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Motivation

* Hydrological predictions relied upon by wide range
of users

 Understanding uncertainty important for decision
making
Alms
e Overall aim is to improve probabilistic predictions

e Representing uncertainty in hydrological
predictions challenging

 We perform comprehensive comparison between
approaches for representing uncertainty

* Provide recommendations for practitioners



Bureau of Meteorology

Seasonal Streamﬂow Forecasts

Hill River at near Andrews (A5070500)
Forecast period: Jan-Mar 2015
Terciles applied to
Percentage of forecast in each tercile forecast distribution

Hindcast RMSEP = 26
(Moderate skill)
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Terciles from historical data
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Streamflow (GL)

e Seasonal forecasts at ~200 locations

e Relied upon by large number of water managers around Australia
* Hydrological forecasts have wide range of uncertainty

* BOM is using our techniques to characterize uncertainty and ultimately improve
probabilistic predictions



Uncertainty estimation important for
making informed decisions

e Example: action A versus action B: Which one would you choose?

* No uncertainty:
Use “highest performance” outcome - choose action B!

e With uncertainty:

If risk-averse choose action with lowest probability of failure—> choose action Al

A

ac:;tion A

action B

N

Performance Failure Increasing System Performance .
(e.g stream health, drought resilience, flood safety)

Probability
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Sources of Errors in Hydrological Modelling
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Input errors Structural errors Output errors
e.g. Rainfall sampling errors e.g. Lumping processes e.g. Rating curve errors
Highly variable in time/space Ubiquitous but General accuracy ~10-20%
Low gauge density Poorly understood Larger errors in larger floods
Conceptualized
Observed Input(s) ‘ ‘ Observed response(s)
processes




Approaches to modelling uncertainty:
Selecting the right tool for the job

e Explicitly model individual sources of uncertainty
e Advantage of diagnosing dominant sources of error
 There are tools to do this: Bayesian total error analysis (BATEA)

e But these are currently research tools, i.e. need significant
expertise, and not as yet easy to use for practitioners

 Model total uncertainty in predictions
e Lump all errors together (errors=observed-predictions)
e Simpler to implement than BATEA

* Practical approaches are available which can produce reliable
probabilistic predictions of total uncertainty

 Unable to determine the dominant source of error



Challenges in modelling errors
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[Beven and Westerberg, 2011]

e Errors scale with flow (heteroscedastic)
e Errors have persistence (not independent between time steps)

e Appropriate representation of both required for reliable probabilistic
predictions



Comprehensive comparison of approaches

for treating predictive errors

First empirical and theoretical comparison
between wide range of approaches
(simple=>complex)

8 different approaches

23 catchments from Australia and USA
2 hydrological models (GR4J, HBV)
Cross validation with 10 yrs data
~3500 model calibrations

~4000 CPU hours (150 days) on Tizard
Multiple performance metrics

Surprising results!
Submitted to WRR soon
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What makes good predictions?

We want predictions that are Rellablec,) precise, unbiased

0 Observed
= 50% probability
90% probability

e Reliable: Predictions statistically consistent s
with observed data

* Precise: Small uncertainty in predictions

e With low volumetric bias: total volume from
predicted flow matches observations

Reliable but imprecise Precise but unreliable Biased

© Observed
= 50% probability
90% probability

O Observed —
0O .
‘ = 50% probability

A 90% probability

0 Observed
= 50% probability
90% probability




Choice of error model has large influence
on predictive performance

e Perennial catchment (Spring River, USA), GR4J hydro model

Metrics

High flows

Low flows
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Standard least

squares (SLS)
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Low flows Metrics

Log transformed
flows
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e SLS under-estimates uncertainty for low flows, over-estimates
uncertainty for high flows

e Log transformation performs much better, as shown by all metrics



Zero flows have large influence on
performance of error model

e Ephemeral catchment (Rocky River, SA), HBV hydro model

Low flows Metrics
Log =@
transformed % -
flows E o
1290 1310 1330 2660 2680 2700 Rel Prec Bias
High flows = Low flows Metrics
— O o o i
Box Cox 3 ~
~N 3
transformed E +~ R (R
flows — D I I I I I g e L TR TR RILLY e .
1200 1310 1330 2660 2680 o700  Rel Prec Bias

e Log produces unrealistically large uncertainty limits
e Box Cox transformation (lambda=0.2) performs much better
 Theory used to explain findings



Importance of modelling persistence

e Persistence important when aggregating data
— E.g. daily predictions aggregated to monthly values
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[Evin et al, 2014]

e |gnoring persistence produces under-estimation of predictive
uncertainty when aggregating data



Summary and Recommendations

e Comprehensive evaluation a range of approaches for modelling
total predictive uncertainty
* Eight Approaches: Simple=>Complex
e Empirical results: 23 catchments and 2 hydro models

 Theory: Understanding when and why approaches provide good or bad
predictive performance, e.g. ephemeral versus perennial catchments

* Practical Impacts: Simplest approach is often the best!

e Prudent selection of simple approaches provides best predictive
performance
e Simple to implement for practitioners

e Study provides practical recommendations to obtain reliable and precise
probabilistic predictions

e Looking into developing easy to use software for interested
partners



