Supporting Information

An Efficient Synthesis of $\boldsymbol{\beta}$ - \boldsymbol{C}-Glycosides Based on the Conformational Restriction Strategy: Lewis Acid-Promoted Silane Reduction of the Anomeric Position with Complete Stereoselectivity

Masaru Terauchi, Hiroshi Abe, Akira Matsuda, and Satoshi Shuto*

Corresponding Author: Satoshi Shuto
Tel: 81-11-706-3229
Fax: 81-11-706-4980
E-mail: shu@ pharm.hokudai.ac.jp

Contents: Schemes S1 and S2, Table S1, and experimental details on the synthesis of the reaction substrates and the Lewis acid-promoted silane reduction, and ${ }^{1} \mathrm{H}$ NMR charts of $\mathbf{3 b}, \mathbf{5}$, and the silane reduction products from 2c and $\mathbf{4 a}$.

Scheme S1

$\mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{OH}$ or $X=O H, Y=H$

8: $X=H, Y=O B n$ (ref. 16)
9: $\mathrm{X}=\mathrm{OBn}, \mathrm{Y}=\mathrm{H}(54 \%$ from 7)

2a: $X=H, Y=O B n, R=M e(53 \%)$
2b: $X=H, Y=O B n, R=P h(87 \%)$
2c: $X=H, Y=O B n, R=\operatorname{allyl}(79 \%)$
4a: $X=O B n, Y=H, R=M e(78 \%)$
4b: $X=O B n, Y=H, R=P h(87 \%)$
4c: $X=O B n, Y=H, R=\operatorname{allyl}(87 \%)$
10: $X=H, Y=O B n$ (ref. 16)
11: $X=O B n, Y=H$ (77\%)

Scheme S2

Table S1. Coupling constants between adjacent protons of the substrates in ${ }^{1} \mathrm{H}$ NMR. ${ }^{\text {a }}$

substrate	coupling constant $(\mathrm{Hz})^{\mathbf{b}}$		
	$J_{2,3}$	$J_{3,4}$	$J_{4,5}$
1a	9.3	9.1	
1b	9.4		
1c	9.3	9.1	
2a	9.4		
2b	9.7		9.9
2c	9.7	9.9	
3a	2.6	9.3	9.6
3b	3.4		
3c	2.4	10.0	
4a	2.6	9.7	
4b	ca.		
4c	2.4	9.9	11.0
$\mathbf{5}$	2.7	10.3	

${ }^{\text {a }}$ Measured at 400 MHz in CDCl_{3}.
bundecipherable coupling constants are blank.

Experimental

General Experimental Methods. Chemical shifts are reported in ppm downfield from tetramethylsilane and J values are given in hertz. Thin-layer chromatography was done on Merck coated plate $60 \mathrm{~F}_{254}$. Silica gel chromatography was done on Merck silica gel 7734 or 9385 . Reactions were carried out under an argon atmosphere.

Phenyl
2,6-Di-O-benzyl-3,4-O-[(2S,3S)-2,3-dimethoxbutan-2,3-diyl]-1-thio- β-dmannopyranoside (9). A mixture of $7(15 \mathrm{~g}, 34 \mathrm{mmol})$ and $\mathrm{NaOMe}(28 \%, 1 \mathrm{~mL}, 5 \mathrm{mmol})$ in MeOH $(50 \mathrm{~mL})$ was stirred at room temperature for 30 min , and then neutralized by Diaion PK 212 resins $\left(\mathrm{H}^{+}\right.$ form). After filtration off the reigns, the filtrate was evaporated, and a mixture of the resulting residue $(9.2 \mathrm{~g}),\left[\mathrm{Me}(\mathrm{MeO})_{2} \mathrm{C}_{2}(6.3 \mathrm{~mL}, 35 \mathrm{mmol}),(\mathrm{MeO})_{3} \mathrm{CH}(15 \mathrm{~mL}, 137 \mathrm{mmol})\right.$ and $\mathrm{CSA}(45 \mathrm{mg})$ in $\mathrm{MeOH}(120 \mathrm{~mL})$ was heated under reflux for 14 h . After addition of $\mathrm{NaHCO}_{3}(100 \mathrm{mg})$, the resulting mixture was evaporated, and the residue was partitioned between AcOEt and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and purified by column chromatography $\left(\mathrm{SiO}_{2}, 50 \% \mathrm{AcOEt}\right.$ in hexane) to give Phenyl 3,4-O-[(2S,3S)-2,3-dimethoxbutan-2,3-diyl]-1-thio- β-D-mannopyranoside as an oil ($7.2 \mathrm{~g}, 55 \%$). After stirring of a mixture of the resulting oil ($3.9 \mathrm{~g}, 10 \mathrm{mmol}$) and $\mathrm{NaH}(60 \%, 1.0$ $\mathrm{g}, 25 \mathrm{mmol})$ in DMF $(20 \mathrm{~mL})$ at room temperature for $1 \mathrm{~h}, \mathrm{BnBr}(3.0 \mathrm{~mL}, 25 \mathrm{mmol})$ was added, and the resulting mixture was further stirred at room temperature for $1 \mathrm{~h} . \mathrm{MeOH}(1 \mathrm{~mL})$ was added to the mixture, and the resulting mixture was partitioned between AcOEt and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and purified by column chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{AcOEt}\right.$ in hexane) to give $9(5.6 \mathrm{~g}, 99 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta 7.46-7.20(\mathrm{~m}, 15 \mathrm{H})$, $5.52(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~d}, 1 \mathrm{H}, J=12.2), 4.69(\mathrm{~d}, 1 \mathrm{H}, J=12.2), 4.60(\mathrm{~d}, 1 \mathrm{H}, J=11.9), 4.50(\mathrm{~d}, 1 \mathrm{H}, J=$ 11.9), 4.42 (ddd, $1 \mathrm{H}, J=3.8,4.0,10.0$), 4.27 (dd, $1 \mathrm{H}, J=10.0,10.3$), 4.05 , (dd, $1 \mathrm{H}, J=3.0,10.3$), 3.97 (dd, $1 \mathrm{H}, J=3.8,4.0$), $3.80(\mathrm{~d}, 2 \mathrm{H}, J=3.8$), 3.31 ($\mathrm{s}, 3 \mathrm{H}$), $3.20(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3$ H); LRMS (FAB, positive) $m / z 567\left(\mathrm{MH}^{+}\right)$.

2,6-Di- O-benzyl-3,4-O-[(2S,3S)-2,3-dimethoxbutan-2,3-diyl]- β-D-mannolactone (11). A mixture of $9(2.8 \mathrm{~g}, 5.0 \mathrm{mmol})$ and $\mathrm{NBS}(1.3 \mathrm{~g}, 7.5 \mathrm{mmol})$ in aceton $-\mathrm{H}_{2} \mathrm{O}(9: 1,10 \mathrm{~mL})$ was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , and then $\mathrm{NaHCO}_{3}(100 \mathrm{mg})$ was added. The resulting mixture was evaporated, and the residue was partitioned between AcOEt and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and purified by column chromatography $\left(\mathrm{SiO}_{2}, 30 \% \mathrm{AcOEt}\right.$ in hexane) to give the hydrolyzed hemiacetalic product as a white solid ($2.3 \mathrm{~g}, 95 \%$). A mixture of the obtained white solid $(1.4 \mathrm{~g}, 3.0 \mathrm{mmol})$ and $\mathrm{Ac}_{2} \mathrm{O}(5 \mathrm{ml})$ in DMF (10 mL) was stirred at $80^{\circ} \mathrm{C}$ for 2 h and partitioned between AcOEt and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and purified by column chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{AcOEt}\right.$ in hexane) to give 11 as an oil ($1.1 \mathrm{~g}, 77 \%$ from 9), which was immediately used for the next Grignard reaction because of its instability.

4,6-O-Benzyldene-3,4-O-[(2S,3S)-2,3-dimethoxbutan-2,3-diyl]- β-D-mannolactone (13). A mixture of $\mathbf{1 2}(420 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{Ac}_{2} \mathrm{O}(3 \mathrm{ml})$ in DMF $(6 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ for 2 h and then partitioned between AcOEt and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and purified by column chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{AcOEt}\right.$ in hexane) to give $\mathbf{1 3}$ as an oil ($300 \mathrm{mg}, 72 \%$), which was immediately used for the next Grignard reaction because of its instability.

General Procedure for the Grignard Additions. A mixture of 11, 13, or 2,3,4,6-tetra-O-benzyl- β-D-mannolactone ${ }^{4 \mathrm{a}}(1.0 \mathrm{mmol})$ and a Grignard reagent $(1.2 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , and then aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The resulting mixture was partitioned between AcOEt and $\mathrm{H}_{2} \mathrm{O}$, and the organic layer was washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and purified by column chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{AcOEt}\right.$ in hexane). 2a: 78% as a colorless oil; ${ }^{1} \mathrm{H}$ NMR($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.26(\mathrm{~m}, 10 \mathrm{H}), 4.99(\mathrm{~d}, 1 \mathrm{H}, J=11.1), 4.71(\mathrm{~d}, 1 \mathrm{H}, J=11.1), 4.71(\mathrm{~d}$, $1 \mathrm{H}, J=12.1$), 4.56 (d, $1 \mathrm{H}, J=12.1$), 4.15-4.06 (m, 2 H), 3.78-3.69 (m, 3 H), $3.42(\mathrm{~d}, 1 \mathrm{H}, J=9.4)$, $3.31(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~s}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$; LRMS (FAB, positive) $m / z 489\left(\mathrm{MH}^{+}\right) . \mathbf{2 b}: 94 \%$ as a colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; \delta 7.60-57(\mathrm{~m}, 2 \mathrm{H})$, 7.37-7.02 (m, 11 H), $7.01(\mathrm{~d}, 2 \mathrm{H}, J=3.2), 4.66(\mathrm{~d}, 1 \mathrm{H}, J=12.3), 4.56(\mathrm{~d}, 1 \mathrm{H}, J=12.3), 4.53(\mathrm{~d}, 1 \mathrm{H}$, $J=10.8$), 4.27-4.22 (m, 2 H), 4.09 (dd, $1 \mathrm{H}, J=4.2,10.0$), 3.99 (dd, $1 \mathrm{H}, J=9.9,10.0$), 3.86 (dd, 1 H , $J=4.2,11.2), 3.75(\mathrm{~d}, 1 \mathrm{H}, J=0,11.2), 3.63(\mathrm{~d}, 1 \mathrm{H}, J=9.7), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 1$ H), $1.35(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$; LRMS (FAB, positive) $m / z 551\left(\mathrm{MH}^{+}\right) . \mathbf{2 c}$: 79% as a colorless oil; ${ }^{1} \mathrm{H}$ NMR($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.25(\mathrm{~m}, 10 \mathrm{H}), 5.91-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{dd}, 1 \mathrm{H}, J=2.3,11.0), 5.08$ (dd, $1 \mathrm{H}, J=2.3,17.1), 4.99(\mathrm{~d}, 1 \mathrm{H}, J=11.1), 4.70(\mathrm{~d}, 1 \mathrm{H}, J=11.1), 4.63(\mathrm{~d}, 1 \mathrm{H}, J=12.3), 4.56(\mathrm{~d}$, $1 \mathrm{H}, J=12.3$), $4.18(\mathrm{dd}, 1 \mathrm{H}, J=9.7,9.9), 4.06(\mathrm{ddd}, 1 \mathrm{H}, J=1.8,4.1,10.2), 3.76(\mathrm{dd}, 1 \mathrm{H}, J=9.9$, 10.2), 3.74 (dd, $1 \mathrm{H}, J=4.1,11.0$), 3.67 (dd, $1 \mathrm{H}, J=1.8,11.0$), 3.54 (d, $1 \mathrm{H}, 9.7$), 3.31 (s, 3 H), 3.22 ($\mathrm{s}, 3 \mathrm{H}$), $2.87(\mathrm{~s}, 1 \mathrm{H}), 2.47-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H})$; LRMS (FAB, positive) m/z 515 $\left(\mathrm{MH}^{+}\right)$; LRMS (FAB, positive) $m / z 515\left(\mathrm{MH}^{+}\right)$. 3b: 77% as a colorless oi; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.63-6.83(\mathrm{~m}, 20 \mathrm{H}), 4.91(\mathrm{~d}, 1 \mathrm{H}, J=10.8), 4.74-4.71(\mathrm{~m}, 3 \mathrm{H}), 4.60(\mathrm{~d}, 1 \mathrm{H}, J=12.2), 4.59(\mathrm{~d}, 1 \mathrm{H}$, $J=10.8), 4.35(\mathrm{~d}, 1 \mathrm{H}, 11.1), 4.26(\mathrm{dd}, 1 \mathrm{H}, J=2.7,9.4), 4.19-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{dd}, 1 \mathrm{H}, J=9.4$, 9.7), 3.92-3.89 (m, 2 H), 3.87-3.81 (m, 2 H), $2.49(\mathrm{~s}, 1 \mathrm{H})$; HRMS calcd for $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{NaO}_{6}\left(\mathrm{MNa}^{+}\right)$: 639.2723, found: 639.22728. 4a: 69% as a colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.22(\mathrm{~m}$, $10 \mathrm{H}), 4.97(\mathrm{~d}, 1 \mathrm{H}, J=11.1), 4.65-4.52(\mathrm{~m}, 3 \mathrm{H}), 4.24(\mathrm{dd}, 1 \mathrm{H}, J=2.6,9.7), 4.07-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.73$ (dd, $1 \mathrm{H}, 1.4,10.3$), 3.63 (dd, $1 \mathrm{H}, 6.4,10.3$), 3.54 (d, $1 \mathrm{H}, J=2.6$), 3.29 (s, 3 H), 3.16 ($\mathrm{s}, 3 \mathrm{H}$), 2.64 (s , $1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H})$; LRMS (FAB, positive) $\mathrm{m} / \mathrm{z} 489\left(\mathrm{MH}^{+}\right) .4 \mathrm{~b}: 87 \%$ as a colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-6.90(\mathrm{~m}, 15 \mathrm{H}), 4.59(\mathrm{~d}, 1 \mathrm{H}, J=12.4)$, 4.48-4.36 (m, $3 \mathrm{H}), 4.17(\mathrm{~d}, 1 \mathrm{H}, J=9.6), 4.03(\mathrm{dd}, 1 \mathrm{H}, J=9.6,9.7), 3.76-3.68(\mathrm{~m}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H})$, $3.14(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H})$, LRMS (FAB, positive) m/z $573\left(\mathrm{MNa}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{8}$: C, 69.80; H, 6.96. Found: C, $69.69 ; \mathrm{H}, 7.03$. 4c: 87% as a colorless oil. ${ }^{1} \mathrm{H}$
$\operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.21(\mathrm{~m}, 10 \mathrm{H}), 5.91-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.13(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~d}, 1 \mathrm{H}$, $J=11.1), 4.64-4.51(\mathrm{~m}, 3 \mathrm{H}), 4.26(\mathrm{dd}, 1 \mathrm{H}, J=2.4,9.9), 4.14(\mathrm{dd}, 1 \mathrm{H}, J=9.9,11.0), 4.05$ (ddd, 1 H , $2.0,5.8,11.0), 3.75(\mathrm{dd}, 1 \mathrm{H}, J=2.0,11.0), 3.76(\mathrm{dd}, 1 \mathrm{H}, J=5.8,11.0), 3.60(\mathrm{~d}, 1 \mathrm{H}, J=2.4), 3.29(\mathrm{~s}$, $3 \mathrm{H}), 3.19$ (s, 3 H), 2.74 (dd, $1 \mathrm{H}, J=5.4,11.5$), 2.29 (dd, $1 \mathrm{H}, J=8.3,11.5$), 1.31 ($\mathrm{s}, 3 \mathrm{H}), 1.28$ ($\mathrm{s}, 3$ H); LRMS (FAB, positive) $m / z 515\left(\mathrm{MH}^{+}\right) .5: 78 \%$ as a colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.52-7.26 (m, 15 H), 5.84-5.73 (m, 1 H), $5.63(\mathrm{~s}, 1 \mathrm{H}), 5.27$ (dd, $1 \mathrm{H}, J=2.1,8.3$), $5.16(\mathrm{dd}, 1 \mathrm{H}, J=$ 2.1, 17.0), $5.05(\mathrm{~d}, 1 \mathrm{H}, J=11.1), 4.93(\mathrm{~d}, 1 \mathrm{H}, J=12.3), 4.75(\mathrm{~d}, 1 \mathrm{H}, J=12.3), 4.68(\mathrm{~d}, 1 \mathrm{H}, J=$ 11.1), 4.24 (dd, $1 \mathrm{H}, J=9.0,9.9$), 4.21-4.17 (m, 2 H), 3.94 (ddd, $1 \mathrm{H}, J=4.7,9.9,10.3$), 3.83 (dd, 1 H , $J=9.9,10.3$), $3.77(\mathrm{~d}, 1 \mathrm{H}, J=2.7), 2.78(\mathrm{dd}, 1 \mathrm{H}, J=5.1,13.6), 2.61(\mathrm{~s}, 1 \mathrm{H}), 2.11(\mathrm{dd}, 1 \mathrm{H}, J=9.7$, 13.6); HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{O}_{6}\left(\mathrm{MNa}^{+}\right)$: 489.2199. Found: 489.2290 .

General Procedure for the Silane Reduction. A mixture of a substrate (0.20 mmol), $\mathrm{Et}_{3} \mathrm{SiH}$ ($35 \mu \mathrm{~L}, 0.22 \mathrm{mmol}$) and TMSOTf ($40 \mu \mathrm{~L}, 0.22 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , and then $\mathrm{Et}_{3} \mathrm{~N}(100 \mu \mathrm{~L})$ was added. The resulting mixture was partitioned between AcOEt and aqueous saturated. NaHCO_{3}, and the organic layer was washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and purified by column chromatography $\left(\mathrm{SiO}_{2}, 15 \%\right.$ AcOEt in hexane) to give the corresponding C glycosidic product. C-Glycoside from 1a: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.13(\mathrm{~m}, 20 \mathrm{H}), 4.89-$ $4.79(\mathrm{~m}, 4 \mathrm{H}), 4.67-4.52(\mathrm{~m}, 4 \mathrm{H}), 3.72-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.45-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{dd}, 1 \mathrm{H}, J=9.0,9.1)$, $1.32(\mathrm{~d}, 3 \mathrm{H}, J=6.1)$. LRMS (FAB, positive) $m / z 539\left(\mathrm{MH}^{+}\right)$; LRMS (FAB, positive) $m / z 539\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{O}_{5}$: C, 78.04; H, 7.11. Found: C, 78.11; H, 7.22. C-Glycoside from 1b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ; $\delta 7.66-6.97(\mathrm{~m}, 25 \mathrm{H}), 4.94-4.86(\mathrm{~m}, 3 \mathrm{H}), 4.67-4.53(\mathrm{~m}, 4 \mathrm{H}), 4.39(\mathrm{~d}, 1 \mathrm{H}$, $J=10.3$), 4.20-4.06 (m, 2 H), $3.87-3.71(\mathrm{~m}, 3 \mathrm{H}), 3.55(\mathrm{~d}, 1 \mathrm{H}, J=9.4), 3.18(\mathrm{~s}, 1 \mathrm{H})$; LRMS (FAB, positive) $m / z 601\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{O}_{5}: \mathrm{C}, 79.97 ; \mathrm{H}, 6.71$. Found: C, 79.82; H, 6.85. \boldsymbol{C} Glycoside from 1c: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.16(\mathrm{~m}, 20 \mathrm{H}), 5.98-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.04$ (m, 2 H), 4.93-4.80 (m, 4 H), 4.67-4.55 (m, 4 H), 3.75-3.66 (m, $3 H$), 3.60 (dd, $1 \mathrm{H}, J=9.3,9.4$), 3.41 (ddd, $1 \mathrm{H}, J=1.9,4.2,9.7$), $3.38-3.30$ (m, 2 H), 2.60 (ddd, $1 \mathrm{H}, J=1.9,6.2,14.7$), 2.30 (ddd, $1 \mathrm{H}, J=$ 4.2, 7.3, 14.7); LRMS (FAB, positive) $m / z 565\left(\mathrm{MH}^{+}\right)$.Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{O}_{5}: \mathrm{C}, 78.69 ; \mathrm{H}, 7.14$. Found: C, 78.60; H, 7.11. C-Glycoside from 2a: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.27(\mathrm{~m}, 10 \mathrm{H})$, 4.97 (d, $1 \mathrm{H}, J=10.8$), 4.66-4.58 (m, 3 H), 3.86 (dd, $1 \mathrm{H}, J=9.4,9.4$), 3.74-3.59 (m, 4 H), 3.41 (dd, 1 $\mathrm{H}, J=6.1,9.1$), $3.30(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{dd}, 1 \mathrm{H}, J=9.1,9.4), 3.19(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~d}, 3 \mathrm{H}, J=$ 6.1), $1.29(\mathrm{~s}, 3 \mathrm{H})$; LRMS (FAB, positive) $\mathrm{m} / \mathrm{z} 473\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{7}: \mathrm{C}, 68.62 ; \mathrm{H}, 7.68$. Found: C, 68.78; H, 7.74. C-Glycoside from 2b: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.40(\mathrm{~m}, 2 \mathrm{H})$, 7.36-7.20 (m, 8 H), 7.18-7.16 (m, 3 H), 6.97-6.95 (m, 2 H), 4.64 (d, $1 \mathrm{H}, J=12.3$), 4.55 (d, $1 \mathrm{H}, J=$ 12.3), 4.54 (d, $1 \mathrm{H}, J=10.9$), 4.26 (d, $1 \mathrm{H}, J=10.8$), 4.05-3.98 (m, 2 H), 3.93 (dd, $1 \mathrm{H}, J=9.6,9.7$), 3.78-3.77 (m, 2 H), 3.72 (ddd, $1 \mathrm{H}, J=2.1,3.9,9.6$), 3.56 (dd, $1 \mathrm{H}, J=9.0,9.1$), 3.33 (s, 3 H), 3.25 (s, $3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$; LRMS (FAB, positive) $m / z 535\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{7}: \mathrm{C}$,
71.89; H, 7.16. Found: C, 72.03 ; H, 7.26. C-Glycoside from 2c: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-$ $7.25(\mathrm{~m}, 10 \mathrm{H}), 5.96-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{~d}, 1 \mathrm{H}, J=10.9)$, 4.64-4.56(m,3H), 3.89 (dd, $1 \mathrm{H}, J=9.1,9.7$), 3.73 (dd, $1 \mathrm{H}, J=1.8,11.1$), 3.67 (dd, $1 \mathrm{H}, J=5.0,11.1$), 3.66 (dd, $1 \mathrm{H}, J$ = 9.7, 10.2), 3.55 (ddd, $1 \mathrm{H}, J=1.8,5.0,10.2$), $3.42(\mathrm{dd}, 1 \mathrm{H}, J=9.1,9.1), 3.41-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}$, $3 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{NaO}_{7}\left(\mathrm{MNa}^{+}\right): 521.2513$, found: 521.2520. \boldsymbol{C}-Glycoside from 3a: ${ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, CDCl_{3}) $\delta 7.39-7.13(\mathrm{~m}, 20 \mathrm{H}), 4.99(\mathrm{~d}, 1 \mathrm{H}, J=12.0), 4.86(\mathrm{~d}, 1 \mathrm{H}, J=10.9)$, 4.76-4.65 (m, 3 H), 4.58-4.51 (m, 3 H), 3.86 (dd, $1 \mathrm{H}, J=9.4,9.6$), 3.73 (dd, $1 \mathrm{H}, J=1.8,10.8$), 3.69-3.58 (m, 3 H), 3.47$3.43(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~d}, 3 \mathrm{H}, J=6.2)$; LRMS (FAB, positive) $m / z 539\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{O}_{5}$: C, 78.04; H, 7.11. Found: C, 78.45; H, 7.31. C-Glycoside from 3b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.40-7.11 (m, 23 H), 6.94 (d, $2 \mathrm{H}, J=7.1$), 4.92 (d, $1 \mathrm{H}, J=10.8$), 4.75 (d, $1 \mathrm{H}, J=12.0$), 4.70-4.60 (m, 4 H), 4.48-4.44 (m, 2 H), 4.15 (d, $1 \mathrm{H}, J=11.4$), 4.05 (dd, $1 \mathrm{H}, J=9.4,9.6$), $3.94(\mathrm{~d}, 1 \mathrm{H}, J=2.6$), $3.87-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.79$ (dd, $1 \mathrm{H}, J=3.0 .9 .6$), 3.62 (ddd, $1 \mathrm{H}, J=1.9,4.5,9.7$); LRMS (FAB, positive) $\mathrm{m} / \mathrm{z} 601\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{O}_{5}: \mathrm{C}, 79.97 ; \mathrm{H}, 6.71$. Found: C, 79.79; H, 6.71. \boldsymbol{C} Glycoside from 3c: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.16(\mathrm{~m}, 20 \mathrm{H}), 5.74-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.04-4.98$ (m, 2 H), 4.87 (d, $1 \mathrm{H}, J=10.9$), 4.79-4.53 (m, 7 H), 3.91 (dd, $1 \mathrm{H}, J=9.3$, 9.6), 3.77-3.66 (m, 3 H), $3.60(\mathrm{dd}, 1 \mathrm{H}, J=2.1,9.3), 3.47-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{dd}, 1 \mathrm{H}, J=6.7,7.0), 2.51$ (ddd, $1 \mathrm{H}, J=6.7$, 7.1, 13.8), 2.33 (ddd, $1 \mathrm{H}, 7.1,7.3,13.8$); LRMS (FAB, positive) $m / z 565\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{O}_{5}$: C, 78.69; H, 7.14. Found: C, 78.20; H, 7.36. C-Glycoside from 4a: ${ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, 2 \mathrm{H}, J=7.0), 7.33-7.21(\mathrm{~m}, 8 \mathrm{H}), 4.98(\mathrm{~d}, 1 \mathrm{H}, J=11.6), 4.68(\mathrm{~d}, 1 \mathrm{H}, J=11.6)$, $4.60(\mathrm{~d}, 1 \mathrm{H}, J=12.3), 4.57(\mathrm{~d}, 1 \mathrm{H}, J=12.3), 4.05(\mathrm{dd}, 1 \mathrm{H}, J=8.7,9.9), 3.79(\mathrm{dd}, 1 \mathrm{H}, J=2.2,8.6)$, $3.76(\mathrm{~d}, 1 \mathrm{H}, J=6.2), 3.66-3.57(\mathrm{~m}, 3 \mathrm{H}), 3.48(\mathrm{~d}, 1 \mathrm{H}, J=2.2), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3$ H), $1.27(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, 3 \mathrm{H}, J=6.2)$; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{NaO}_{7}\left(\mathrm{MNa}^{+}\right)$: 495.2359, found: 495.2349. C-Glycoside from 4b: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.18(\mathrm{~m}, 10 \mathrm{H}), 7.16-7.00(\mathrm{~m}, 3$ H), $6.99(\mathrm{~d}, 2 \mathrm{H}, J=2.6), 4.72(\mathrm{~d}, 1 \mathrm{H}, J=12.0), 4.61(\mathrm{~d}, 1 \mathrm{H}, J=2.3), 4.62-4.58(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{~d}, 1$ $\mathrm{H}, J=10.8$), $4.27(\mathrm{dd}, 1 \mathrm{H}, J=9.6,9.9), 3.97(\mathrm{dd}, 1 \mathrm{H}, J=2.5,10.1), 3.87-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.74$ (m, 2 H), $3.30(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$; LRMS (FAB, positive) $\mathrm{m} / \mathrm{z} 535$ $\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{7}$: C, 71.89; H, 7.16. Found: C, 71.97; H, 7.16. C-Glycoside from 5: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.02(\mathrm{~m}, 15 \mathrm{H}), 5.65-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 4.95-4.88(\mathrm{~m}, 3$ H), 4.75 (d, $1 \mathrm{H}, J=12.0$), 4.56 (d, $1 \mathrm{H}, J=12.0$), 4.37 (d, $1 \mathrm{H}, J=11.1$), 4.10-3.98 (m, 3 H), 3.92 (dd, $1 \mathrm{H}, J=2.7,10.2$), 3.65 (dd, $1 \mathrm{H}, J=10.2,10.3$), $3.60-3.54(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.28-$ $2.23(\mathrm{~m}, 1 \mathrm{H})$; LRMS (FAB, positive) $\mathrm{m} / \mathrm{z} 473\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{5}: \mathrm{C}, 76.25$; $\mathrm{H}, 76.83$. Found: C, 76.68; H, 6.91.

