* **2010**, *115*, (D6).

167. Laurier, F. J. G.; Mason, R. P.; Gill, G. A.; Whalin, L., Mercury distributions in the North Pacific Ocean—20 years of observations. *Marine Chemistry* **2004**, *90*, (1), 3-19.

168. Meng, M.; Shi, J.; Yun, Z.; Zhao, Z.; Li, H.; Gu, Y.; Shao, J.; Chen, B.; Li, X.; Jiang, G., Distribution of mercury in coastal marine sediments of China: Sources and transport. *Marine pollution bulletin* **2014**, *88*, (1), 347-353.

169. Luo, W.; Lu, Y.; Wang, T.; Hu, W.; Jiao, W.; Naile, J. E.; Khim, J. S.; Giesy, J. P., Ecological risk assessment of arsenic and metals in sediments of coastal areas of northern Bohai and Yellow Seas, China. *Ambio* **2010**, *39*, (5-6), 367-375.

170. Ye, S.; Laws, E. A.; Zhong, S.; Ding, X.; Pang, S., Sequestration of metals through association with pyrite in subtidal sediments of the Nanpaishui Estuary on the Western Bank of the Bohai Sea, China. *Marine pollution bulletin* **2011**, *62*, (5), 934-941.

171. Zhang, K. Primary study on pollution of heavy metals and biogenic elements in typical sea areas of the north Yellow Sea. Ji'nan University, 2012 (in Chinese).

172. Fang, T.; Chen, R., Mercury contamination and accumulation in sediments of the East China Sea. *Journal of Environmental Sciences* **2010**, *22*, (8), 1164-1170.

173. Shi, J.; Ip, C. C.; Zhang, G.; Jiang, G.; Li, X., Mercury profiles in sediments of the Pearl River Estuary and the surrounding coastal area of South China. *Environmental pollution* **2010**, *158*, (5), 1974-1979.

174. Yan, H.; Wang, Y.; Cheng, W.; Sun, L., Millennial mercury records derived from ornithogenic sediment on Dongdao Island, South China Sea. *Journal of Environmental Sciences* **2011**, *23*, (9), 1415-1423.

175. Boszke, L., Fluxes and balance of mercury in the inner Bay of Puck, southern Baltic, Poland: an overview. *Oceanologia* **2005**, *47*, (3).

176. Luo, W.; Wang, T.; Jiao, W.; Hu, W.; Naile, J. E.; Khim, J. S.; Giesy, J. P.; Lu, Y., Mercury in coastal watersheds along the Chinese Northern Bohai and Yellow Seas. *Journal of hazardous materials* **2012**, *215*, 199-207.

177. Zhu, J.; Xu, Z.; Liu, K.; Deng, L.; Fang, H.; Huang, L., Inner- and interspecies differences of mercury

concentration in common fishes from the Yellow Sea. *Environmental Science* **2014**, *35*, (2), 764-769 (in Chinese).

178. Xia, C.; Wu, X.; Lam, J. C.; Xie, Z.; Lam, P. K., Methylmercury and trace elements in the marine fish from coasts of East China. *Journal of Environmental Science and Health, Part A* **2013**, *48*, (12), 1491-1501.

179. Liu, J.; Xu, X.; Yu, S.; Cheng, H.; Hong, Y.; Feng, X., Mercury pollution in fish from South China Sea: Levels, species-specific accumulation, and possible sources. *Environmental research* **2014**, *131*, 160-164.

180. China Marine Statistical Yearbook. NOA: Beijing, China, 1993-2013.

181. Taniguchi, M.; Burnett, W. C.; Cable, J. E.; Turner, J. V., Investigation of submarine groundwater discharge. *Hydrological Processes* **2002**, *16*, (11), 2115-2129.