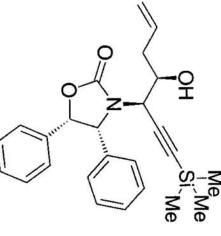
Supporting Information for

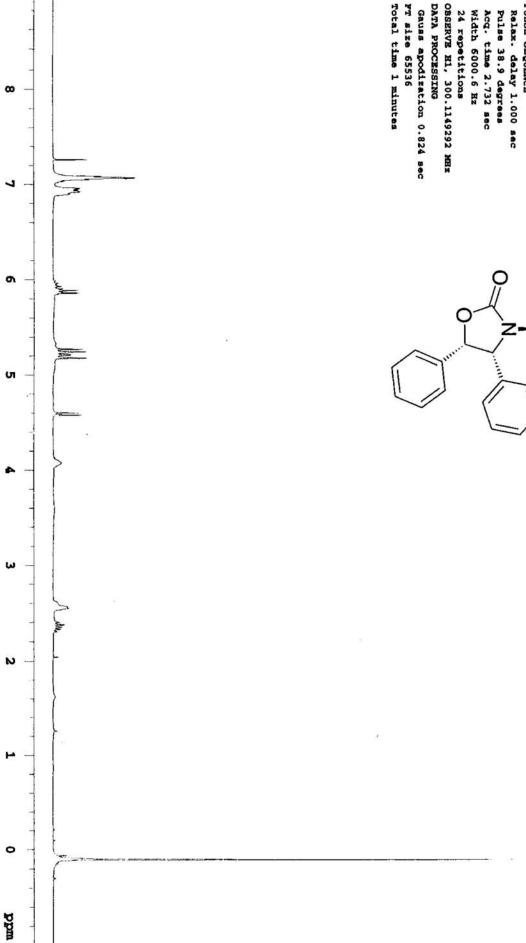
Reaction of Optically Active ζ -Aminoallenylstannanes with Aldehydes Formed in situ from the Lewis-acid Catalyzed Rearrangement of Epoxides

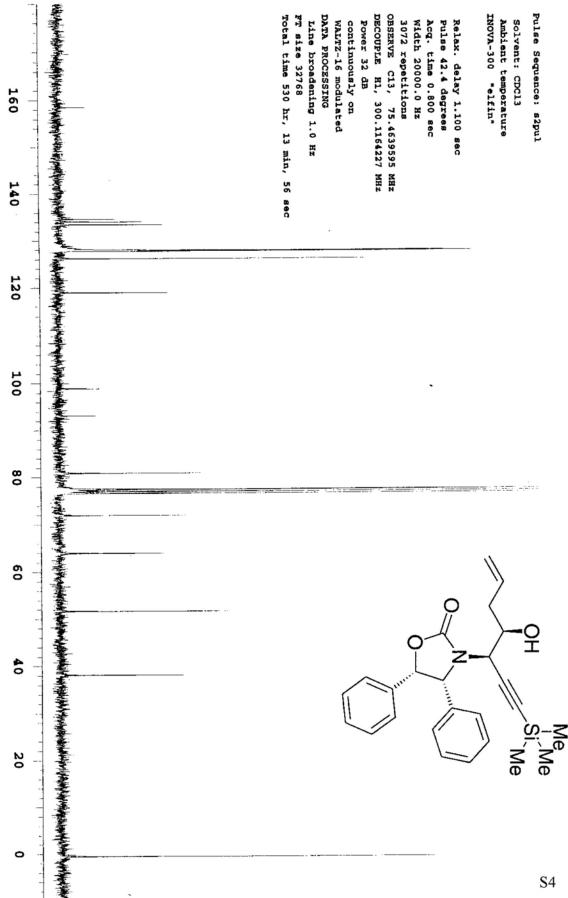
Cristóbal de los Ríos, Louis S. Hegedus*

Department of Chemistry, Colorado State University, Fort Collins, CO 80523

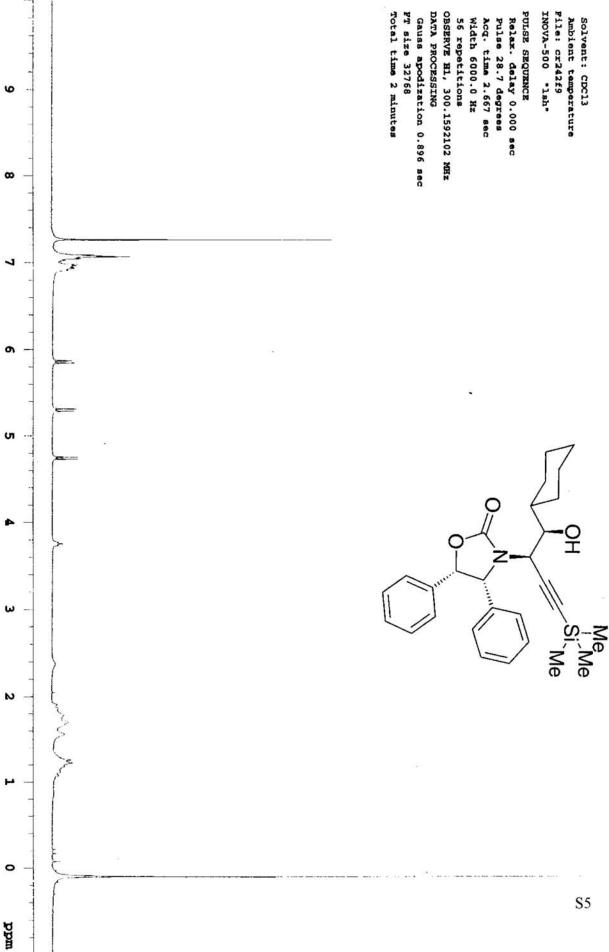
Table of Contents

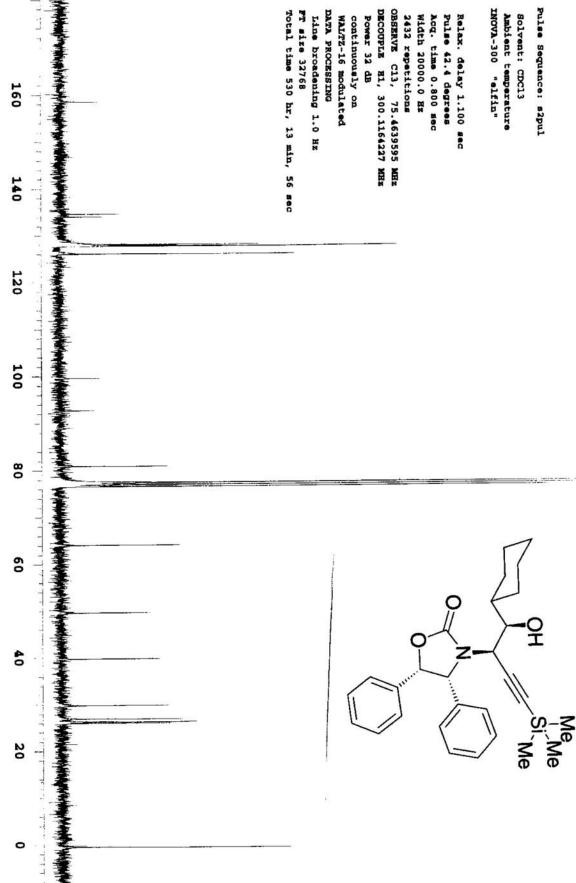

	Table of Contents		S1
	Experimental Details		S2
	¹ H NMR spectrum	6b	S3
	¹³ C NMR spectrum	6b	S4
	¹ H NMR spectrum	6d	S5
	¹³ C NMR spectrum	6d	S6
Table 1	Crystal Data	6f	S7
Table 2	Atomic Coordinates	6f	S8
"	"	6f	S9
"	"	6f	S10
Table 3	Bond Lengths and Angles	6f	S11
"	"	6f	S12
"	"	6f	S13
Table 4	Anisotropic Displacement	6f	S14
"	"	6f	S15
"	"	6f	S16
Table 5	Hydrogen Coordinates	6f	S17
"	"	6f	S18
	ORTEP	6f	S19
	"	6f	S20
	"	6f	S21


Experimental Details


Methylene chloride was distilled under a nitrogen atmosphere over calcium hydride. Boron trifluoride etherate was purchased from Aldrich and then distilled under a nitrogen atmosphere over calcium hydride. Oxiranes **6a**, **6g** and **6h** were purchased from Aldrich; oxirane **6b** was purchased from Lancaster. Oxiranes **6c**, **6e**, **6f**, ¹ **6f**, **6i** ² and **6j** ³ were prepared following the procedure described by Ley *et al*. ⁴ using *m*-CPBA in CH₂Cl₂ as oxidant. Oxirane **6d** was prepared following the procedure described by Michnick *et al*. ⁵ NMR spectra were run in CDCl₃, and recorded at 25 °C in 5mm tubes, at 300 MHz (¹H) or at 100.1 MHz (¹³C). Proton chemical shifts are given in ppm relative to CDCl₃ (7.26 ppm) and carbon shifts are relative to CDCl₃ (77.0 ppm). Column chromatography was performed with Sorben 32-63 Gm, 60Å silica gel standard grade using flash column techniques. All reactions were carried out under a nitrogen atmosphere. Diastereomeric excess was determined by analysis of the crude ¹H NMR spectra.

References


- (1) Fujisawa, T.; Takemura, I.; Ukaji, Y. *Tetrahedron Lett.* **1990**, *31*, 5479.
- (2) Fringuelli, F.; Germani, R.; Pizzo, F.; Savalli, G. Tetrahedron Lett. 1989, 30, 1427-1428.
- (3) For the synthesis of 1-phenylcyclopentene, see: Mazzocchi, P.H.; Kim, C.H. *J. Med. Chem.* **1982**, *25*, 1473-1476.
- (4) Ley, S.V.; Mitchell, C.; Pears, D.; Ramarao, C.; Yu, J.-Q.; Zhou, W. *Org. Lett.* **2003**, *5*, 4665-4668 and references therein.
- (5) Michnick, T.J.; Matteson, D.S. Synlett 1991, 9, 631-632.



udd

mada

Table 1. Crystal data and structure refinement for lsh156.

Identification code lsh156, CR258

Empirical formula C30 H33 N O3 Si

Formula weight 483.66

Temperature 100(2) K

Wavelength 0.71073 Å

Crystal system Monoclinic

Space group P2(1)

Unit cell dimensions a = 11.699(8) Å $\alpha = 90^{\circ}$.

b = 17.054(10) Å $\beta = 107.790(16)^{\circ}$.

c = 14.580(9) Å $\gamma = 90^{\circ}$.

Volume 2770(3) Å³

Z 4

Density (calculated) 1.160 Mg/m³

Absorption coefficient 0.114 mm⁻¹

F(000) 1032

Crystal size 0.44 x 0.21 x 0.07 mm³

Theta range for data collection 1.47 to 26.51°.

Index ranges -14<=h<=14, -21<=k<=20, -18<=l<=18

Reflections collected 23589

Independent reflections 10692 [R(int) = 0.0906]

Completeness to theta = 26.51° 97.9 %

Absorption correction SADABS

Max. and min. transmission 0.9920 and 0.9514

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 10692 / 1 / 642

Goodness-of-fit on F² 0.963

Final R indices [I>2sigma(I)] R1 = 0.0550, wR2 = 0.1067

R indices (all data) R1 = 0.1066, wR2 = 0.1275

Absolute structure parameter -0.10(12)
Extinction coefficient 0.0238(11)

Largest diff. peak and hole 0.314 and -0.276 e.Å-3

Table 2. Atomic coordinates ($x 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for lsh156. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	у	Z	U(eq)
Si(1)	6189(1)	237(1)	9395(1)	28(1)
Si(2)	6346(1)	3037(1)	5044(1)	30(1)
O(1)	2108(2)	1973(1)	10875(2)	27(1)
O(2)	1571(2)	3071(1)	8947(2)	29(1)
O(3)	301(2)	2080(1)	8315(2)	28(1)
O(4)	11175(2)	4501(2)	7844(2)	35(1)
O(5)	9107(2)	5750(1)	8639(2)	32(1)
O(6)	9088(2)	4758(1)	9663(2)	29(1)
N(1)	2209(2)	1786(2)	9044(2)	22(1)
N(2)	8930(2)	4455(2)	8155(2)	26(1)
C(1)	3471(3)	1493(2)	13013(3)	32(1)
C(2)	3518(4)	1064(2)	13831(3)	39(1)
C(3)	4452(4)	544(2)	14197(3)	40(1)
C(4)	5315(4)	457(2)	13735(3)	39(1)
C(5)	5255(3)	885(2)	12912(3)	33(1)
C(6)	4326(3)	1412(2)	12535(3)	28(1)
C(7)	4279(3)	1865(2)	11634(3)	28(1)
C(8)	4308(4)	2752(2)	11804(3)	36(1)
C(9)	3173(3)	1627(2)	10796(2)	23(1)
C(10)	3335(3)	1866(2)	9810(2)	23(1)
C(11)	4294(3)	1383(2)	9633(3)	25(1)
C(12)	5060(3)	945(2)	9545(3)	27(1)
C(13)	6116(3)	-616(2)	10152(3)	37(1)
C(14)	7713(3)	681(2)	9822(3)	43(1)
C(15)	5765(4)	-12(3)	8103(3)	45(1)
C(16)	1405(3)	2378(2)	8804(2)	24(1)
C(17)	338(3)	1240(2)	8480(3)	25(1)
C(18)	-554(3)	816(2)	7686(3)	25(1)
C(19)	-1074(3)	1151(2)	6786(3)	33(1)
C(20)	-1865(3)	707(2)	6072(3)	36(1)
C(21)	-2122(3)	-60(2)	6229(3)	35(1)

C(22)	-1604(3)	-386(2)	7126(3)	35(1)
C(23)	-832(3)	46(2)	7856(3)	31(1)
C(24)	1674(3)	1029(2)	8646(2)	23(1)
C(25)	2009(3)	805(2)	7751(3)	24(1)
C(26)	2304(4)	1349(2)	7158(3)	38(1)
C(27)	2570(4)	1117(3)	6335(3)	50(1)
C(28)	2542(4)	323(3)	6091(3)	42(1)
C(29)	2252(3)	-211(2)	6682(3)	37(1)
C(30)	1986(3)	18(2)	7501(3)	31(1)
C(31)	12270(4)	3867(3)	6154(3)	41(1)
C(32)	12913(4)	3345(3)	5763(3)	49(1)
C(33)	12369(4)	2962(3)	4922(3)	49(1)
C(34)	11173(4)	3080(3)	4473(3)	52(1)
C(35)	10520(4)	3606(3)	4847(3)	46(1)
C(36)	11058(3)	4014(2)	5703(3)	33(1)
C(37)	10331(3)	4568(2)	6102(3)	33(1)
C(38)	10833(4)	5409(2)	6207(3)	50(1)
C(39)	10208(3)	4258(2)	7061(3)	28(1)
C(40)	8988(3)	4567(2)	7176(3)	26(1)
C(41)	8022(3)	4140(2)	6475(3)	27(1)
C(42)	7356(3)	3721(2)	5884(3)	29(1)
C(43)	7214(4)	2568(2)	4312(3)	38(1)
C(44)	5850(3)	2294(2)	5773(3)	36(1)
C(45)	5057(3)	3609(2)	4279(3)	41(1)
C(46)	9050(3)	5051(2)	8779(3)	27(1)
C(47)	9313(3)	3905(2)	9644(3)	28(1)
C(48)	8866(3)	3484(2)	10371(3)	31(1)
C(49)	7776(3)	3644(2)	10530(3)	37(1)
C(50)	7385(4)	3191(3)	11173(3)	40(1)
C(51)	8084(4)	2576(3)	11651(3)	50(1)
C(52)	9170(4)	2413(3)	11500(3)	50(1)
C(53)	9562(4)	2868(2)	10863(3)	41(1)
C(54)	8720(3)	3711(2)	8568(3)	25(1)
C(55)	7408(3)	3493(2)	8330(3)	26(1)
C(56)	6505(3)	4050(2)	8126(3)	31(1)
C(57)	5332(3)	3827(2)	8024(3)	35(1)

C(58)	5042(4)	3053(3)	8120(3)	40(1)	
C(59)	5938(4)	2491(2)	8290(3)	40(1)	
C(60)	7115(3)	2710(2)	8390(3)	32(1)	

Table 3. Bond lengths [Å] and angles [°] for lsh156.

Si(1)-C(13)	1.842(4)	C(11)-C(12)	1.204(5)
Si(1)-C(15)	1.845(4)	C(17)-C(18)	1.487(5)
Si(1)-C(12)	1.851(4)	C(17)-C(24)	1.549(5)
Si(1)-C(14)	1.860(4)	C(18)-C(19)	1.389(5)
Si(2)-C(42)	1.836(4)	C(18)-C(23)	1.393(5)
Si(2)-C(45)	1.855(4)	C(19)-C(20)	1.388(5)
Si(2)-C(44)	1.858(4)	C(20)-C(21)	1.376(5)
Si(2)-C(43)	1.864(4)	C(21)-C(22)	1.379(6)
O(1)-C(9)	1.414(4)	C(22)-C(23)	1.381(5)
O(2)-C(16)	1.205(4)	C(24)-C(25)	1.522(5)
O(3)-C(16)	1.369(4)	C(25)-C(26)	1.382(5)
O(3)-C(17)	1.451(4)	C(25)-C(30)	1.389(5)
O(4)-C(39)	1.403(4)	C(26)-C(27)	1.386(6)
O(5)-C(46)	1.213(4)	C(27)-C(28)	1.397(6)
O(6)-C(46)	1.370(5)	C(28)-C(29)	1.366(5)
O(6)-C(47)	1.479(4)	C(29)-C(30)	1.379(5)
N(1)-C(16)	1.352(4)	C(31)-C(36)	1.392(5)
N(1)-C(10)	1.450(4)	C(31)-C(32)	1.393(6)
N(1)-C(24)	1.473(4)	C(32)-C(33)	1.363(6)
N(2)-C(46)	1.343(4)	C(33)-C(34)	1.366(6)
N(2)-C(54)	1.458(4)	C(34)-C(35)	1.394(6)
N(2)-C(40)	1.461(4)	C(35)-C(36)	1.398(6)
C(1)-C(2)	1.386(5)	C(36)-C(37)	1.502(5)
C(1)-C(6)	1.389(5)	C(37)-C(39)	1.541(5)
C(2)-C(3)	1.382(6)	C(37)-C(38)	1.541(6)
C(3)-C(4)	1.382(6)	C(39)-C(40)	1.578(5)
C(4)-C(5)	1.387(5)	C(40)-C(41)	1.466(5)
C(5)-C(6)	1.388(5)	C(41)-C(42)	1.204(5)
C(6)-C(7)	1.510(5)	C(47)-C(48)	1.501(5)
C(7)-C(8)	1.531(5)	C(47)-C(54)	1.546(5)
C(7)-C(9)	1.537(5)	C(48)-C(53)	1.388(5)
C(9)-C(10)	1.560(5)	C(48)-C(49)	1.390(5)
C(10)-C(11)	1.477(5)	C(49)-C(50)	1.395(5) S
			70.0

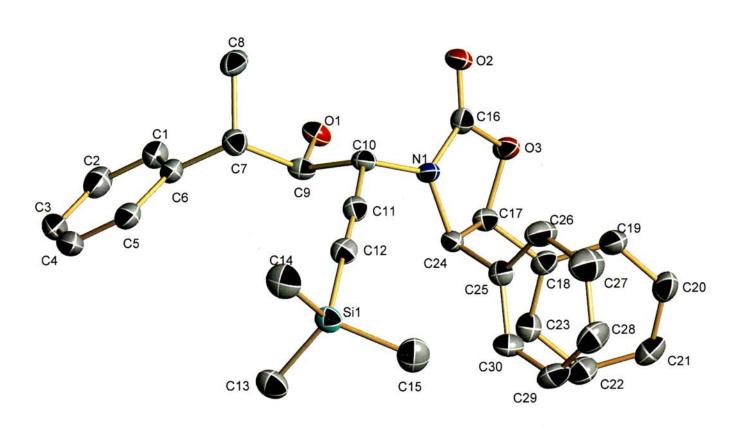
11

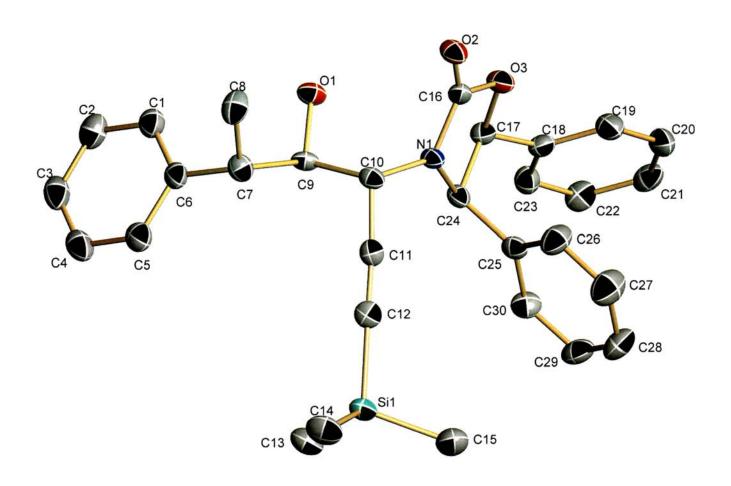
C(50)-C(51)	1.380(6)	C(55)-C(60)	1.389(5)
C(51)-C(52)	1.383(6)	C(56)-C(57)	1.388(5)
C(52)-C(53)	1.390(6)	C(57)-C(58)	1.380(5)
C(54)-C(55)	1.513(5)	C(58)-C(59)	1.386(6)
C(55)-C(56)	1.383(5)	C(59)-C(60)	1.390(5)
C(13)-Si(1)-C(15)	112.5(2)	C(8)-C(7)-C(9)	111.2(3)
C(13)-Si(1)-C(12)	106.25(18)	O(1)-C(9)-C(7)	112.0(3)
C(15)-Si(1)-C(12)	106.94(18)	O(1)-C(9)-C(10)	108.9(3)
C(13)-Si(1)-C(14)	109.60(19)	C(7)-C(9)-C(10)	110.7(3)
C(15)-Si(1)-C(14)	111.5(2)	N(1)-C(10)-C(11)	111.9(3)
C(12)-Si(1)-C(14)	109.89(18)	N(1)-C(10)-C(9)	110.3(3)
C(42)-Si(2)-C(45)	107.84(18)	C(11)-C(10)-C(9)	109.2(3)
C(42)-Si(2)-C(44)	107.52(18)	C(12)-C(11)-C(10)	174.4(4)
C(45)-Si(2)-C(44)	111.36(19)	C(11)-C(12)-Si(1)	177.5(3)
C(42)-Si(2)-C(43)	107.62(18)	O(2)-C(16)-N(1)	128.8(3)
C(45)-Si(2)-C(43)	111.5(2)	O(2)-C(16)-O(3)	122.1(3)
C(44)-Si(2)-C(43)	110.79(19)	N(1)-C(16)-O(3)	109.1(3)
C(16)-O(3)-C(17)	107.8(3)	O(3)-C(17)-C(18)	111.9(3)
C(46)-O(6)-C(47)	107.3(3)	O(3)-C(17)-C(24)	103.4(3)
C(16)-N(1)-C(10)	121.6(3)	C(18)-C(17)-C(24)	116.3(3)
C(16)-N(1)-C(24)	112.0(3)	C(19)-C(18)-C(23)	119.8(3)
C(10)-N(1)-C(24)	124.3(3)	C(19)-C(18)-C(17)	122.4(3)
C(46)-N(2)-C(54)	112.0(3)	C(23)-C(18)-C(17)	117.7(3)
C(46)-N(2)-C(40)	122.4(3)	C(20)-C(19)-C(18)	118.9(4)
C(54)-N(2)-C(40)	125.5(3)	C(21)-C(20)-C(19)	121.5(4)
C(2)-C(1)-C(6)	122.3(4)	C(20)-C(21)-C(22)	119.1(4)
C(3)-C(2)-C(1)	119.3(4)	C(21)-C(22)-C(23)	120.7(4)
C(4)-C(3)-C(2)	119.3(4)	C(22)-C(23)-C(18)	119.9(4)
C(3)-C(4)-C(5)	120.9(4)	N(1)-C(24)-C(25)	111.5(3)
C(4)-C(5)-C(6)	120.7(4)	N(1)-C(24)-C(17)	98.4(3)
C(5)-C(6)-C(1)	117.5(4)	C(25)-C(24)-C(17)	115.9(3)
C(5)-C(6)-C(7)	119.5(3)	C(26)-C(25)-C(30)	118.2(3)
C(1)-C(6)-C(7)	123.0(3)	C(26)-C(25)-C(24)	123.2(3)
C(6)-C(7)-C(8)	111.8(3)	C(30)-C(25)-C(24)	118.6(3)
C(6)-C(7)-C(9)	110.8(3)	C(25)-C(26)-C(27)	121.0(4)

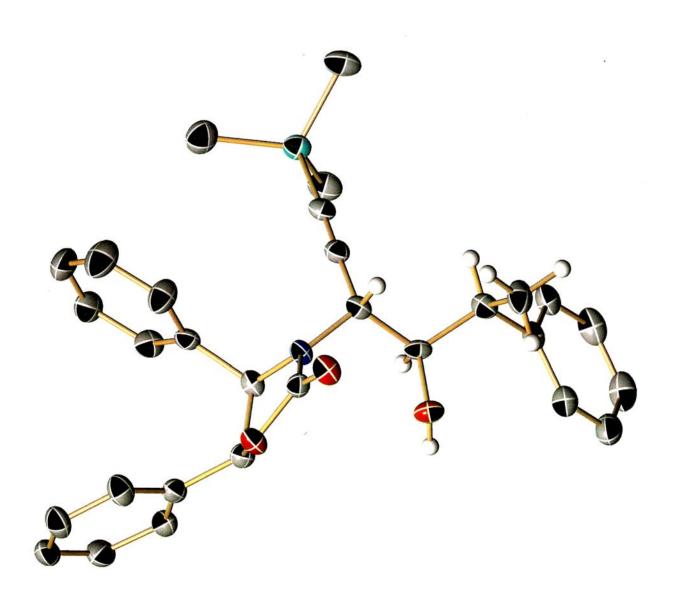
C(26)-C(27)-C(28)	120.2(4)	N(2)-C(46)-O(6)	109.1(3)
C(29)-C(28)-C(27)	118.5(4)	O(6)-C(47)-C(48)	110.8(3)
C(28)-C(29)-C(30)	121.4(4)	O(6)-C(47)-C(54)	101.7(3)
C(29)-C(30)-C(25)	120.7(4)	C(48)-C(47)-C(54)	118.0(3)
C(36)-C(31)-C(32)	121.4(4)	C(53)-C(48)-C(49)	119.0(4)
C(33)-C(32)-C(31)	120.8(4)	C(53)-C(48)-C(47)	116.9(3)
C(32)-C(33)-C(34)	119.3(4)	C(49)-C(48)-C(47)	124.0(3)
C(33)-C(34)-C(35)	120.7(4)	C(48)-C(49)-C(50)	120.6(4)
C(34)-C(35)-C(36)	121.2(4)	C(51)-C(50)-C(49)	119.7(4)
C(31)-C(36)-C(35)	116.6(4)	C(50)-C(51)-C(52)	120.2(4)
C(31)-C(36)-C(37)	123.1(4)	C(51)-C(52)-C(53)	120.0(4)
C(35)-C(36)-C(37)	120.3(4)	C(48)-C(53)-C(52)	120.5(4)
C(36)-C(37)-C(39)	110.9(3)	N(2)-C(54)-C(55)	114.0(3)
C(36)-C(37)-C(38)	112.4(3)	N(2)-C(54)-C(47)	98.8(3)
C(39)-C(37)-C(38)	111.5(3)	C(55)-C(54)-C(47)	113.2(3)
O(4)-C(39)-C(37)	111.2(3)	C(56)-C(55)-C(60)	119.1(3)
O(4)-C(39)-C(40)	110.2(3)	C(56)-C(55)-C(54)	122.4(3)
C(37)-C(39)-C(40)	108.7(3)	C(60)-C(55)-C(54)	118.3(3)
N(2)-C(40)-C(41)	111.1(3)	C(55)-C(56)-C(57)	120.1(4)
N(2)-C(40)-C(39)	112.0(3)	C(58)-C(57)-C(56)	121.1(4)
C(41)-C(40)-C(39)	106.8(3)	C(57)-C(58)-C(59)	118.9(4)
C(42)-C(41)-C(40)	170.7(4)	C(58)-C(59)-C(60)	120.3(4)
C(41)-C(42)-Si(2)	176.5(3)	C(55)-C(60)-C(59)	120.5(4)
O(5)-C(46)-N(2)	128.9(4)		
O(5)-C(46)-O(6)	122.0(3)		

Table 4. Anisotropic displacement parameters (Ųx 10³) for lsh156. The anisotropic displacement factor exponent takes the form: $-2\pi^2[~h^2~a^{*2}U^{11}+...+2~h~k~a^*~b^*~U^{12}~]$

	U11	U^{22}	U^{33}	U^{23}	Π_{13}	U ¹²
Si(1)	23(1)	28(1)	33(1)	1(1)	8(1)	5(1)
Si(2)	29(1)	28(1)	31(1)	-4(1)	7(1)	-2(1)
O(1)	24(1)	25(1)	35(2)	5(1)	14(1)	4(1)
O(2)	30(1)	18(1)	34(2)	0(1)	5(1)	3(1)
0(3)	22(1)	23(1)	34(2)	-5(1)	3(1)	2(1)
O(4)	29(2)	34(2)	38(2)	3(1)	3(1)	-1(1)
O(5)	29(2)	24(2)	44(2)	-8(1)	11(1)	-3(1)
O(6)	30(2)	26(1)	30(2)	-10(1)	9(1)	-1(1)
N(1)	21(2)	17(2)	25(2)	-4(1)	3(1)	2(1)
N(2)	27(2)	21(2)	28(2)	-5(1)	6(1)	2(1)
C(1)	35(2)	32(2)	28(2)	-1(2)	7(2)	-1(2)
C(2)	44(3)	41(3)	31(2)	-5(2)	12(2)	-11(2)
C(3)	57(3)	28(2)	29(2)	4(2)	5(2)	-2(2)
C(4)	47(3)	25(2)	37(3)	0(2)	-1(2)	3(2)
C(5)	32(2)	30(2)	31(2)	-6(2)	2(2)	-2(2)
C(6)	31(2)	25(2)	23(2)	-4(2)	2(2)	-1(2)
C(7)	25(2)	29(2)	29(2)	2(2)	6(2)	-2(2)
C(8)	49(3)	28(2)	29(2)	-3(2)	9(2)	-13(2)
C(9)	18(2)	20(2)	33(2)	0(2)	11(2)	3(2)
C(10)	21(2)	18(2)	29(2)	-1(2)	5(2)	0(2)
C(11)	22(2)	26(2)	26(2)	1(2)	6(2)	-3(2)
C(12)	22(2)	27(2)	32(2)	-1(2)	8(2)	-6(2)
C(13)	31(2)	32(2)	48(3)	5(2)	10(2)	5(2)
C(14)	24(2)	48(3)	56(3)	1(2)	12(2)	3(2)
C(15)	43(3)	51(3)	42(3)	-4(2)	15(2)	12(2)
C(16)	20(2)	30(2)	23(2)	-2(2)	6(2)	6(2)
C(17)	26(2)	23(2)	27(2)	-2(2)	9(2)	1(2)
C(18)	23(2)	26(2)	28(2)	-6(2)	9(2)	0(2)
C(19)	33(2)	26(2)	35(2)	-5(2)	4(2)	0(2)
C(20)	30(2)	39(3)	31(2)	-6(2)	-1(2)	5(2)
C(21)	28(2)	40(3)	36(3)	-15(2)	10(2)	-6(2)


C(22)	34(2)	32(2)	38(3)	-5(2)	13(2)	-9(2)
C(23)	27(2)	36(2)	27(2)	0(2)	7(2)	-1(2)
C(24)	23(2)	19(2)	24(2)	1(2)	2(2)	1(2)
C(25)	17(2)	26(2)	29(2)	-1(2)	6(2)	1(2)
C(26)	56(3)	28(2)	36(3)	-3(2)	21(2)	-3(2)
C(27)	71(3)	41(3)	44(3)	2(2)	29(2)	-5(2)
C(28)	49(3)	47(3)	36(2)	-13(2)	20(2)	-5(2)
C(29)	40(2)	30(2)	42(3)	-13(2)	15(2)	1(2)
C(30)	35(2)	22(2)	38(2)	-1(2)	13(2)	-3(2)
C(31)	33(2)	58(3)	30(2)	1(2)	9(2)	10(2)
C(32)	41(3)	64(3)	45(3)	9(3)	19(2)	24(2)
C(33)	62(3)	41(3)	49(3)	4(2)	27(3)	8(2)
C(34)	55(3)	50(3)	55(3)	-15(3)	24(3)	-13(3)
C(35)	31(2)	59(3)	46(3)	1(2)	8(2)	-1(2)
C(36)	25(2)	35(2)	41(3)	4(2)	13(2)	1(2)
C(37)	27(2)	38(2)	35(2)	11(2)	11(2)	5(2)
C(38)	59(3)	34(2)	68(3)	14(2)	34(3)	8(2)
C(39)	24(2)	25(2)	34(2)	-6(2)	4(2)	-3(2)
C(40)	29(2)	20(2)	31(2)	-1(2)	10(2)	-1(2)
C(41)	24(2)	24(2)	33(2)	-2(2)	9(2)	6(2)
C(42)	25(2)	29(2)	34(2)	-3(2)	9(2)	0(2)
C(43)	48(3)	34(2)	34(2)	-5(2)	15(2)	-5(2)
C(44)	35(2)	33(2)	37(2)	-3(2)	7(2)	-3(2)
C(45)	36(2)	45(3)	35(2)	-2(2)	0(2)	1(2)
C(46)	18(2)	29(2)	34(2)	-8(2)	6(2)	0(2)
C(47)	25(2)	28(2)	30(2)	-3(2)	7(2)	9(2)
C(48)	30(2)	31(2)	30(2)	-5(2)	8(2)	5(2)
C(49)	32(2)	41(3)	34(2)	-1(2)	6(2)	6(2)
C(50)	37(2)	50(3)	35(2)	-3(2)	15(2)	-4(2)
C(51)	70(4)	41(3)	41(3)	3(2)	22(3)	-5(2)
C(52)	65(3)	41(3)	45(3)	6(2)	20(3)	13(2)
C(53)	41(3)	43(3)	40(3)	-2(2)	13(2)	11(2)
C(54)	25(2)	21(2)	30(2)	0(2)	9(2)	5(2)
C(55)	28(2)	23(2)	24(2)	-1(2)	7(2)	3(2)
C(56)	27(2)	29(2)	32(2)	-1(2)	3(2)	1(2)
C(57)	27(2)	49(3)	27(2)	0(2)	6(2)	-2(2)


C(58)	36(2)	51(3)	35(2)	0(2)	15(2)	-15(2)
C(59)	50(3)	33(3)	36(3)	2(2)	11(2)	-12(2)
C(60)	35(2)	31(2)	27(2)	1(2)	5(2)	0(2)


Table 5. Hydrogen coordinates (\times 10⁴) and isotropic displacement parameters (Å²x 10³) for lsh156.

	x	y	z	U(eq)
	1600	1622	11046	40
H(1)	1698	1632	11046	53
H(4)	11336	4151	8269	39
I(1A)	2833	1855	12770	47
H(2)	2914	1128	14137	47
H(3)	4500	248	14760	46
I(4A)	5958	100	13985	39
H(5)	5855	815	12604	34
H(7)	5009	1724	11449	54 54
I(8A)	3586	2911	11962 11219	54
I(8B)	4337	3025 2887	12339	54
I(8C)	5022			27
I(9)	3085	1045	10807	27
I(10)	3588	2428	9848	56
I(13A)	6302	-449 1011	10825 10098	56
I(13B)	6701	-1011	9936	56
H(13C)	5308	-841	10508	64
I(14A)	7908	809	9455	64
H(14B)	7729	1160	9728	64
I(14C)	8303	307	8003	68
I(15A)	6292	-428 454	7734	68
H(15B)	5847 4930	-194	7885	68
H(15C)	143	1139	9092	30
H(17)	-890	1675	6662	39
H(19)	-2238	937	5460	43
H(20)	-2238 -2649	-360	5727	42
H(21)	-2049	-914	7242	41
H(22)	-1781 -490	-914 -181	8475	37
H(23)		609	9145	28
H(24)	1931 2325	1890	7316	46
I(26)	2323	1030	/510	-10

H(27)	2772	1498	5935	59
H(28)	2720	159	5527	51
H(29)	2235	-753	6526	44
H(30)	1784	-366	7897	37
H(31)	12668	4127	6741	49
H(32)	13739	3256	6087	59
H(33)	12817	2617	4651	58
H(34)	10783	2800	3899	62
H(35)	9694	3689	4515	56
H(37)	9506	4587	5631	40
H(38A)	11686	5401	6580	75
H(38B)	10393	5734	6541	75
H(38C)	10738	5629	5567	75
H(39)	10189	3672	7041	34
H(40)	8908	5139	7017	32
H(43A)	7412	2962	3895	57
H(43B)	6730	2152	3914	57
H(43C)	7956	2343	4741	57
H(44A)	6553	2028	6203	54
H(44B)	5330	1909	5344	54
H(44C)	5404	2554	6158	54
H(45A)	4665	3888	4690	62
H(45B)	4480	3253	3848	62
H(45C)	5344	3990	3896	62
H(47)	10197	3818	9807	33
H(49)	7294	4066	10199	44
H(50)	6642	3305	11281	48
H(51)	7818	2264	12086	59
H(52)	9649	1990	11831	60
H(53)	10311	2756	10765	50
H(54)	9172	3282	8365	30
H(56)	6688	4585	8057	37
H(57)	4718	4213	7886	42
H(58)	4241	2908	8071	48
H(59)	5748	1954	8338	48
H(60)	7723	2321	8499	38

