DIRECT OBSERVATION OF C^{α}-H^{α}...O=C HYDROGEN BONDS IN PROTEINS BY INTERRESIDUE ^{h3}J_{C α C⁷} SCALAR COUPLINGS

Florence Cordier, Michael Barfield,* and Stephan Grzesiek* Biozentrum, University of Basel, Basel 4056, Switzerland, and Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA

SUPPORTING INFORMATION

A. Experimental Details

Figure S1. Pulse sequence of the long-range quantitative h3J_{CaC} H(NCO)CA experiment. Narrow and wide pulses denote 90° and 180° flip angles, respectively, and unless indicated the phase is x. The carrier frequencies are set to water (¹H, ²H), 116.5 ppm (^{15}N), 177 ppm ($^{13}C'$) and 56 ppm ($^{13}C^{\alpha}$). DIPSI_x refers to the ^{1}H decoupling, using the DIPSI-2 modulation scheme with the RF field ($\gamma_H B_1 = 5 \text{ kHz}$) applied along the x-axis. The ²H decoupling (DIPSI-2) is applied at a field strength of 1.8 kHz. Rectangular low power ¹H pulses are applied using $\gamma_{\rm H}B_1 = 200$ Hz. The shaped 90°_{-x} pulse has a sine-bell amplitude profile and a duration of 3.32 ms. The regular ¹⁵N pulses are applied at an RF field strength $\gamma_N B_1 = 6.25$ kHz, whereas the ¹⁵N decoupling is applied at an RF field strength of $\gamma_N B_1 = 1.25$ kHz. Rectangular ¹³C' (¹³C^{\alpha}) 180° and 90° pulses denoted by black rectangles are applied at an RF field strength of 3.1 and 4.7 kHz, respectively. Open shaped pulses indicate ${}^{13}C'$ 90° and 180° with a sine-bell amplitude profile and a duration of 150 and 300 μ s, respectively. Shaped ${}^{13}C^{\alpha}$ 180° pulses have a g3 amplitude profile with a duration of 1.43 ms corresponding to an inversion bandwith of \pm 7 ppm. Note, that these band-selective ${}^{13}C^{\alpha}$ inversion pulses were used in order to minimize magnetization losses to sidechain ${}^{13}C^{\beta}$ and ${}^{13}C^{\gamma}$ nuclei. Delay durations: $\delta = 2.25$ ms; $\Delta = 5.4$ ms; $T_N = 15.5$ ms; $T_C = 58$ ms (note that T_C is optimized for minimal transfer by ${}^{1}J_{CC\alpha}$ couplings and deviates from the nominal value of $6/{}^{1}J_{CC\alpha}$ due to the finite length of the ${}^{13}C$ 180° pulses). Phase cycling: $\phi_1 = 4(x), 4(-x); \phi_2 = x, -x; \phi_3 = 16(x), 16(-x); \phi_4 = y$ (compensated for Block-Siegert shift by -8°); $\phi_5 = 16(x), 16(-x); \phi_4 = y$ (compensated for Block-Siegert shift by -8°); $\phi_5 = 16(x), 16(-x); \phi_4 = y$ (compensated for Block-Siegert shift by -8°); $\phi_5 = 16(x), 16(-x); \phi_4 = y$ (compensated for Block-Siegert shift by -8°); $\phi_5 = 16(x), 16(-x); \phi_4 = y$ (compensated for Block-Siegert shift by -8°); $\phi_5 = 16(x), 16(-x); \phi_4 = y$ (compensated for Block-Siegert shift by -8°); $\phi_5 = 16(x), 16(-x); \phi_4 = y$ (compensated for Block-Siegert shift by -8°); $\phi_5 = 16(x), 16(-x); \phi_4 = y$ (compensated for Block-Siegert shift by -8°); $\phi_5 = 16(x), 16(-x); \phi_4 = y$ (compensated for Block-Siegert shift by -8°); $\phi_5 = 16(x), 16(-x); \phi_4 = y$ (compensated for Block-Siegert shift by -8°); $\phi_5 = 16(x), 16(-x); \phi_4 = y$ (compensated for Block-Siegert shift by -8°); $\phi_5 = 16(x), 16(-x); \phi_4 = y$ (compensated for Block-Siegert shift by -8°); $\phi_5 = 16(x), 16(-x); \phi_4 = y$ (compensated for Block-Siegert shift by -8°); $\phi_5 = 16(x), 16(-x); \phi_5 = 16(x); \phi_5 = 16(x); \phi_5$ $2(x),2(-x); \phi_0 = 8(x),8(-x); \phi_7 = y$ (compensated for Block-Siegert shift by +8°); $\phi_8 = 32(x),32(-x);$ receiver = R,-R,-R,R, with R=x,2(-x),x. Gradients (sine bell shaped; 25 G/cm at center): $G_{1,2,3,4,5,6,7,8}$ (in z direction) = 1, 1, 1.5, 1.5, 2, 1, 1 and 0.4 ms. Quadrature detection in the t₁ dimension is obtained by altering ϕ_5 in the States-TPPI manner.

As described in the text, the ¹³C^{α} 180° pulses are either (A, $\zeta = 10 \ \mu s$) directly following the ¹³C' 180° pulses in the middle of the C'-C^{α} INEPT and reverse INEPT periods ("long range J_{C α C'} experiment") or (B, $\zeta = 4.83 \ ms)$ shifted relative to these pulses by a delay of 1/(4 ¹J_{C'C α}) ("¹J_{C α C'} reference experiment"). The size of the ^{h3}J_{C α C'} coupling constants can then be determined from the intensity ratio of the ^{h3}J_{C α C'} correlation (A) and the ¹J_{C'C α} correlation (B): $|^{h3}J_{C\alpha}C'| = 1/(2\pi T_C) \ atan((I_A/I_B)^{1/2}).$

Data were acquired on a Bruker DRX-600 spectrometer, equipped with a triple resonance, 3-axis pulsed field gradient probe. Spectra were recorded as 86^* ($^{13}C^{\alpha}$) × 700^{*} ($^{1}H^{N}$) complex data matrices with acquisition times of 6 and 76 ms respectively. The total experimental times for the H-bond (A) and reference (B) experiments were 141 h and 2.8 h.

Figure S2. Pulse sequence of the long-range quantitative ${}^{h3}J_{C\alpha C'}$ selective H(NCA)CO experiment. Unless indicated otherwise, parameter settings and symbols are as reported in Figure S1. Rectangular ${}^{13}C^{\alpha}$ 180° and 90° pulses denoted by black rectangles are applied at an RF field strength of 4.7 kHz. Shaped, open ${}^{13}C^{\alpha}$ 180° pulses have a sine-bell amplitude profile and a duration of 2.4 ms. Shaped ${}^{13}C'$ 180° pulses have a g3 amplitude profile with a duration of 2.86 ms corresponding to an inversion bandwidth of ± 3.5 ppm. Delay durations: δ = 2.25 ms; Δ = 5.4 ms; T_N = 22 ms; T_C is optimized to minimize the unwanted transfer through ${}^{1}J_{C\alpha C'}$ (typically \approx 67.6 – 70.6 ms). Gradients (sine-bell shaped; 25 G/cm at center): $G_{1,2,3,4,5,6,7,8}$ (direction) = 1(-y), 1(z), 1.5(-y), 2(x), 1(z), 1.4(y), 1(-y) and 0.4(x) ms. Phase cycling: ϕ_1 = 2(x),2(-x); ϕ_2 = 4(x),4(-x); ϕ_3 = x,-x; receiver = x,2(-x),x, -x,2(x),-x. Quadrature detection in the t₁ dimension is obtained by altering ϕ_3 in the States-TPPI manner.

The ¹³C' 180° pulses are either (A, $\zeta = 10 \ \mu s$) directly following the ¹³C^{α} 180° pulses in the middle of the C^{α}- C' INEPT and reverse INEPT periods ("long range J_{C'C α} experiment") or (B, $\zeta = 4.83 \ ms$) shifted relative to these pulses by a delay of $1/(4 \ ^1J_{C'C\alpha})$ ("¹J_{C α C'} reference experiment"). The size of the ^{h3}J_{C α C'} coupling constants can then be determined from the intensity ratio of the ^{h3}J_{C'C $\alpha} correlation (A) and the ¹J_{C<math>\alpha$ C'} correlation (B): |^{h3}J_{C α C'}| = $1/(2\pi T_C) \ atan((I_A/I_B)^{1/2})$.</sub>

Data were acquired on a Bruker DRX-600 spectrometer, equipped with a triple resonance, 3-axis pulsed field gradient probe. Spectra were recorded as 50^* (¹³C') × 768* (¹H^N) complex data matrices with acquisition times of 30 and 83 ms respectively. As described in the main text, spectra were recorded separately for several C^{α}-H^{α}...O=C H-bonds with the ¹³C^{α} carrier set on resonance to the respective ¹³C^{α} frequencies. The total experimental times varied between 32 and 214 h for the H-bond experiments (A) and were 12 min for the reference (B) experiments.

B. Computational Methods

Sequences containing the donor-acceptor residues were extracted from the 1IGD crystallographic structure for protein G.¹⁸ In order to reduce the computational demands, the side chains were selectively pruned²² to yield peptide fragments containing 32 - 37 atoms. Except for the G46 glycine residue of G46/T60, sidechains were replaced by methyl groups at the C^β-positions. The donor C-H^α and N-H hydrogen atom positions were optimized (at the B3PW91/6-31G** level using the Gaussian 98 codes^{1s}) while all other atoms were constrained to the positions derived from the crystallographic structure. Entered in Table 1s are relevant structural data in the C^α-H^α···O=C moieties of the six peptide sequences.

Donor C ^a -H ^a	L10	E20	T22	G46	W48	F57
Acceptor O=C	F57	L10	Y8	T60	T58	T49
r _{HαO}	2.346	2.193	2.440	2.240	2.235	2.306
<i>θ</i> ₁ , ∠C ^α …O=C	143.4	135.6	124.9	122.4	144.1	135.4
<i>θ</i> ₂ , ∠H ^α …O=C	126.1	149.9	139.4	113.8	147.8	135.1

Table 1s. Structural data¹⁾ in the C^{α}-H^{α}...O=C regions of the peptide sequences.

¹⁾ All distances are in Angstroms and all angles are in degrees. Data were obtained via DFT calculations (B3PW91/6-31G**) for peptide fragments extracted from the 1IGD crystal structure.^{18,1s}

The Fermi contact contributions to ${}^{h3}J_{C\alpha C}$ were obtained for the six sequences using methods of density functional theory^{2s,3s} (DFT) and finite perturbation theory^{4s} (FPT) at the unrestricted UB3PW91/6-311G** triple-split level with polarization functions on hydrogen and heavier atoms. All scalar couplings are based on the FC output of the FIELD option of Gaussian98,^{2s,5s,6s} and are entered in the fifth row of Table 1.

Footnotes and References

- (1s) Gaussian 98, Revision A.11.1, Frisch, M. J., Trucks, G. W.; Schlegel, H.B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G., Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W. M.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.
- (2s) Hohenberg, P.; Kohn, W. Phys. Rev. B. 1964, 136, 864-871. Kohn, W., Sham, L. J. Phys. Rev. A. 1965, 140, 1133-1138.
- (3s) For a recent comparison of DFT and ab initio calculations of hydrogen-bond-transmitted indirect nuclear spin-spin couplings see Pecul, M.; Sadlej, J.; Helgaker, T. *Chem. Phys. Lett.* **2003**, *372*, 476-484.
- (4s) Pople, J. A.; McIver, Jr. J. W.; Ostlund, N. S. J. Chem. Phys. 1968, 49, 2960-2964, 2965-2970.
- (5s) Onak, T.; Jaballas, J.; Barfield, M. J. Am. Chem. Soc. 1999, 121, 2850-2856.
- (6s) All scalar-coupling computations were performed with $\lambda = 0.01$ in eq 3 of reference 5s, and the *tight* SCF convergence option of G98.