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Langevin Dynamics Engine

We have developed a software package which performs Langevin dynamics calculations on

a user specified PMF and diffusivity profile. The engine is implemented using the Python

and C programming languages. To run a simulation the user specifies a PMF and viscosity

profile as well as the hydrodynamic radius and mass.

The PMF profile is generated using a piecewise cubic Hermite polynomial (PCHIP) from

the following user-specified values: dz, the distance from the center to the edge of the mem-

brane; W1, W2, and W3, the PMF at the interface, between the interface/core, and at the core

of the membrane respectively; as well as a and b which correspond to the location of the water

bilayer interface and interface/core. We interpolate the points using scipy.interpolate.

Conveniently the PCHIP algorithm allows for both fast computation of the value at any

point. Furthermore we can precalculate the first derivative, the negative value of which is

the force, as another spline for fast evaluation. The viscosity profile is computed in a similar

fashion though requiring additional inputs: dz, the distance from the center to edge of the

membrane; d1, d2, d3, and d4, the viscocities in bulk, the interface, interface/core, and core

respectively; and a, b, c which specify the location of the interface, interface/core, and core

respectively.

The Grønbach-Jensen–Farago integrator is implemented in both Python and C. To gener-

ate Gaussian random number in C, we employ the use of the PCG random number generator

(RNG)S1 to sample random integers. These random integers are converted to random uni-

form floating point numbers by using a bit stream algorithm by Taylor R. Campbell. Uniform

floats are then transformed using the Box-Muller algorithm to yield a gaussian random num-

ber. The qualities of our C random number generator are compared to that of python library

numpy in fig. S1. The numpy and C RNGs are seeded off entropy from /dev/urandom. The

C integrator is wrapped using the Python/C API allowing it to be called from Python which

handles the system setup, configuration, and analysis.
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Figure S1: The binned probability distribution of both C and numpy generated gaussian
random numbers are shown in comparison with an ideal Gaussian with zero mean and unit
variance. On the right, a greyscale plot of the sequence of random numbers indicates, by
visual inspection, that they are not correlated and there are no repeat sequences.
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Milestoning Sampling and Efficiency

The total number of statistics aggregated during milestoning for each system is shown in

fig. S2. Notably, the statistics consist of only the trajectories which were members of the first

hitting point distribution (FHPD). To quantify the efficiency of identifying FHPD members

we ran a quick test of the accept rate of the milestone at z = 0 with adjacent milestones

at z = −1, 1 for 10000 random members with a timestep of 1 × 10−15 s. We find that

the typical rejection rate is upwards of ≈90% (9000) during the reverse phase. While most

rejections come about from self-crossing events occurring in the first several timesteps, and

thus contribute little to the total computer time, the number of trajectories required to

generate a well-explored FHPD is very large, making the compute time of rejections non-

trivial. None of the reported statistics account for the number of rejected trajectories.

Figure S2: Shown here are the total number of forward and reverse trajectories collected for
systems (a) flat, (b) small-barrier, (c) urea, and (d) codeine.
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Sampling Convergence of Crossing Probabilities

To quantify the impact of sampling on our confidence in crossing probability, we compute

the 95% confidence of ρ = 0.5 with respect to a total number of observations. Confidence

intervals are estimated using the percentile boostrap over 10,000 resamples. The results are

shown in fig. S3. Even at N = 200 the confidence interval is still quite large at 0.07. The

calculation of ρ is a binomial sampling problem, thus the 95% confidence interval should

follow the following solution,

CI(95) = 2ρ/
√
N − 1. (1)

Figure S3: The 95% confidence intervals of a 50-50 crossing probability with respect to the
total number of observations.
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