Supporting Information for:

CO₂ Offgas as a Mechanistic Probe and Scale-up Tool in N-Acylations Using Mixed Anhydrides from Amino Acids and Isobutyl Chloroformate

Apurva Chaudhary, Michael J. Girgis*, Mahavir Prashad*, Bin Hu, Denis Har, Oljan Repič, and Thomas J. Blacklock

> Novartis Institute for Biomedical Research Chemical and Analytical Development 1 Health Plaza East Hanover, NJ 07936 USA

Experimental Section

GC operating parameters are given in Table 1.

Table 1: GC Conditions

Parameter	Value	
Column pressure, psig	30	
Carrier gas	Не	
Split ratio	50:1	
Injection time, min	0.5	
Oven Temperature, °C	40 (isothermal program)	
Detector temperature, °C	270	

HPLC Method details are given in Table 2.

Table 2: HPLC Method Details

Parameter	Value	
Column	Waters Symmetry, C-18, 4.6 × 150 mm	
Column temperature	Ambient	
Mobile phase	Acetonitrile/0.1% trifluoroacetic acid in water (60:40)	
Flow rate, mL/min	1	
Detection wavelength, nm	226	

Sources and purities of materials are given in Table 3.

Table 3: Sources and Purities of Materials

Material	Source	Purity
BOC-L-3-(2-naphthyl)alanine (1)	Synthetec	99+%
BOC-L-3-(2-naphunyi)alanine (1)	Synthetec	99+%
Isobutyl chloroformate	Aldrich	98%
N,N,-Dimethylbenzylamine	Aldrich	99+%
N-Benzylmethylamine (2)	Aldrich	97%
Toluene	Aldrich	99.8%

Validation of Offgas Measurement Methodology

The reliability of the offgas measurement was first demonstrated using a reaction forming a known amount of gas during addition of a liquid, namely, the neutralization of sodium bicarbonate with sulfuric acid:

$$NaHCO_3 + H_2SO_4 - H_2CO_3 + NaHSO_4$$

 $NaHCO_3 + NaHSO_4 \rightarrow H_2CO_3 + Na_2SO_4$
 $H_2CO_3 \rightarrow CO_2 + H_2O$

The stoichiometric reactions indicate that one mole of CO₂ is formed per mole of NaHCO₃ charged, and that one mole of sulfuric acid is needed to neutralize two moles of sodium bicarbonate. Using a dosing pump, a 60% stoichiometric excess of H₂SO₄ (*viz.*, 0.245 mole) as a 23 wt% solution was added to the vessel containing 0.306 mol of NaHCO₃ at 25 °C, with N₂ purge gas flowing in the headspace, but without sparging. Sparging with N₂ was begun after the CO₂ evolution attained a low value (Figure 1). The Figure shows that the moles of CO₂ evolved, based on the cumulative volume of CO₂ calculated using the procedure given above, is within excellent agreement of the expected value (*i.e.*, 1.004 *vs.* 1). The offgas volume determination method was thus deemed reliable, but with sparging necessary to close a mass balance above 95%.

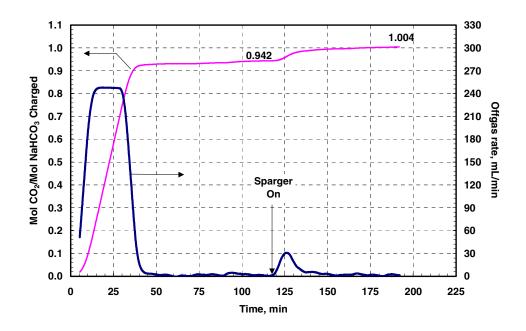


Figure 1: Validation of CO₂ offgas volume measurement.

Check on Methodology

Two CO_2 -forming pathways are possible before addition of amine **2** that can potentially interfere with the use of CO_2 offgas as a mechanistic probe for *sym*- anhydride formation. We show below that neither pathway is operative under the conditions employed.

First, isobutyl alcohol, produced as a by-product upon *asym*-anhydride formation, could react with the *asym*-anhydride to give an ester, with CO₂ formed due to decomposition of the by-product carbonic acid:

Scheme 1 : Possible reaction between asym-anhydride and i-BuOH.

To determine if ester formation occured at the conditions used here, an experiment was performed in which the reverse addition was performed as in Part I, followed by isobutyl alcohol addition.

A 500-mL Erlenmeyer flask was charged with 51.2 g (0.162 mol) of **1** in 113 g (131 mL) of toluene. N,N,-dimethylbenzylamine (23.8 g, 1.08 equiv) was added dropwise using an addition funnel, which was subsequently rinsed with 5.0 g (5.8 mL) of toluene. The MP10 vessel was charged with isobutyl chloroformate (23.56 g, 1.06 equiv) and toluene (337 g, or 390 mL), and the mixture was cooled at –12 °C. The **1** anion solution (190 g) was then added at that temperature over a 40-min period, and the transfer line was rinsed with 15 g (17 mL) of toluene. Afterward, 14.8 g of isobutyl alcohol were added over 20 min, and the same amount was subsequently added over the same period, giving a total of 0.378 moles or more than a 100% stoichiometric excess relative to **1**.

No CO₂ formation was observed after alcohol addition at -12 °C and subsequent warming to 0 °C. Thus, ester formation is negligible at these conditions. HPLC analyses of the reaction mixture also did not show peaks other than those corresponding to 1, 3,

and toluene unless the mixture was heated to about room temperature. The negligibly low degree of ester formation is consistent with the excellent mass balance closures (>96%) obtained in the other experiments with 1 and 3 assumed to be the only products formed in significant amounts.

Second, an oxazolinone could form from the *asym*-anhydride, resulting in CO_2 production (Scheme 2) [1] however, the *t*-butyloxycarbonyl protecting group on the nitrogen atom is known to prevent oxazolinone formation [2]. The formation of CO_2 before addition of **2** is thus indicative solely of symmetric anhydride formation.

Scheme 2: Possible rearrangement of asym-anhydride.

References

[1] Chaudhary, A.; Girgis, M.J.; Prashad, M.; Hu, B.; Har, D.; Repič, O.; and Blacklock, T.J. Tetrahedron Lett., 2003, 44, 5543-5546.

[2] Bodanszky, M.; Klausner, Y.S.; and Ondetti, M.A., Eds., <u>Peptide Synthesis</u>, John Wiley and Sons, 1976; pp 140.