DIRECT OBSERVATION OF $\mathbf{C}^{\alpha}-\mathrm{H}^{\alpha} \ldots \mathrm{O}=\mathrm{C}$ HYDROGEN BONDS IN PROTEINS BY INTERRESIDUE ${ }^{{ }^{3} 3} \mathrm{~J}_{\mathrm{c}_{\alpha}{ }^{\prime}}$ SCALAR COUPLINGS

Florence Cordier, Michael Barfield,* and Stephan Grzesiek*
Biozentrum, University of Basel, Basel 4056, Switzerland, and
Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA

SUPPORTING INFORMATION

A. Experimental Details

Figure S1. Pulse sequence of the long-range quantitative ${ }^{h 3} \mathbf{J}_{\mathrm{CaC}}, \mathrm{H}(\mathrm{NCO}) \mathrm{CA}$ experiment. Narrow and wide pulses denote 90° and 180° flip angles, respectively, and unless indicated the phase is x . The carrier frequencies are set to water $\left({ }^{1} \mathrm{H},{ }^{2} \mathrm{H}\right)$, $116.5 \mathrm{ppm}\left({ }^{15} \mathrm{~N}\right), 177 \mathrm{ppm}\left({ }^{13} \mathrm{C}^{\prime}\right)$ and $56 \mathrm{ppm}\left({ }^{13} \mathrm{C}^{\alpha}\right)$. DIPSI x_{x} refers to the ${ }^{1} \mathrm{H}$ decoupling, using the DIPSI- 2 modulation scheme with the RF field ($\gamma_{\mathrm{H}} \mathrm{B}_{1}=5 \mathrm{kHz}$) applied along the x -axis. The ${ }^{2} \mathrm{H}$ decoupling (DIPSI-2) is applied at a field strength of 1.8 kHz . Rectangular low power ${ }^{1} \mathrm{H}$ pulses are applied using $\gamma_{\mathrm{H}} \mathrm{B}_{1}=200 \mathrm{~Hz}$. The shaped $90^{\circ}{ }_{-x}$ pulse has a sine-bell amplitude profile and a duration of 3.32 ms . The regular ${ }^{15} \mathrm{~N}$ pulses are applied at an $R F$ field strength $\gamma_{\mathrm{N}} \mathrm{B}_{1}=6.25 \mathrm{kHz}$, whereas the ${ }^{15} \mathrm{~N}$ decoupling is applied at an RF field strength of $\gamma_{N} \mathrm{~B}_{1}=1.25 \mathrm{kHz}$. Rectangular ${ }^{13} \mathrm{C}^{\prime}\left({ }^{13} \mathrm{C}^{\alpha}\right) 180^{\circ}$ and 90° pulses denoted by black rectangles are applied at an RF field strength of 3.1 and 4.7 kHz , respectively. Open shaped pulses indicate ${ }^{13} \mathrm{C}^{\prime} 90^{\circ}$ and 180° with a sine-bell amplitude profile and a duration of 150 and $300 \mu \mathrm{~s}$, respectively. Shaped ${ }^{13} \mathrm{C}^{\alpha}$ 180° pulses have a g 3 amplitude profile with a duration of 1.43 ms corresponding to an inversion bandwith of $\pm 7 \mathrm{ppm}$. Note, that these band-selective ${ }^{13} \mathrm{C}^{\alpha}$ inversion pulses were used in order to minimize magnetization losses to sidechain ${ }^{13} \mathrm{C}^{\beta}$ and ${ }^{13} \mathrm{C}^{\gamma}$ nuclei. Delay durations: $\delta=2.25 \mathrm{~ms} ; \Delta=5.4 \mathrm{~ms} ; \mathrm{T}_{\mathrm{N}}=15.5 \mathrm{~ms} ; \mathrm{T}_{\mathrm{C}}=58 \mathrm{~ms}$ (note that T_{C} is optimized for minimal transfer by ${ }^{1} \mathrm{~J}_{\mathrm{C}^{C} \mathrm{C} \alpha}$ couplings and deviates from the nominal value of $6 /{ }^{1} \mathrm{~J}_{\mathrm{C} C \alpha}$ due to the finite length of the ${ }^{13} \mathrm{C} 180^{\circ}$ pulses). Phase cycling: $\phi_{1}=4(\mathrm{x}), 4(-\mathrm{x}) ; \phi_{2}=\mathrm{x},-\mathrm{x} ; \phi 3=16(\mathrm{x}), 16(-\mathrm{x}) ; \phi 4=\mathrm{y}\left(\right.$ compensated for Block-Siegert shift by $\left.-8^{\circ}\right) ; \phi 5=$ $2(\mathrm{x}), 2(-\mathrm{x}) ; \phi 6=8(\mathrm{x}), 8(-\mathrm{x}) ; \phi_{7}=\mathrm{y}$ (compensated for Block-Siegert shift by $\left.+8^{\circ}\right) ; \phi_{8}=32(\mathrm{x}), 32(-\mathrm{x})$; receiver $=\mathrm{R},-\mathrm{R},-\mathrm{R}, \mathrm{R}$, with $\mathrm{R}=\mathrm{x}, 2(-\mathrm{x}), \mathrm{x}$. Gradients (sine bell shaped; $25 \mathrm{G} / \mathrm{cm}$ at center): $\mathrm{G}_{1,2,3,45,5,7.8}$ (in z direction) $=1,1,1.5,1.5,2,1,1$ and 0.4 ms . Quadrature detection in the t_{1} dimension is obtained by altering ϕ_{5} in the States-TPPI manner.

As described in the text, the ${ }^{13} \mathrm{C}^{\alpha} 180^{\circ}$ pulses are either ($\mathrm{A}, \zeta=10 \mu$ s) directly following the ${ }^{13} \mathrm{C}^{\prime} 180^{\circ}$ pulses in the middle of the $\mathrm{C}^{\prime}-\mathrm{C}^{\alpha}$ INEPT and reverse INEPT periods ("long range $\mathrm{J}_{\mathrm{CaC}}$ e experiment") or ($\mathrm{B}, \zeta=4.83 \mathrm{~ms}$) shifted relative to these pulses by a delay of $1 /\left(4^{1} \mathrm{~J}_{\mathrm{C}^{\prime} \mathrm{C} \alpha}\right)$ (" ${ }^{1} \mathrm{~J}_{\mathrm{C} \alpha \mathrm{C}}$, reference experiment"). The size of the ${ }^{{ }^{h 3} \mathrm{~J}_{\mathrm{CaC}}}$, coupling constants can then be determined from the intensity ratio of the ${ }^{{ }^{h 3} J_{C a C}}$ correlation (A) and the ${ }^{1} J_{C^{\prime} \mathrm{C} \alpha}$ correlation (B): $\left.\right|^{h^{h}} \mathrm{~J}_{\mathrm{C} \alpha \mathrm{C}^{\prime}} \mathrm{l}=1 /\left(2 \pi \mathrm{~T}_{\mathrm{C}}\right) \operatorname{atan}\left(\left(\mathrm{I}_{\mathrm{A}} / \mathrm{I}_{\mathrm{B}}\right)^{1 / 2}\right)$.
Data were acquired on a Bruker DRX-600 spectrometer, equipped with a triple resonance, 3-axis pulsed field gradient probe. Spectra were recorded as $86^{*}\left({ }^{13} \mathrm{C}^{\alpha}\right) \times 700^{*}\left({ }^{1} \mathrm{H}^{\mathrm{N}}\right)$ complex data matrices with acquisition times of 6 and 76 ms respectively. The total experimental times for the H-bond (A) and reference (B) experiments were 141 h and 2.8 h .

Figure S2. Pulse sequence of the long-range quantitative ${ }^{{ }^{3} 3} \mathrm{~J}_{\mathrm{C} \alpha \mathrm{C}}$, selective $\mathrm{H}(\mathrm{NCA}) \mathrm{CO}$ experiment. Unless indicated otherwise, parameter settings and symbols are as reported in Figure S1. Rectangular ${ }^{13} \mathrm{C}^{\alpha} 180^{\circ}$ and 90° pulses denoted by black rectangles are applied at an RF field strength of 4.7 kHz . Shaped, open ${ }^{13} \mathrm{C}^{\alpha} 180^{\circ}$ pulses have a sine-bell amplitude profile and a duration of 2.4 ms . Shaped ${ }^{13} \mathrm{C}^{\prime} 180^{\circ}$ pulses have a g 3 amplitude profile with a duration of 2.86 ms corresponding to an inversion bandwidth of $\pm 3.5 \mathrm{ppm}$. Delay durations: $\delta=2.25 \mathrm{~ms}$; $\Delta=5.4 \mathrm{~ms} ; \mathrm{T}_{\mathrm{N}}=22 \mathrm{~ms} ; \mathrm{T}_{\mathrm{C}}$ is optimized to minimize the unwanted transfer through ${ }^{1} \mathrm{~J}_{\mathrm{CaC}}$ (typically $\approx 67.6-$ 70.6 ms). Gradients (sine-bell shaped; $25 \mathrm{G} / \mathrm{cm}$ at center): $\mathrm{G}_{1,2,3,4,5,6,7,8}($ direction $)=1(-\mathrm{y}), 1(\mathrm{z}), 1.5(-\mathrm{y}), 2(\mathrm{x}), 1(\mathrm{z})$, $1.4(\mathrm{y}), 1(-\mathrm{y})$ and $0.4(\mathrm{x}) \mathrm{ms}$. Phase cycling: $\phi_{1}=2(\mathrm{x}), 2(-\mathrm{x}) ; \phi_{2}=4(\mathrm{x}), 4(-\mathrm{x}) ; \phi_{3}=\mathrm{x},-\mathrm{x}$; receiver $=\mathrm{x}, 2(-\mathrm{x}), \mathrm{x}$, $-\mathrm{x}, 2(\mathrm{x}),-\mathrm{x}$. Quadrature detection in the t_{1} dimension is obtained by altering ϕ_{3} in the States-TPPI manner.
The ${ }^{13} \mathrm{C}^{\prime} 180^{\circ}$ pulses are either ($\mathrm{A}, \zeta=10 \mu \mathrm{~s}$) directly following the ${ }^{13} \mathrm{C}^{\alpha} 180^{\circ}$ pulses in the middle of the $\mathrm{C}^{\alpha}-\mathrm{C}^{\prime}$ INEPT and reverse INEPT periods ("long range $\mathrm{J}_{\mathrm{C}^{\prime} \mathrm{C} \alpha}$ experiment") or ($\mathrm{B}, \zeta=4.83 \mathrm{~ms}$) shifted relative to these pulses by a delay of $1 /\left(4^{1} \mathrm{~J}_{\mathrm{C}, \alpha}\right)$ ("1 $\mathrm{J}_{\mathrm{CaC}}$, reference experiment"). The size of the ${ }^{\mathrm{h} 3} \mathrm{~J}_{\mathrm{CaC}}$, coupling constants can then be determined from the intensity ratio of the ${ }^{h 3} \mathrm{~J}_{\mathrm{C}^{\prime} \mathrm{C} \alpha}$ correlation (A) and the ${ }^{1} \mathrm{~J}_{\mathrm{CaC}}$ correlation (B) : ${ }^{\mathrm{h} 3} \mathbf{J}_{\mathrm{CaC}}, \mathrm{l}=$ $1 /\left(2 \pi T_{C}\right) \operatorname{atan}\left(\left(I_{A} / I_{B}\right)^{1 / 2}\right)$.
Data were acquired on a Bruker DRX-600 spectrometer, equipped with a triple resonance, 3-axis pulsed field gradient probe. Spectra were recorded as $50 *\left({ }^{13} \mathrm{C}^{\prime}\right) \times 768^{*}\left({ }^{1} \mathrm{H}^{\mathrm{N}}\right)$ complex data matrices with acquisition times of 30 and 83 ms respectively. As described in the main text, spectra were recorded separately for several $\mathrm{C}^{\alpha}-\mathrm{H}^{\alpha} \cdots \mathrm{O}=\mathrm{C}$ H-bonds with the ${ }^{13} \mathrm{C}^{\alpha}$ carrier set on resonance to the respective ${ }^{13} \mathrm{C}^{\alpha}$ frequencies. The total experimental times varied between 32 and 214 h for the H -bond experiments (A) and were 12 min for the reference (B) experiments.

B. Computational Methods

Sequences containing the donor-acceptor residues were extracted from the 1IGD crystallographic structure for protein $\mathrm{G} .{ }^{18}$ In order to reduce the computational demands, the side chains were selectively pruned ${ }^{22}$ to yield peptide fragments containing 32-37 atoms. Except for the G46 glycine residue of G46/T60, sidechains were replaced by methyl groups at the C^{β}-positions. The donor $\mathrm{C}-\mathrm{H}^{\alpha}$ and $\mathrm{N}-\mathrm{H}$ hydrogen atom positions were optimized (at the B3PW91/6-31G** level using the Gaussian 98 codes $^{\text {1s }}$) while all other atoms were constrained to the positions derived from the crystallographic structure. Entered in Table 1s are relevant structural data in the $\mathrm{C}^{\alpha}-\mathrm{H}^{\alpha} \cdots \mathrm{O}=\mathrm{C}$ moieties of the six peptide sequences.

Table 1s. Structural data ${ }^{1)}$ in the $\mathrm{C}^{\alpha}-\mathrm{H}^{\alpha} \ldots \mathrm{O}=\mathrm{C}$ regions of the peptide sequences.

${\text { Donor } \mathrm{C}^{\alpha}-\mathrm{H}^{\alpha}}$	L 10	E 20	T22	G46	W48	F57
Acceptor O=C	F57	L 10	Y 8	T60	T58	T49
$r_{\mathrm{H} \alpha \mathrm{O}}$	2.346	2.193	2.440	2.240	2.235	2.306
$\theta_{1}, \angle \mathrm{C}^{\alpha} \cdots \mathrm{O}=\mathrm{C}$	143.4	135.6	124.9	122.4	144.1	135.4
$\theta_{2}, \angle \mathrm{H}^{\alpha \cdots \mathrm{O}=\mathrm{C}}$	126.1	149.9	139.4	113.8	147.8	135.1

${ }^{1)}$ All distances are in Angstroms and all angles are in degrees. Data were obtained via DFT calculations (B3PW91/6-31G**) for peptide fragments extracted from the 1IGD crystal structure. ${ }^{18,1 \mathrm{~s}}$

The Fermi contact contributions to ${ }^{{ }^{3} 3} \mathrm{~J}_{\mathrm{CaC}}$, were obtained for the six sequences using methods of density functional theory ${ }^{2 s, 3 s}$ (DFT) and finite perturbation theory ${ }^{4 s}$ (FPT) at the unrestricted UB3PW91/6-311G** triplesplit level with polarization functions on hydrogen and heavier atoms. All scalar couplings are based on the FC output of the FIELD option of Gaussian98, ${ }^{2 s, 5 s, 6 s}$ and are entered in the fifth row of Table 1.

Footnotes and References

(1s) Gaussian 98, Revision A.11.1, Frisch, M. J., Trucks, G. W.; Schlegel, H.B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G., Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G,; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W. M.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.
(2s) Hohenberg, P.; Kohn, W. Phys. Rev. B. 1964, 136, 864-871. Kohn, W., Sham, L. J. Phys. Rev. A. 1965, 140, 1133-1138.
(3s) For a recent comparison of DFT and ab initio calculations of hydrogen-bond-transmitted indirect nuclear spin-spin couplings see Pecul, M.; Sadlej, J.; Helgaker, T. Chem. Phys. Lett. 2003, 372, 476-484.
(4s) Pople, J. A.; McIver, Jr. J. W.; Ostlund, N. S. J. Chem. Phys. 1968, 49, 2960-2964, 2965-2970.
(5s) Onak, T.; Jaballas, J.; Barfield, M. J. Am. Chem. Soc. 1999, 121, 2850-2856.
(6s) All scalar-coupling computations were performed with $\lambda=0.01$ in eq 3 of reference 5 s , and the tight SCF convergence option of G98.

