Application of the Synthetic Aminosugars for Glycodiversification: Synthesis and Antimicrobial Studies of Pyranmycin

Bryan Elchert, Jie Li, Jinhua Wang, Yu Hui, Ravi Rai, Roger Ptak, Priscilla Ward, Jon Y.

Takemoto, Mekki Bensaci, and Cheng-Wei Tom Chang*

Department of Chemistry and Biochemistry, and Department of Biology, Utah State University, 0300 Old Main Hill, Logan, Utah 84322-0300, U.S.A.

Infectious Disease Research Department, Southern Research Institute, 431 Aviation Way, Frederick, Maryland 21701.

Supporting Information

Table of Content (S1-S2)

¹H NMR and ¹³C NMR Spectra for Selected Compounds (S3-S77)

General Experimental Procedure (S78-S89)

Table of Content

Compound Name	Page
Methyl 4-azido-2,3,6-tri-O-benzyl-4-deoxy-a-D-galactopyranoside (4).	S3, S4
Methyl 2,3,6-tri-O-benzyl-a-D-galactopyranoside (5).	S5, S6
Methyl 4-azido-2,3,6-tri- <i>O</i> -benzyl-4-deoxy-a-D-glucopyranoside (6).	S7, S8
Methyl 2,3-di-O-benzyl-a-D-glucopyranoside (7).	S9, S10
Methyl 4,6-diazido-2,3-di-O-benzyl-4,6-dideoxy-a-D-galactopyranoside (8).	S11, S12
Methyl 2,3-di-O-benzyl-6-deoxy-a-D-glucopyranoside (9).	S13, S14
$\label{lem:methyl-def} \mbox{Methyl 4-azido-2,3-di-O-benzyl-4,6-dideoxy-a-D-galactopyranoside (10)}.$	S15, S16
Methyl 2,3-di-O-benzyl-6-deoxy-a-D-galactopyranoside (11).	S17, S18
Methyl 4-azido-2,3-di-O-benzyl-4,6-dideoxy-a-D-glucopyranoside (12).	S19, S20
Methyl 6-azido-2,3-di-O-benzyl-6-deoxy-a-D-glucopyranoside (13).	S21, S22
Methyl 6-azido-2,3-di-O-benzyl-6-deoxy-a-D-galactopyranoside (14)	S23, S24
Methyl 4,6-diazido-2,3-di-O-benzyl-4,6-dideoxy-a-D-glucopyranoside (15).	S25, S26
Acetyl 4-azido-2,3,6-tri- <i>O</i> -acetyl-4-deoxy-a-D-galactopyranoside (16).	S27, S28
Acetyl 4-azido-2,3,6-tri- <i>O</i> -acetyl-4-deoxy-a-D-glucopyranoside (17).	S29, S30
Acetyl 4,6-diazido-2,3-di-O-acetyl-4,6-dideoxy-a-D-galactopyranoside (18).	S31, S32
Acetyl 4-azido-2,3-di-O-acetyl-4,6-dideoxy-a-D-galactopyranoside (19).	S33, S34
Acetyl 4,6-diazido-2,3-di-O-acetyl-4,6-dideoxy-a-D-glucopyranoside (20).	S35, S36
Acetyl 4,6-diazido-2,3-di-O-acetyl-4,6-dideoxy-a-D-glucopyranoside (22).	S37, S38
Cis, cis-3,5-diazidocyclohexanol (30).	S39, S40
Trans, trans-3,5-diazidocyclohexanol (30a).	S41, S42
Cis, cis-3,5-diazidocyclohexyl benzoate (30b).	S43, S44

Cis, cis-3,5-diazidocyclohexyl b-D-2,3,4-tri-O-acetyl-6-azido-6-deoxygluco-pyranoside (31).	S45
Cis, cis-3,5-diaminocyclohexyl b-D-6-amino-6-deoxyglucopyranoside (32).	S46, S47
Cis, cis-3,5-diazidocyclohexyl b-D-2,3-di-O-acetyl-4,6-diazido-4,6-dideoxy-glucopyranoside (33).	S48, S49
Cis, cis-3,5-diaminocyclohexyl b-D-4,6-diamino-4,6-dideoxygluco-pyranoside (34).	S50, S51
Acetyl 2,4-di-O-acetyl-3-O-allyl-6-deoxy-D-glucopyranoside (37).	S52, S53
${\bf 2,4-Di}\hbox{-}{\it O}\hbox{-}acetyl\hbox{-}{\it 3-O}\hbox{-}allyl\hbox{-}{\it 6-deoxy-a-D-glucopyranosyl}\ trichloroacetimidate\ (\bf 38).$	S54, S55
5'- <i>O</i> -(2,4-Di- <i>O</i> -acetyl-3- <i>O</i> -allyl-6-deoxy-b-D-glucopyranosyl)-6,3'4'-tri- <i>O</i> -benzyl-1,3,2'6'-tetraazidoneamine (39).	S56, S57
5'-O-(2,4-Di-O-acetyl-3-O-(3-hydroxypropyl)-6-deoxy-b-D-glucopyranosyl)-6,3'4'-tri-O-benzyl-1,3,2'6'-tetraazidoneamine~(40).	S58, S59
5'-O-(2,4-Di-O-acetyl-3-O-(3-(2',4'-di-O-acetyl-3'-O-(2''-azidoethyl)-6'-deoxy-b-D-glucopyranosyl)-propyl)-6-deoxy-b-D-glucopyranosyl)-6,3'4'-tri-O-benzyl-1,3,2'6'-tetraazidoneamine (42).	S60, S61
5'- <i>O</i> -(2,4-Di- <i>O</i> -acetyl-3- <i>O</i> -(3-fluoropropyl)-6-deoxy-b-D-glucopyranosyl)-6,3'4'-tri- <i>O</i> -benzyl-1,3,2'6'-tetraazidoneamine (43).	S62, S63
2,3,4-Tri-O-acetyl-6-deoxy-6-fluoro-a-D-glucopyranosyl trichloroacetimidate (46).	S64, S65
5'- <i>O</i> -(2,3,4-Tri- <i>O</i> -acetyl-6-deoxy-6-fluoro-b-D-glucopyranosyl)-6,3'4'-tri- <i>O</i> -benzyl-1,3,2'6'-tetraazidoneamine (47).	S66, S67
$5'-O\hbox{-}(6-Deoxy\hbox{-}6-fluoro\hbox{-}b-D\hbox{-}glucopyranosyl) neamine (TC033).$	S68, S69
$5'-O-(3-O-n-\text{Propyl-6-deoxy-b-D-glucopyranosyl}) neamine \ (TC040).$	S70, S71
$5'-O-(3-O-(3-Hydroxypropyl)-6-deoxy-b-D-glucopyranosyl) neamine \ (TC041).$	S72, S73
$5'-O-(3-O-(3-Fluoropropyl)-6-deoxy-b-D-glucopyranosyl) neamine \ (TC044).$	S74, S75
5'-O-(3-O-(3-O-(2-aminoethyl)-6-deoxy-b-D-glucopyranosyl) propyl)-6-deoxy-b-D-glucopyranosyl) neamine (TC045).	S76, S77
General Experimental Procedures	S78 - S89

n proton,346

= 15 COGLEX = X = 11

0.1822[m*]

= GSX 270 = DELTA_IRR

Spec Site Spec Type

.)		
	0°L	
File Name = 1d_13c_spectrum.35 Author Sample ID = 5#291222 Content = 51818 Pulse with Broat Creation Date = 25-FEB-2001 08:45:21 Sevision Date = 25-FEB-2001 09:03:14 Spec Site = 05X 270	0.9	
	0.2	
11.1.3 (us) 11.1.3 (us) 11.2 (us) 11.3 (us) 11.1 (us) 11.1 (us) 11.1 (us)	0°t	Á:
Scalvent	O'E	T.
	O-2.0.2	λο <mark>ό</mark> Με
Comman H 13C Cffset 67,94010394[MHz] Coffset 100.0[ppm] [points 93768 [points 94 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.1	
	0	14 CO.O. 190.0 180.0 170.0 160.0 150.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0
S4	Methyl 4-azido-2,3,6-tri- O -benzyl-4-deoxy- α -D-galactopyranoside (4)	eoxy-α-D-galactopyranoside (4).
THE PARTY AND THE PARTY OF THE		The state of the s

X : parts per Million : 13C

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0

Methyl 4-azido-2,3,6-tri-O-benzyl-4-deoxy-α-D-glucopyranoside (6).

X: parts per Million: 13C

٦		· .	-	·		,	- 			• 	. -	
										· I	0	,
:			•	· . "						•		<u>,</u>
	ī		•				:				1.0	
			:								₹ [
.			•									
			•								₹°?	(
					•							9
											3.0	anos
											ا (opyr
			•					·				Methyl 2,3-di- O -benzyl- $lpha$ -D-glucopyranoside (7).
										<u></u>	0.4	-α-D-
-							~ · · · · · · · · · · · · · · · · · · ·					enzyl
												\$
-							0	Q				£.
							0,	OBn				7 7
								/ \{ \bar{0}			0.6	Met
							Ď HÔ	2				
							_	BnO			0	
			·		···							
												,
											8.0	,
	0.001	0.06	0.08	0.07	0.09	0.02	0.04	0.05	0.02	0.01		
								U U :		(snoilfilM)		
		1men 32 49						•	-			
	<u></u>	. proton,779 . s#811365 . Single Pulse Experime . 2-3x2-2001.22:35:35 . 2-3x1-2001.22:35:49		ď×					KIIZ)	Ţ.		
-		779 5 Pulm 2001:2	XIII	122 [ma] 12 14 pulas. 5446 [T]		огм-р	cch	<u>. </u>	43920 []] 976 [IIz	541 [kk		
:	A	proton,779 s#811365 Single Pul. 2-JAM-200: 2-JAM-200:	a CSX 270	ppm] 1022[mi) 11032[mi) 11031• pt	(m) (m) (m) (m) (m) (m) (m) (m) (m) (m)	4 { #] 16 CHILOROFORM-D 9 {HE] 0.1 {me] 29 {db }	SPIN ON SPIN ON 16.1 (dc 21.0 (dc	11.3[um] 11.3[um] 10[um] 36[um] 3.03104[m]	270.16743928 [HII] 5.0 [ppm] 16384 5.65 [u.e] 0.32991976 [HII]	40540		
										น ท		
		Date		nits alay : ar sample iment atrength	.5.		n t t • e u • m •	tus ration	tt. Ans ution			•
	J	rile Name Author Sample ID Content Creation Dat Revision Dat	ec Sita ec Type ta Form nenaion n Title	១៤ ភូមិណ	000 6 14	Lexatio	pan state	emp_status 90 90 hi 90 lo 20 lo acq duration domain	fraq offaet Points Prescer Pulse	Д # #		S9
	1	YIII Aut Con Cre	Spec Spec Data Dimen	Die U Acq d Chang Exper	000 1450 14440 14440 14440 14440 14440 14440 14440 14440 1440	S C C C C C C C C C C C C C C C C C C C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		××××××	× ^t		

0.7

	0.9))		•	o [!]	ς	•	• •		•	o!;	-		٠,			0.				1	o¦z		. ,	•			0,1			
																				•										(snoi	(אנוו
1d 13c =pectrum, 33	79339 ngle -res-	GSX 270 DELTA_HOR	1D COMPLEX	130	32760	[Per] 57.5[us]		#ingie_puise_dec 6.345446[T]	27	36[um] 36[um]	111	36[U#] TDIX	15	1(=)	CILOROTORM-D		0.1[ms] 29[dn]	NO HIGE		25 (dC)	TIME OFF	8[us]	39 [4#]	1.9267584[#]	13C 67.94010394[Miz]	100.0[ppm]	32768	2,6666667[um]	0.51900643[Hz]	17.00680272[kdfx]	
	bor ID Debe no safon Date no faton Date no faton Date	Spec Site H	n :	Title n	Dim Sixe	lay	Changer sample m	Experiment Field strength to	Itr90	Xxx90_10	•	Trr pwidth m		Relaxation delay=	Solvent	3	Spin lock 30 B	Spin state n	9. t	: :	֚֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	2 06X	1,3	X acq duration H	X frag	X offset	X_points	pulse		C. C.	

HO OBn OBn

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 Methyl 2,3-di-O-benzyl- α -D-glucopyranoside (7).

- Indians were the properties of the properties

X : parts per Million : 13C

							0	
						, 3	1.0 1.0	(a) apreció
·							2.0 2.0	in the second se
	· <u> </u>		•				3.0 ideoxv.o.D.c	
				,			7.0 6.0 5.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	
				ž 0	OMe		5.0.	
				Z.	0 0	·	6.0	
				o u				
							8.0	
0 13.0	110.0	0.6 0.8	0.7 0.8	0'5 0'	0.5	(2noilliM)) 2,0 1	0	
	n proton,233 n S#740688 n Single Pulse Experimen n 2-JUL-2000 20:36:07 n 2-JUL-2000 20:36:29	= 65X 270 = DILLA RUR = 1D CCGPLEX = X = 1A = 16384 = [ppm] = 0.1822 [ms] = 0.1822 [ms]	6.34546[T] H 11.3[us] H 10[vs] H 36[us] H 36[us] H 25[us] H 75 (us] H 75 (us)			5.65[um] 0.32991976[Hx] 5.40540541[kHx]		
4	Tile Name Author Sample ID Content Creation Date Revision Date	Spec Site Spec Type Data Tornat Dim Title Dim Sixe Dim Sixe Dim Unite Acq delay Acq delay	'ield_strength rry00 rry00 hi rry00 lo rry00 lo rry pwidth ock_status secvr galn seastation_dela	Solvent Spin Jose 19	xsop mixers xso hi xsollo x acq duration x acq duration x free x offset	resolution resolution resolution		S11

<u></u>

			·				BnO				
						e.	÷				-
12.0 13	0,11	10.0	0.6	0.8	0 L	0.8	0.2	0.4	0.5	2.0	enoilliM)
		Spec Site a DELTA NOR	4 #	Acq delay Changer_sample b Krpertment rield_strength b 6.345446[T]	IKE90			Temp_get = 21.4[dC] Temp_set = 25[dC] Temp_state = 17kF OFF XP0 = 17kF OFF X90 = 8[us]	X90 hi	100.0(ppm) 100.0(ppm) 12766 12.6666667[us] 12.6666667[us] 13.006643[itz]	
	·							e 15 in 2 15 22 1	•		

200.0 190.0 180.0 170.0 160.0 150.0 140.0 120.0 110.0 100.0 90.0 80.0, 70.0 60.0, 50.0 40.0 30.0 20.0 10.0

Methyl 4,6-diazido-2,3-di-O-benzyl-4,6-dideoxy-a-D-galactopyranoside (8).

O-JANAMAN BURANAN HARAN KANDAN KANDAN

X : pai is per Million : 13C

Hand Brooms and the state of th					HAMMAN WANTER HAMMAN WANTER WA	Methyl 2,3-di- O -benzyl-6-de 0 xy- $lpha$ -D-gluc 0 pyran 0 side (9).
190.0 180			717		170.0 160.0 150.0 0 130.0 120.0 110.0 100.0	Methyl 2,3-di-O-benzyl
0,1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.4	0.5		 	 -	

Militarian process. 23 Control of the Control of th	-									
### Author		~~~	<u> </u>					·		
### Name Supple		12.0								
Spec Site Dear format Dear fo	nnennu	0.11 0.								
Date Tormat Date Tormat Date Tormat District Distric	n n	ŌĪ								atiga ess
Defin on the second control of the second co	#_ # N # H	0'6								
	= [ppm] = 0.1822[m#] mpl= = 0 .1822[m#] : = #ingl=_pul#e. ingth = 6.38446[T]	0.8								
######################################	1 6 1 1 1 1	0.7					,			
### 15 12 12 12 12 12 12 12	e valeb	0,6			<u> </u>					
Tamp_set = 20.44[dc] Tamp_set = 20.44[dc] Tamp_set = 11.34[dc] Tamp_set = 11.34[dc] Tamp_set = 11.34[dc] Tamp_set = 11.34[dc] X00 hi X0	oration and and and and and and and and and an	0.8	Ž'V				1			Specie
x 200 hl x x 2		0't	Oug	Λ		·				
X points 16384 X present 16384 X resolution 15.65[us] X resolution 15.40540541[kHr] X resolution	hi lo iq duration u main u eq	ο.ε								
(snoillinx) (a.s. o.t. o.t. o.t. o.t. o.t. o.t. o.t. o	te cans lution n									
S12	I			٠			, <u>,</u> -		<u> </u>	. The transfer of the
X: parts per					0.	, Q,	3.0,	2.0	.10	;;;
			Methyl 4-az	rido-2,3-di-C	-benzyl-4	,6-dideoxy.	α-D-galact	opyranosid	e (10).	
	S15	X: parts	per Million : 1							

Methyl 4-azido-2,3-di-O-benzyl-4,6-dideoxy-a-D-galactopyranoside (10).

X : parts per Million : 13C

20.0 10.0

1d_13c_spectrum.22 s#297338 single Pulse with Brox 24_FEL-2001 10:08:38 24_FEL-2001 10:09:33	GGSX 270 DELTA, MAR. 1D COMPLEX X X X X X X X X X X X X X X X X X X	•
Tile Name Author Sample ID Content Creation Date n	Spec Site Spec Type Data Format Dimnations Dim Title Dim Sire Dim Glasy Changer sample Field strangth Field strangth	

0.15 0.05 0.61 0.81 0.71 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.61 0.80 0.7 0.8 0.7 0.8 0.2 0.1

Bno Bno OM

Methyl 2,3-di-O-benzyl-6-deoxy-α-D-galactopyranoside (11).

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 . 70.0 . 60.0 . 50.0 . 40.0 . 30.0 . 20.0 . 10.0

不是一个,我们

(SnoilliM)

X: parts per Million: 13C

14.0 * 1.0 Methyl 4-azido-2,3-di-O-benzyl-4,6-dideoxy-α-D-glucopyranoside (12). 5.0 0, 15. X : parts per Million : 1H 8.0 2.0 3.0 0.1 O.Y 0.2 0.4 0.6 0.8 0.9 (Millions) 0.16743928 [MHz] m proton.239 CSX 270 DELTA NOR 1D COMPLEX rile Name Author Sample ID Content Creation Date Revision Date Data Format Dimensions Dim Title Dim Sire Spec Site Spec Type S19

= 1d_13c_spectrum,20 = 5#649392 = 5ingle Pulse with Bros = 23-FEB-2001 20:10:07 = 23-FEB-2001 20:11:01 = 2.66666667[um] = 0.51900643[Hm] = 17.00680272[kHm] = 39[us] = 1.9267584[s] = 13C GSX 270 DELTA MGR in complex ppm] 7.5(u≢) Data Format
Dimensions
Dim Title
Dim Sire
Dim Units
Acq delay
Changer sample
Expeximent X90 hi X90 lo X acq duration X domain Sample ID Content Creation Date Revision Date emp_state emp_state emp_status Spac Site Spac Type

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0

(snoilliM)

200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0, 60.0, 50.0 40.0 30.0 20.0 10.0

ووالماسين والمعاول والمواوية والمواو

Methyl 4-azido-2,3-di-O-benzyl-4,6-dideoxy-α-D-glucopyranoside (12).

والمصموات والمراحوات والمعاول والمنافئ والمراجع والمراع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراع والمراجع والمراع والمراع والمراجع والمراجع والمراجع والمراجع والم

X : parts per Million : 13C

			3500 to 1	*	
			••	0.0	•
				20 20	
				30.	(13)
				表 40.0	ige
		-		50.0	anos
				50.0	
				1 oc	nco
•					g-C-
	<u>o</u>			08	Methyl 6-azido-2,3-di-O-benzyl-6-deoxy-α-D-glucopyranoside (13).
	- 1 O			90.0	-deo
	~ 3/E .		•	- For	y 1- 6
				0.01	ж
	₹, Õ₽			· 20.02	-
		·		- 10°C	3-di
		•		DE LO	0-7,
			· · · · · · · · · · · · · · · · · · ·	140	azid
				150.0	- -
				0.09	ethy
				7644 0.0 1	Σ
			,	17 0.0	
				18C	
				190.0	
				- 	
				200.0	
0'5 0'5	ο.ε	2,0	0.1	2000	
0.2 0.4	o.s	2.0	(snoilliì 0, l	0	
0'5 0't	o.s	0.2		0	
-	·. 0.£		(snoillì)	0	
 مه م	· .		(snoillì)	0	
 مه م	:		(snoillì)	0	
-	:	[s] 394 [kdf z]	(snoillì)	0	
		HO BNO OME	$\langle \lambda \rangle$	$\langle \lambda \rangle$	Bnoome Bnoome Bnoome 10.0 20.0 20.0 20.0 10.0

X90 hi X90 lo X acq duration X domain

Spec Site Spec Type

rile Name Author Sample ID Content Creation Date Revision Date

Data Tormat
Dimensions
Dim Title
Dim Sire
Dim Units
Acq delay
Changer sample
Freedan

				Aco			200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0, 60.0 50.0 40.0 30.0 20.0 10.0 0	Acetyl 4-azido-2,3,6-tri-O-acetyl-4-deoxy-α-D-galactopyranoside (16).	X:pn
-	0'9	0.2	0.4	0,5	0.2	0,1	onoilliliM)		×
			Spec Type DELTA, NGR Spec Type DELTA, NGR Dimensions N X Dim Title N 13C Dim Sire 22768 Dim Units Dippuls Dippuls Acq delay D 57.5[us] Changer, sample 0 Experiment Single pulse dec Tield strength H 5.34446[T]			X90 lo X acq duration		\$2	

بر .					
5		0.08	0.08		
rile Name Author Sample ID Content Creation Date Revision Date	m proton.2211 m 3#454216 m 5#454216 m 5#391e Pulse Experimen m 2-FEB-2002 12:39:06 m 2-FEB-2002 12:39:24	0.0 <i>T</i>	0.07		
Spec Site Spec Type Data Format	m GSX 270 m DELTA_MMR m 1D COMPLEX	0	0		
Dimensions Dim Title Dim Sire Dim Gire Acc delay	n X n 1H n 16394 n [Ppn]	.09	.09		
] , , , , , , , , ,	m single pulse.exp m 6.345446[T] m 11.6[us] m 18[us]	0.02	0.02		
Tracks Tr	# 41[us] # 1Dix # 1Dix # 29 # 4[s] # 8 # CLOROYONM-D # 14[HE]	40.0	0.01		
Spin lock attn Spin set Spin state Spin status Temp get Temp set	12 24 (db) 12 15 (hr) 12 5 DIN ON 12 19 18 (dc) 13 15 16 (dc) 14 15 16 OIF	0.08	AcO AcO AcO AcO		- (A)
X90 hi X90 hi X90 hi X90 ho X acq duration X domain X freq X offeet	11.6[us] 11.6[us] 14.[us] 13.03104[s] 11.8 12.03104[s] 13.0[ppm] 16.1310	20.0	20.0		
X prescans X pulse X resolution X awap			10.0	. –	.
makka akka akka akka ka ka ka ka ka ka ka		ioilliM)			- 1 - 1 - 1 - 1
Name		0	8.0	1.0	0
			Acetyl 4-azido-2,3,6-tri-O-acetyl-4-deoxy-α-D-glucopyranoside (17).		
S29			$X: parts \ per \ Million: 1H$		

0.6

200,0 190,0 180,0 170,0 160,0 150,0 140,0 130,0 120,0 110,0 100,0 80,0, 70,0 60,0 50,0 40,0 30,0 20,0 10.0 6 0 大学の大学ではないないというないないないないないないないないないないないないないないない

Acetyl 4-azido-2,3,6-tri-O-acetyl-4-deoxy- α -D-glucopyranoside (17).

X : parts per Million : 13C

	Aco		8.0 7.0 6.0 7.0 7.0 6.0 7.0 7.0 6.0 7.0 7.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	Acetyl 4,0-dlazld0-2,3-dl-U-acetyl-4,6-dldeoxy-α-D-galactopyranoside (18). Χ : parts per Million : 114
30.0	0.05	0.01	0.6	X
	ttp de gtp. ttp de gtp. ttp de la	Temp get = 20 [dC] Temp_state = 72 [dC] Temp_status = 72 [dC] Temp_status = 11.3 [dx] Temp_status = 11.3 [dx] X90 hi = 11.3 [dx] X90 hi = 36 [dx] X domain = 36 [dx] X domain = 13 03104 [x] X freq = 270,16743928 [HHx] X freq = 16384 X prescans = 6 0 [ppm] X prescans = 6 0 [ppm]	ıtion	\$32

|--|

52 0.22 0.	15 0.05 0.01 0.81 0.71 0.81 0.21 0.81 0.81 0.11 0.01 0.0 0.8, 0.7 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
	(snoilli)
	1d_13c_spectrum.29 2d_11525 2d_11525 2d_11D_2001 19:01:05 2d_10D_2001 19:01:05 2d_10D_2001 19:01:05 2d_10D_2001 19:01:05 2d_10D_2001 19:01 2d_10D_20D_2001 19:01 2d_10D_2001 19:01
	rile Name Author Sample ID Content Creation Date Spec Site Spec Site Spec Type Data Tornat Dim Title Dim T

Acetyl 4,6-diazido-2,3-di-O-acetyl-4,6-dideoxy-α-D-glucopyranoside (20). 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90,0 80.0, 70,0 60.0 50.0 40.0 30.0

20.0 10.0

X : parts per Million : 13C

14 THE RESERVE TO THE RESERVE			N3 Aco Aco OAc	
	0.71 0.91	### ### ##############################	### ### ### ##########################	2.6666667[u*] 0.51900643[iix] 17.00690272[xiix] 17.00f00272[xiix] 0.00f0010010010010010010010010010010010010

The second secon				E Z Z			40 30 30 30 30 30 30 30 30 30 30 30 30 30	X : parts per Million : 1H
	0.9	o's	0 ['] t	ο.ε	0,2	1,0	(anoilliM)	
		Author) hi) lo) lo midth status status cation_delay statin lock 90 lock 90		n = 14 = 270.16743928[MHz] tt = 5.0[ppm] :s = 16384 .ans = 5.8[us] .ution = 0.3293976[Hz] = 5.40540541[NHz]		S39

The property of the property o	The column of th		X : parts per Million : 13C
	ig (anoilliM)		
Source	File Name	S40	


```
10 NWA plot parameters
CX 20.00 cm
F1P 180.000 ppm
F1 18110.31 Hz
F2 0.000 ppm
F2 0.00 ppm
F2 9.00000 ppm/Cn
HZCM 905.51538 Hz/cm
                                                                                                               29dc
65536
CDC13
7000
2
25500.000 Hz
1.3107700 sec
32768
20.000 usec
25.00 usec
20.00 d
Haltz16
100.00 usec
5.00 usec
25.00 usec
25.00 usec
5.00 usec
25.00 usec
25.00 usec
300.00 usec
5.00 usec
5.00 usec
6.00 usec
5.00 usec
7.00 usec
7.00 usec
7.00 usec
7.00 usec
8.00 usec
8.00 usec
8.00 usec
7.00 usec
8.00 usec
7.00 usec
8.00 usec
8.00 usec
8.00 usec
8.00 usec
8.00 usec
8.00 usec
9.00 usec
                                                    F2 - Processing parameters
S1 32768
SF 100.6128220 MH2
WDK EN 6
SSB 0
LB 1.00 H2
GB 0 0
PC 1.40
Current Data Parameters
NAME 090301
                                                                                                                                                                                                                                                                                                              P1
DE
SF01
NUCLEUS
D11
                       EXPNO
PROCNO
                                                                                                                                                                                  FIDRES
```

Trans, trans-3,5-diazidocyclohexanol (30a).

-09 -ස -00 -82 -82 140 mdd.

-೧

-6

S44

Cis, cis-3,5-diazidocyclohexyl \(\beta\text{-D-2,3,4-tri-}O\)-acetyl-6-azido-6-deoxyglucopyranoside (31).

Cis, cis-3,5-diaminocyclohexyl \(\beta \)-6-amino-6-deoxyglucopyranoside (32).

		eoxyglucopyranoside (33).
		tyl-4,6-diazido-4,6-dideoxy
Angular de la companya de la company	N ₃ N ₃ N ₃ A _{CO} O O N ₃ A _{CO} O O O O O O O O O O O O O O O O O O	Cis, cis-3,5-diazidocyclohexyl β-D-2,3-di-O-acetyl-4,6-diazido-4,6-dideoxyglucopyranoside (33). X: parts per Million: 1.H
	Tile Nume	S48

Cis, cis-3,5-diazidocyclohexyl \(\beta\text{-D-2,3-di-}O\)-acetyl-4,6-diazido-4,6-dideoxyglucopyranoside (33).

**************************************		HO OH	Significates per Million: 11H X: parts per Million: 11H
	0.2	0,6 0.1	(snoilliM)
1		Author A	·

									****	30.0 20.0 10.0	
									· Tana	70.0 60.0 50.0 40.0	lucopyranoside (37).
						OAc			-	0.00 80.00 100.0 110.0 1	3-0-allyl-6-deoxy-D-g
,						27	, o v		:	140.0 130.0 120.0	Acetyl 2,4-di-O-acetyl-3-O-allyl-6-deoxy-D-glucopyranoside (37).
	0.00									180.0 170.0 160.0	Acetyl 2,4 X: parts per Million: 13C
	0.08	0.08	0.07	0.09	0.08	0.04	ο.οε	0.0Z	(znoilliM 0.01	0	
		# 1d_13c_spectrum.651 = 5#770679 = 5ingle Pulse with Bros = 20-JUN-2003 07:10:16 # 20-JUN-2003 08:39:37		# 34768 # 57.5[us] # 57.5[us] # 50.345446[T] # 6.345446[T] # 11.6[us]			= 27.10 On = 23.3[dC] = 40.3[dC] = TEMP OFF = ELMP OFF = 8.9[ux]	= 19[um] = 1.9265584[m] = 13C = 67.94010394[MHz] = 32768 = 4 66666667[um]	= 0.51900643[Hz] = 17.00680272[kHz]		
	5	File Name Author Sample ID Content Creation Date Revision Date	Spec Site Spec Type Data Format Dimensions	Dim Units Acq delay Changer sample Experiment Tield strength Trengo				X X90 Lo X Acq duration X Acmain X Fraq X Offset X Point* X Point* X Point* X Pulae	N X X		S53

5'-0-(2,4-Di-O-acetyl-3-O-allyl-6-deoxy-β-D-glucopyranosyl)-6,3'4'-tri-O-benzyl-1,3,2'6'-40 0.9 X : parts per Million : 114 tetraazidoneamine (39). 8.0 10 20 30 40 80 60 10 80 80 80 100110120130140120120120180180180051025025023024028050 (Millions) S#379693 Single Pulme Experimen 5-0cr-2002 10:34:55 5-0cr-2002 10:35:16 270.16743928 [MHz] 5.0 [ppm] proton,3336 1D COMPLEX

*trength

Creation Date Revision Date

Spec Site

X Freduction

THE PARTY OF THE P

. . . 190.0 180.0 179.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 10.0 60.0 50.0 40.0 30.0 20.0 10.0 5'-O-(2,4-Di-O-acetyl-3-O-allyl-6-deoxy-β-D-glucopyranosyl)-6,3'4'-tri-O-benzyl-1,3,2'6'-X : parts per Million : 13C tetraazidoneamine (39). Acon 0.02 30.0 10.0 (knoilliM)

<u></u>	-	<u>S</u>	
			è

Creation Date Revision Date

Spec Site

. 5 [ust]

strangth

S59

X: parts per Million: 13C

(
	, ,			0.
		<u>ر</u>		
7				
		L	1	
54			412	

ID COMPLEX GSX 270 DELTA_NMR

Data Format Spec Site

Dimensions Dim Title Dim Sixe Dim Units

5#600602

Tile Name

Creation Date

[ppm] 57.5[um]

Changer sample strength Mecvr gain Malaxation delay

#ttn

lock 20

[mm] 6

emp state

resolution

Author

Switchest

Switchest

Content

Conte

·					4	-0.0265	
						loroacetimidate (46).	
						2,3,4-Tri-O-acetyl-6-deoxy-6-fluoro-α-D-glucopyranosyl trichloroacetimidate (46).	
	0.04	ο,οε	20.0	10.0		8.0 7.0,	X: parts per Million: 1H
					(anoilliM)		
-	### ##################################		th the state of th	Temp state	Total [KRE]	AcO AcO NiH AcO NiH AcO OAce OAce OAce OAce OAce OAce OAce	4

								170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 3.2 4 Tri O ocetyl & deoxy-6-fluoro & D. chiconyranosyl trichlorocetimidate (46)
								170.0 160.0 150.0 140.0
I.I	6°0		9.0	<i>5</i> .0	+ 0	£.0	2.0	17

| Marketan | Marketan

		(1)-6,3'4'-tri-0-benzyl-1,3,2'6'-
		0 1 6.0 1 1 1 1 1 1 1 1 1
O'ST O	proton.223 s#581203 s#581203 s#581203 s#581203 s#581203 s#581203 s#581203 single Pulse Experimen 17—UNR-2002 16:10:145 GSX 270 DELLA NOR X X X X X X X X X X X X X	S'-O-(2,3,4-T tetraazidone
9		Aco O O O O O O O O O O O O O O O O O O O

5'-O-(2,3,4-Tri-O-acetyl-6-deoxy-6-fluoro-β-D-glucopyranosyl)-6,3'4'-tri-O-benzyl-1,3,2'6'tetraazidoneamine (47).

40.0

90.07 BOOM 70.06

100.0

110.0

120.0

1300

140.0

160.0 150.0

X : parts per Million : 13C

											8.0 7.0 6.0	5'-O-(6-Deoxy-6-fluoro-β-D-glucopyranosyl)neamine (TC033).	X: parts per Million: 1H
ļ-	4,2 E,2 <u>\$</u> .	2 1.2 0.2 6.	I 8.I	7.I	1 1.2 1,3 1	1.1 0.1 9.0	8.0 7.0 8.0	2.0 4.0 €.0 <u>2</u>		oilliM) I.0-2.0-	0.6		
أكد		#11e Name = proton.3005 Author = \$\frac{8}{2}\$ Sample ID = \$\frac{8}{2}\$\$ \$\frac{1}{2}\$\$ Total = \$\frac{1}{2}\$\$ \$\frac{1}{2}\$\$ Total = \$\frac{1}{2}\$\$\$ \$\frac{1}{2}\$\$\$ Total = \$\frac{1}{2}\$\$\$\$ Total = \$\frac{1}{2}\$\$\$\$\$\$\$\$ Pulse Experiment of \$2\$	Spec Site = GSX 270 Spec Type = DELTA_NOR	Format sions itle ixe iixe elay er sample		Relaxation delaym 4[s] Scans	Table to the state of the state	# 4 % H 5 % 9 C	X_pulse = 5.8[us] X_resolution = 0.32991976[Er] X_sweep = 5.40540541[kHz]	+ NH ³	F + 10 00 0 NH3	() ()	668

0.2

	0 t		ο ε	2.0	0,1	Ó
						(snoilliM)
= 1d_13c_spectrum.44 = 5#630161 = Single Fulse with Broa = 1_JUL_2002_22:47:52 = 1_JUL_2002_22:47:52		= 1D COMPLEX = X = 13C = 32768 = [ppm]		-	H	0.51900643[Hz] 17.00680272[KHz]
File Name Author Sample ID Content Creation Date Revision Date	Spec Site	a Format busions Title Size Units	Acq. calay changer ample = Experiment = Experiment = Experiment = Experiment = Experiment = Exponent = Exponen		etatus ii lo C duration gd sat nuts secans	X resolution u

5'-O-(6-Deoxy-6-fluoro-β-D-glucopyranosyl)neamine (TC033).

X : parts per Million : 13C

-0

70,0 60.0 50,0 40.0 30,0 20.0 10.0

200.0 190.0 180,0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0

14.0

0,E 0.8 0.4 0,8 0.9 0,1 0.7 0,2

5'-O-(3-O-n-Propyl-6-deoxy-\bar{\theta}\-D-glucopyranosyl)neamine (TC040).

220.0210.0200.0190.0180,0170.0160.0150.0140.0130.0120.0110.0100.0 90.0 80.0 700 60.0 500 40.0 30.0 20.0 10.0

X : parts per Million : 13C

HOO HO HO HO WH

(Ailillions)

0.65 0.45 0.45 0.60 0.81 0.71 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.91 0.92 0.8 0.7 0.8 0.8 0.8 0.8 0.8 0.5 0.5

0'01--

70,0 60,0 50,0 40.0 30,0 20.0 10.0

220,0210,0200,0190,0180,0170,0160,0150,0140,0130,0120,0110,01,00,0 90.0 ,80.0 ,

5'-O-(3-O-(3-Hydroxypropyl)-6-deoxy-\bar{b}-D-glucopyranosyl)neamine (TC041).

X : parts per Million : 13C

S73

= Single Pulse with Bross = 19-JAN-2003 09:09:48 = 19-JAN-2003 09:10:07 = 1d_13c_spectrum.598 2.6666667[u#] 0.51900643[Hz] 17.00680272[kHz] = 67.94010394[MHz] = 100.0[ppm] = 32768 = 39[u#] = 1.9267584[#] 1D COMPLEX GSX 270 DELTA NAGR . 5 [u.s.] File Name Author Sample ID Content Creation Date Revision Date Data Format Spec Site Spec Type ٠,-

S75

X: parts per Million: 13C

Z

5'-O-(3-O-(3-O-(2-aminoethyl)-6-deoxy-b-D-glucopyranosyl)propyl)-6-deoxy-b-Dglucopyranosyl)neamine (TC045).

X : parts per Million : 13C

220.0210.0200.0190.0180,0170.0160.0150.0140.0130.0120.0110.0100.0 90.0 180.0 170.0 60.0 50.0 40.0 30.0 20.0 10.0

-10.0

Proton magnetic resonance spectra were recorded using spectrometers at 270 or 400 MHz. Chemical shifts were reported as parts per million (ppm) downfield from tetramethylsilane in δ unit, and coupling constants were given in cycles per second (Hz). Splitting patterns were designed as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. 13 C spectra were obtained using spectrometers at 68 MHz or 100 MHz. Routine 13 C NMR spectra were fully decoupled by broadband waltz decoupling. All NMR spectra were recorded at ambient temperature unless otherwise noted. Purchased chemical reagents and starting materials were used without purification unless otherwise noted. Dichloromethane was distilled over CaH₂. Other solvents were used without purification.

Methyl 4-azido-2,3,6-tri-*O*-benzyl-4-deoxy-a-D-glucopyranoside (6). Please refer to the procedure for the preparation of 4. 1 H NMR (270 MHz, CDCl₃) δ 7.2 - 7.4 (m, 15H), 4.95 (d, J = 11.6 Hz, 1H), 4.80 (d, J = 11.6 Hz, 1H), 4.78 (d, J = 12.2 Hz, 1H), 4.63 (d, J = 12.2 Hz, 1H), 4.62 (d, J = 12.2 Hz, 1H), 4.60 (d, J = 3.3 Hz, 1H), 4.49 (d, J = 12.2 Hz, 1H), 3.84 (dd, J = 9.2 Hz, J = 9.6 Hz, 1H), 3.5 - 3.7 (m, 5H), 3.33 (s, 3H); 13 C NMR (68 MHz, CDCl₃) δ 138.10 (s), 137.95 (s), 137.81 (s), 128.6 (s), 128.5 (s), 128.4 (s), 128.2 (s), 128.1 (s), 127.9 (s), 127.8 (s), 98.4 (s), 80.2 (s), 79.7 (s), 75.8 (s), 73.6 (s), 73.4 (s), 69.3 (s), 68.7 (s), 61.8 (s), 55.5 (s); LRFAB m/e 507 [M+NH₄]⁺; HRFAB Calcd for C₂₈H₃₅N₄O₅ [M+NH₄]⁺ m/e 507.2607; measure m/e 507.2611.

Methyl 4,6-diazido-2,3-di-*O***-benzyl-4,6-dideoxy-a-D-galactopyranoside (8)**. Please refer to the procedure for the preparation of **4**. 1 H NMR (270 MHz, CDCl₃) δ 7.2-7.4 (m, 10H), 4.85 (d, J =11.7 Hz, 1H), 4.84 (d, J =12.1 Hz, 1H), 4.75 (d, J =11.7 Hz, 1H), 4.65 (d, J =12.1 Hz, 1H), 4.61 (d, J = 3.8 Hz, 1H), 4.04 (dd, J = 9.7 Hz, J = 3.8 Hz, 1H), 3.85 (dd, J = 9.7 Hz, J = 3.8 Hz, 1H),

3.8 - 3.9 (m, 2H), 3.53 (dd, J = 12.6 Hz, J = 7.9 Hz, 1H), 3.38 (s, 3H), 3.19 (dd, J = 12.6 Hz, J = 5.1 Hz, 1H); 13 C NMR (68 MHz, CDCl₃) δ 137.9 (s), 137.8 (s), 128.4 (s), 128.3 (s), 127.9 (s), 127.8 (s), 127.7 (s), 127.6 (s), 98.5 (s), 77.5 (s), 75.7 (s), 73.7 (s), 73.2 (s), 67.4 (s), 61.4 (s), 55.4 (s), 51.5 (s); LRCI m/e 442.4 [M+NH₄]⁺; HRCI Calcd for $C_{21}H_{28}N_7O_5$ [M+NH₄]⁺ m/e 442.2203; measure m/e 442.2198.

Methyl 4-azido-2,3-di-*O*-benzyl-4,6-dideoxy-a-D-galactopyranoside (10). Please refer to the procedure for the preparation of 4. ¹H NMR (270 MHz, CDCl₃) δ 7.2 - 7.4 (m, 10H), 4.84 (d, J = 11.9 Hz, 1H), 4.82 (d, J = 12.2 Hz, 1H), 4.73 (d, J = 11.9 Hz, 1H), 4.64 (d, J = 12.2 Hz, 1H), 4.54 (d, J = 3.6 Hz, 1H), 4.01 (dd, J = 9.8 Hz, J = 3.6 Hz, 1H), 3.89 (dq, J = 6.3 Hz, J = 1.3 Hz, 1H), 3.82 (dd, J = 9.8 Hz, J = 3.6 Hz, 1H), 3.69 (dd, J = 3.6 Hz, J = 1.3 Hz, 1H), 3.33 (s, 3H), 1.21 (d, J = 6.3 Hz, 3H); ¹³C NMR (68 MHz, CDCl₃) δ 138.34 (s), 138.29 (s), 128.54 (s), 128.48 (s), 128.2 (s), 127.90 (s), 127.84 (s), 127.8 (s), 98.8 (s), 78.1 (s), 76.0 (s), 73.8 (s), 73.3 (s), 65.1 (s), 64.3 (s), 55.5 (s), 17.4 (s); LRFAB m/e 401 [M+NH₄]⁺; HRFAB Calcd for C₂₁H₂₉N₄O₄ [M+NH₄]⁺ m/e 401.2189; measure m/e 401.2204.

Methyl 2,3-di-*O*-benzyl-6-deoxy-a-D-galactopyranoside (11). Please refer to the procedure for the preparation of 5. 1 H NMR (270 MHz, CDCl₃) δ 7.2 - 7.4 (m, 10H), 4.79 (d, J = 11.9 Hz, 2H), 4.69 (d, J = 11.6 Hz, 1H), 4.65 (d, J = 11.9 Hz, 1H), 4.60 (d, J = 3.3 Hz, 1H), 3.7 - 3.9 (m, 4H), 3.36 (s, 3H), 2.42 (broad, 1H, 4-OH), 1.25 (d, J = 6.6 Hz, 3H); 13 C NMR (68 MHz, CDCl₃) δ 138.4 (s), 138.2 (s), 128.6 (s), 128.5 (s), 128.1 (s), 127.95 (s), 127.88 (s), 98.6 (s), 78.0 (s), 75.5 (s), 73.5 (s), 72.9 (s), 70.4 (s), 65.1 (s), 55.4 (s), 16.2 (s); LRFAB m/e 376 [M+NH₄]⁺; HRFAB Calcd for C₂₁H₃₀N₁O₅ [M+NH₄]⁺ m/e 376.2124; measure m/e 376.2131.

Methyl 4-azido-2,3-di-*O*-benzyl-4,6-dideoxy-a-D-glucopyranoside (12). Please refer to the procedure for the preparation of 4. 1 H NMR (270 MHz, CDCl₃) δ 7.2 - 7.4 (m, 10H), 4.94 (d, J = 10.5 Hz, 1H), 4.78 (d, J = 10.5 Hz, 1H), 4.76 (d, J = 12.0 Hz, 1H), 4.63 (d, J = 12.0 Hz, 1H), 4.51 (d, J = 3.7 Hz, 1H), 3.81 (dd, J = 9.6 Hz, J = 9.6 Hz, 1H), 3.50 (dd, J = 9.6 Hz, J = 3.7 Hz, 1H), 3.4 - 3.5 (m, 1H), 3.35 (s, 3H), 3.06 (dd, J = 9.6 Hz, J = 9.9 Hz, 1H), 1.25 (d, J = 5.9 Hz, 3H); 13 C NMR (68 MHz, CDCl₃) δ 138.1 (s), 138.0 (s), 128.6 (s), 128.5 (s), 128.4 (s), 128.2 (s), 128.1 (s), 127.9 (s), 98.1 (s), 80.7 (s), 79.9 (s), 75.8 (s), 73.4 (s), 68.1 (s), 65.9 (s), 55.4 (s), 18.5 (s); LRFAB m/e 401 [M+NH₄]⁺; HRFAB Calcd for C₂₁H₂₉N₄O₄ [M+NH₄]⁺ m/e 401.2189; measure m/e 401.2203.

Methyl 6-azido-2,3-di-*O*-benzyl-6-deoxy-a-D-galactopyranoside (14). Please refer to the procedure for the preparation of 5. 1 H NMR (270 MHz, CDCl₃) δ 7.2 - 7.4 (m, 10H), 4.80 (d, J = 11.5 Hz, 1H), 4.75 (d, J = 11.5 Hz, 1H), 4.69 (d, J = 8.6 Hz, 1H), 4.66 (d, J = 3.6 Hz, 1H), 4.64 (d, J = 8.6 Hz, 1H), 3.8 - 3.9 (m, 3H), 3.83 (dd, J = 8.2 Hz, J = 3.6 Hz, 1H), 3.59 (dd, J = 12.8 Hz, J = 8.4 Hz, 1H), 3.40 (s, 3H), 3.26 (dd, J = 12.8 Hz, J = 4.3 Hz, 1H), 2.48 (s, 1H, 4-OH); 13 C NMR (68 MHz, CDCl₃) δ 138.3 (s), 138.0 (s), 128.7 (s), 128.5 (s), 128.1 (s), 127.99 (s), 127.96 (s), 98.6 (s), 77.3 (s), 75.6 (s), 73.6 (s), 73.2 (s), 69.8 (s), 68.3 (s), 55.6 (s), 51.3 (s); LRFAB m/e 417 [M+NH₄]⁺; HRFAB Calcd for C₂₁H₂₉N₄O₅ [M+NH₄]⁺ m/e 417.2138; measure m/e 417.2122.

Methyl 4,6-diazido-2,3-di-*O***-benzyl-4,6-dideoxy-a-D-glucopyranoside** (**15**). Please refer to the procedure for the preparation of **4**. 1 H NMR (270 MHz, CDCl₃) δ 7.2 - 7.4 (m, 10H), 4.97 (d, J = 10.6 Hz, 1H), 4.79 (d, J = 12.0 Hz, 1H), 4.63 (d, J = 12.0 Hz, 1H), 4.60

(d, J = 2.6 Hz, 1H), 3.87 (dd, J = 9.6 Hz, J = 9.0 Hz, 1H), 3.5 - 3.6 (m, 3H), 3.4 - 3.5 (m, 2H), 3.36 (s, 3H); ¹³C NMR (68 MHz, CDCl₃) δ 137.9(s), 137.8 (s), 128.6 (s), 128.5 (s), 128.4 (s), 128.20 (s), 128.16 (s), 128.0 (s), 98.2 (s), 79.86 (s), 79.85 (s), 75.8 (s), 73.5 (s), 69.2 (s), 62.5 (s), 55.7 (s), 51.8 (s); LRFAB m/e 442 [M+NH₄]⁺; HRFAB Calcd for C₂₁H₂₈N₇O₅ [M+NH₄]⁺ m/e 442.2203; measure m/e 442.2216.

Acetyl 4-azido-2,3,6-tri-*O*-acetyl-4-deoxy-a-D-galactopyranoside (16). ¹H NMR (270 MHz, CDCl₃) (α anomer) δ 6.23 (d, J = 2.6 Hz, 1H), 5.32 (m, 2H), 4.0 - 4.2 (m, 4H), 2.072 (s, 3H), 2.070 (s, 3H), 2.01 (s, 3H), 1.95 (s, 3H); ¹³C NMR (68 MHz, CDCl₃) (α anomer) δ 170.4 (s), 170.1 (s), 169.7 (s), 168.8 (s), 89.5 (s), 69.5 (s), 68.5 (s), 66.5 (s), 62.5 (s), 60.4 (s), 20.8 (s), 20.7 (s), 20.5 (s, 2 carbons); LRFAB m/e 380.1 [M+Li]⁺; HRFAB Calcd for $C_{14}H_{19}N_3O_9Li$ [M+Li]⁺ m/e 380.1281; measure m/e 380.1274.

Acetyl 4-azido-2,3,6-tri-*O*-acetyl-4-deoxy-a-D-glucopyranoside (17). ¹H NMR (270 MHz, CDCl₃) (α anomer) δ 6.27 (d, J = 4.0 Hz, 1H), 5.45 (dd, J = 10.2 Hz, J = 9.9 Hz, 1H), 5.03 (dd, J = 10.2 Hz, J = 4.0 Hz, 1H), 4.35 (dd, J = 12.5 Hz, J = 2.5 Hz, 1H), 4.26 (dd, J = 12.5 Hz, J = 3.6 Hz, 1H), 3.87 (ddd, J = 10.2 Hz, J = 3.6 Hz, J = 2.5 Hz, 1H), 3.67 (dd, J = 10.2 Hz, J = 9.9 Hz, 1H), 2.16 (s, 3H), 2.12 (s, 6H), 2.00 (s, 3H); ¹³C NMR (68 MHz, CDCl₃) (α anomer) δ 170.5 (s), 169.90 (s), 169.84 (s), 168.4 (s), 89.2 (s), 70.5 (s), 70.2 (s), 69.3 (s), 62.4 (s), 59.9 (s, C-4), 21.0 (s), 20.82 (s), 20.77 (s), 20.5 (s); LRFAB m/e 380.1 [M+Li]⁺; HRFAB Calcd for C₁₄H₁₉N₃O₉Li [M+Li]⁺ m/e 380.1281; measure m/e 380.1272.

Acetyl 4,6-diazido-2,3-di-*O*-acetyl-4,6-dideoxy-a-D-galactopyranoside (18). ¹H NMR (270 MHz, CDCl₃) (α anomer) δ 6.30 (d, J = 2.6 Hz, 1H), 5.38 (m, 2H), 4.14 (m, 1H), 4.09 (ddd, J = 6.6 Hz, J = 6.9 Hz, J = 1.3 Hz, 1H), 3.54 (dd, J = 12.5 Hz, J = 6.6 Hz, 1H), 3.37 (dd, J = 12.5 Hz, J = 6.9 Hz, 1H), 2.14 (s, 3H), 2.13 (s, 3H), 2.01 (s, 3H); ¹³C NMR (68 MHz, CDCl₃) (α anomer) δ 170.2 (s), 169.8 (s), 168.8 (s), 89.5 (s), 69.7 (s), 69.5 (s), 66.5 (s), 60.4 (s), 50.8 (s), 20.9 (s), 20.60 (s), 20.56 (s); LRFAB m/e 363.1 [M+Li]⁺; HRFAB Calcd for $C_{12}H_{16}N_6O_7Li$ [M+Li]⁺ m/e 363.1241; measure m/e 363.1234.

Acetyl 4azido-2,3-di-*O*-acetyl-4,6-dideoxy-a-D-galactopyranoside (19). ¹H NMR (270 MHz, CDCl₃) (α anomer) δ 6.22 (d, J = 2.6 Hz, 1H), 5.30 (m, 2H), 4.16 (qd, J = 6.3 Hz, J = 1.0 Hz, 1H), 3.92 (m, 1H), 2.09 (s, 3H), 2.08 (s, 3H), 1.97 (s, 3H), 1.24 (d, J = 6.3 Hz, 3H); ¹³C NMR (68 MHz, CDCl₃) (α anomer) δ 170.0 (s), 169.6 (s), 168.9 (s), 89.6 (s), 69.9 (s), 67.1 (s), 66.4 (s), 63.8 (s. C-4), 20.7 (s), 20.5 (s, 2 carbons), 17.0 (s); LRFAB m/e 322.1 [M+Li]⁺; HRFAB Calcd for $C_{12}H_{17}N_3O_7Li$ [M+Li]⁺ m/e 322.1227; measure m/e 322.1235.

Acetyl 4-azido-2,3-di-*O*-acetyl-4,6-dideoxy-a-D-glucopyranoside (20). ¹H NMR (270 MHz, CDCl₃) (α anomer) δ 6.22 (d, J = 2.6 Hz, 1H), 5.3 (m, 2H), 4.16 (qd, J = 6.3 Hz, J = 1.0 Hz, 1H), 3.92 (m, 1H), 2.09 (s, 3H), 2.08 (s, 3H), 1.97 (s, 3H), 1.24 (d, J = 6.3 Hz, 3H); ¹³C NMR (68 MHz, CDCl₃) (α anomer) δ 170.0 (s), 169.1 (s), 89.2 (s), 70.4 (s), 69.7 (s), 68.6 (s), 65.7 (s), 20.1 (s), 20.8 (s), 20.6 (s), 18.3 (s); LRFAB m/e 363.1 [M+Li]⁺; HRFAB Calcd for $C_{12}H_{16}N_6O_7Li$ [M+Li]⁺ m/e 363.1241; measure m/e 363.1231.

Acetyl 4,6-diazido-2,3-di-O-acetyl-4,6-dideoxy-a-D-glucopyranoside (22). ¹H NMR (270 MHz, CDCl₃) (α anomer) δ 6.29 (d, J = 3.6 Hz, 1H), 5.45 (dd, J = 10.1 Hz, J = 9.6 Hz, 1H), 5.02 (dd, J = 10.1 Hz, J = 3.6 Hz, 1H), 3.77 (dd, J = 10.2 Hz, J = 9.6 Hz, 1H), 3.58 (dd, J = 13.6 Hz, J = 2.0 Hz, 1H), 3.50 (ddd, J = 10.2 Hz, J = 3.4 Hz, J = 2.0 Hz, 1H), 3.43 (dd, J = 13.6 Hz, J = 3.4 Hz, 1H), 2.15 (s, 3H), 2.10 (s, 3H), 1.99 (s, 3H); ¹³C NMR (68 MHz, CDCl₃) (α anomer) δ 169.9 (s), 169.8 (s), 168.8 (s), 89.2 (s), 71.4 (s), 69.3 (s), 69.3(s), 60.0 (s), 51.0 (s), 21.0 (s), 20.8 (s), 20.5 (s); LRFAB m/e 363.1 [M+Li]⁺; HRFAB Calcd for $C_{12}H_{16}N_6O_7Li$ [M+Li]⁺ m/e 363.1241; measure m/e 363.1231.

For the synthesis of 23 - 29, please refer to reference 28.

2,4-Di-*O*-acetyl-3-*O*-allyl-6-deoxy-a-D-glucopyranosyl trichloroacetimidate (38). Please refer the general procedure for the preparation of glycosyl trichloroacetimidate. 1 H NMR (270 M Hz, CDCl₃) δ 8.58 (s, N*H*CCl₃), 6.44 (d, J = 3.6 Hz, 1H), 5.80 (dddd, J = 17.4 Hz, J = 10.2 Hz, J = 5.3 Hz, J = 5.6 Hz, 1H), 5.21 (dd, J = 17.4 Hz, J = 1.6 Hz, 1H), 5.12 (dd, J = 10.2 Hz, J = 1.6 Hz, 1H), 4.98 (dd, J = 9.9 Hz, J = 3.6 Hz, 1H), 4.87 (dd, J = 9.9 Hz, J = 9.6 Hz, 1H), 4.17 (dd, J = 12.9 Hz, J = 5.3 Hz, 1H), 4.07 (dd, J = 12.9 Hz, J = 5.6 Hz, 1H), 3.97(dq, J = 9.9 Hz, J = 6.3 Hz, 1H), 3.90 (dd, J = 9.9 Hz, J = 9.6 Hz, 1H), 2.10 (s, 3H), 2.03 (s, 3H), 1.19 (d, J = 6.3 Hz, 3H); 13 C NMR (68MHz, CDCl₃) δ 169.9 (s), 169.6 (s), 160.9 (s), 134.5 (s), 116.8 (s), 93.6 (s), 76.5 (s), 74.2 (s), 73.6 (s), 72.4 (s), 68.7 (s), 21.0 (s), 20.7 (s), 17.4 (s).

2,3,4-Tri-*O***-acetyl-6-deoxy-6-fluoro-a-D-glucopyranosyl trichloroacetimidate** (**46**). Please refer the general procedure for the preparation of glycosyl trichloroacetimidate. ¹H NMR (270

MHz, CDCl₅) δ 8.67 (s, 1H), 6.54 (d, J = 5.4 Hz, 1H), 5.55 (t, J = 10.8 Hz, 1H), 5.15 (t, J = 10.8 Hz, 1H), 5.05 (dd, J = 8.1 Hz, J = 5.4 Hz, 1H), 4.6 – 4.5 (m, 1H), 4.4 – 4.3 (m, 1H), 4.2 – 4.1 (m, 1H), 2.03 (s, 3H), 2.0 (s, 3H), 1.9 (s, 3H); ¹³C NMR (68 MHz, CDCl₅) δ 170.1 (s), 169.8 (s), 169.5 (s), 160.8 (s), 92.9 (s), 90.7 (s), 80.7 (d, J_{CF} = 177 Hz), 70.7 (d, J_{CF} = 19 Hz), 69.7 (d, J_{CF} = 8.8 Hz), 67.6 (s), 67.4 (s), 20.8 (s), 20.6 (s), 20.5 (s).

Cis, cis-3,5-diazidocyclohexyl b-D-2,3,4-tri-O-acetyl-6-azido-6-deoxyglucopyranoside (31). Please refer to the general procedure for glycosylation. The compound is mixed with inseparable impurities, and characterized only by 1 H and 13 C NMR. 1 H NMR (270 MHz, CDCl₃) δ 5.19 (t, J = 9.6 Hz, 1H), 4.94 (dd, J = 9.6 Hz, J = 7.9 Hz, 1H), 4.93 (t, J = 9.6 Hz, 1H), 4.63 (d, J = 7.9 Hz, 1H), 3.67 (ddd, J = 9.6 Hz, J = 4.7 Hz, J = 2.3 Hz, 1H), 3.60-3.78 (m, 1H), 3.30-3.51 (m, 1H), 3.32 (tt, J = 11.9 Hz, J = 4.1 Hz, 2H), 3.11 (dd, J = 13.2 Hz, J = 2.3 Hz), 2.16-2.38 (m, 3H), 2.04 (s, 3H), 2.02 (s, 3H), 1.99(s, 3H), 1.18-1.46(m, 3H); 13 C NMR (68 MHz, CDCl₃) δ 169.6 (s), 168.9 (s), 168.6 (s), 98.7 (s), 73.7 (s), 73.3 (s), 71.9 (s), 70.8 (s), 69.1 (s), 54.6 (s), 54.4 (s), 50.6 (s), 37.5 (s), 36.1 (s), 35.9 (s), 35.8 (s), 20.1 (s), 20.0 (s).

Cis, cis-3,5-diazidocyclohexyl b-D-2,3,4-tri-O-acetyl-6-azido-6-deoxyglucopyranoside (31). Please refer to the general procedure for glycosylation. The compound is mixed with inseparable impurities, and characterized only by 1 H and 13 C NMR. 1 H NMR (270 MHz, CDCl₃) δ 5.19 (t, J = 9.6 Hz, 1H), 4.94 (dd, J = 9.6 Hz, J = 7.9 Hz, 1H), 4.93 (t, J = 9.6 Hz, 1H), 4.63 (d, J = 7.9 Hz, 1H), 3.67 (ddd, J = 9.6 Hz, J = 4.7 Hz, J = 2.3 Hz, 1H), 3.60-3.78 (m, 1H), 3.30-3.51 (m, 1H), 3.32 (tt, J = 11.9 Hz, J = 4.1 Hz, 2H), 3.11 (dd, J = 13.2 Hz, J = 2.3 Hz), 2.16-2.38 (m, 3H), 2.04 (s, 3H), 2.02 (s, 3H), 1.99(s, 3H), 1.18-1.46(m, 3H); 13 C NMR (68 MHz, CDCl₃) δ 169.6 (s), 168.9 (s), 168.6 (s),

98.7 (s), 73.7 (s), 73.3 (s), 71.9 (s), 70.8 (s), 69.1 (s), 54.6 (s), 54.4 (s), 50.6 (s), 37.5 (s), 36.1 (s), 35.9 (s), 35.8 (s), 20.1 (s), 20.0 (s).

Cis, cis-3,5-diazidocyclohexyl b-D-2,3-di-O-acetyl-4,6-diazido-4,6-dideoxyglucopyranoside (33). Please refer to the general procedure for glycosylation. 1 H NMR (270 MHz, CDCl₃) δ 5.11 (t, J = 9.6 Hz, 1H), 4.85 (dd, J = 9.6 Hz, J = 7.9 Hz, 1H), 4.58 (d, J = 7.9 Hz, 1H), 3.64 (tt, J = 12.0 Hz, J = 4.3 Hz, 1H), 3.57 (t, J = 9.6 Hz, 1H), 3.45 (d, J = 4.3 Hz, 1H), 3.40 (dt, J = 9.6 Hz, J = 4.3 Hz, 1H), 3.25 (tt, J = 12.0 Hz, J = 4.3 Hz, 2H), 2.27-2.38 (m, 1H), 2.15-2.26 (m, 2H), 2.06 (s, 3H), 2.00 (s, 3H), 1.27 (q, J = 12.0 Hz, 2H), 1.15-1.45 (m, 1H); 13 C NMR (68 MHz, CDCl₃) δ 169.4 (s), 168.8 (s), 98.7 (s), 73.3 (s), 73.1 (s), 72.9 (s), 71.0 (s), 60.0 (s), 54.4 (s), 54.3 (s), 50.8 (s), 37.5 (s), 36.1 (s), 35.9 (s), 20.1 (s), 20.0 (s); LRFAB m/e 501 [M+Na]⁺; HRFAB Calcd for $C_{12}H_{22}N_{12}O_6Na$ [M+Na]⁺ m/e 501.1683; measure m/e 501.1692.

5-O-(2,4-Di-O-acetyl-3-O-allyl-6-deoxy-b-D-glucopyranosyl)-6,3'4'-tri-O-benzyl-1,3,2'6'-

tetra-azidoneamine (39). Please refer to the general procedure for glycosylation. ¹H NMR (270 M Hz, CDCl₃) δ 7.2 – 7.5 (m, 15H), 5.76 (dddd, J = 17.1 Hz, J = 10.2 Hz, J = 5.6 Hz, J = 5.6 Hz, 1H), 5.71 (d, J = 3.6 Hz, 1H), 5.20 (dd, J = 17.1 Hz, J = 1.6 Hz, 1H), 5.14 (dd, J = 10.2 Hz, J = 1.6 Hz, 1H), 5.03 (d, J = 11.2 Hz, 1H), 5.00 (d, J = 11.9 Hz, 1H), 4.8 - 4.9 (m, 5H), 4.70 (d, J = 9.9 Hz, 1H), 4.59 (d, J = 11.2 Hz, 1H), 4.20 (m, 1H), 4.0 - 4.1 (m, 4H), 3.2 - 3.6 (m, 10H), 2.30 (ddd, J = 13.5 Hz, J = 4.6 Hz, J = 4.6 Hz, 1H), 2.13 (s, 3H), 2.06 (s, 3H), 1.46 (ddd, J = 13.5 Hz, J = 12.5 Hz, J = 12.5 Hz, 1H), 1.20 (d, J = 6.3 Hz, 3H); ¹³C NMR (68 MHz, CDCl₃) δ 169.5(s), 168.8(s), 137.9 (s, 2C), 137.2 (s), 134.5 (s), 128.7 (s), 128.7 (s), 128.5 (s), 128.4 (s), 128.2 (s), 127.9 (s), 117.0 (s), 99.0 (s), 97.5 (s), 85.2 (s), 79.7 (s), 79.5 (s), 78.7 (s), 77.3 (s), 75.5 (s, 2 carbons), 75.3

(s), 75.0 (s), 74.4 (s), 72.9 (s), 72.3 (s), 71.1 (s), 70.6 (s), 63.0 (s), 60.7 (s), 59.5 (s), 51.2 (s), 32.6 (s), 21.2 (s), 21.1 (s), 17.0 (s); MALDI Calcd for $C_{46}H_{54}N_{17}O_{12}K$ [M+K]⁺ m/e 1005.3616; measure m/e 1005.3566.

5-*O*-(3-*O*-(3-(2,4-Di-*O*-acetyl-3-*O*-(2-azidoethyl)-6-deoxy-b-D-glucopyranosyl)-*n*-propyl)-6-deoxy-b-D-glucopyranosyl)-6,3'4'-tri-*O*-benzyl-1,3,2'6'-tetraazidoneamine (42). Please refer to the general procedure for glycosylation. ¹H NMR (270 MHz, CDCl₃) δ 7.3-7.5 (m, 15H), 5.88 (d, *J* = 3.9 Hz, 1H), 4.8 - 5.0 (m, 8H), 4.60 (d, *J* = 11.2 Hz, 1H), 4.32 (d, *J* = 7.9 Hz, 1H), 3.9 - 4.2 (m, 4H), 3.0 - 3.7 (m, 21H), 2.28 (ddd, *J* = 13.3 Hz, *J* = 4.3 Hz, *J* = 4.0 Hz, 1H), 2.10 (s, 3H), 2.08 (s, 3H), 1.80 (m, 2H), 1.46 (ddd, *J* = 13.3 Hz, *J* = 12.5 Hz, *J* = 12.5 Hz, 1H), 1.30 (d, *J* = 5.3 Hz, 3H), 1.23 (d, *J* = 5.9Hz, 3H); ¹³C NMR (68 MHz, CDCl₃) δ 169.7 (s), 169.5 (s), 137.9 (s), 137.8 (s), 137.1 (s), 128.9 (s), 128.6 (s), 128.5 (s), 128.2 (s), 128.0 (s), 127.8 (s), 102.0 (s), 100.6 (s), 96.5 (s), 84.7 (s), 84.3 (s), 80.4 (s), 79.6 (s), 79.1 (s), 78.7 (s), 76.0 (s), 75.5 (s), 75.1 (s), 75.0 (s), 74.6 (s), 73.7 (s), 72.1 (s), 72.0 (s), 70.9 (s), 70.5 (s), 69.1 (s), 68.3 (s), 65.5 (s), 63.2 (s), 60.7 (s), 60.5 (s), 59.8 (s), 51.2 (s), 51.1 (s), 32.6 (s), 30.1 (s), 21.1 (s), 21.0 (s), 17.4 (s), 17.2 (s); MALDI Calcd for $C_{54}H_{69}N_{15}O_{17}Na$ [M+Na]⁺ m/e 1222.4888; measure m/e 1222.4854.

5-O-(2,3,4-Tri-O-acetyl-6-deoxy-6-fluoro-b-D-glucopyranosyl)-6,3'4'-tri-O-benzyl-1,3,2'6'-tetraazidoneamine (47). Please refer to the general procedure for glycosylation. ¹H NMR (270 MHz, CDCl₃) δ 7.2 - 7.5 (m, 15H), 5.66 (d, J = 2.7 Hz, 1H), 5.20 (d, J = 7.6 Hz, 1H), 5.0 - 5.1 (m, 3H), 4.8 - 5.0 (m, 3H), 4.5 - 4.7 (m, 2H), 4.21 (ddd, J = 9.9 Hz, J = 4.9 Hz, J = 2.6 Hz, 1H), 4.09 (dd, J = 8.9 Hz, J = 9.2 Hz, 1H), 4.03 (dd, J = 8.9 Hz, J = 8.6 Hz, 1H), 3.2 - 3.6 (m, 10H), 2.32 (ddd, J = 13.2 Hz, J = 4.3 Hz, J = 4.3 Hz, 1H), 2.10 (s, 3H), 2.015 (s, 3H), 2.010 (s, 3H), 1.48 (ddd, J = 13.2 Hz, J = 4.3 Hz, J = 4.3 Hz, 1H), 2.10 (s, 3H), 2.015 (s, 3H), 2.010 (s, 3H), 1.48 (ddd, J = 13.2 Hz, J = 4.3 Hz, J = 4.3 Hz, 1H), 2.10 (s, 3H), 2.015 (s, 3H), 2.010 (s, 3H), 1.48 (ddd, J = 13.2 Hz, J = 4.3 Hz,

J = 13.2 Hz, J = 12.5 Hz, J = 12.5 Hz, 1H; ¹³C NMR (68 MHz, CDCl₃) δ 170.3 (s), 169.4 (s), 168.9 (s), 137.9 (s), 136.8 (s), 129.0 (s), 128.8 (s), 128.7 (s), 128.5 (s), 128.2 (s), 128.0 (s), 98.9 (s), 97.6 (s), 85.0 (s), 80.9 (d, J = 213 Hz), 79.4 (s), 78.7 (s), 78.0 (s), 77.3 (s), 75.8 (s), 75.7 (s), 75.3 (s), 75.0 (s), 72.8 (s), 71.6 (s), 71.1 (s), 68.2 (d, J = 7.5 Hz), 62.9 (s), 60.7 (s), 59.5 (s), 51.2 (s), 32.5 (s), 21.0 (s), 20.7 (s), 20.6 (s); MALDI Calcd for C₄₅H₅₁O₁₃N₁₂FNa [M+Na]⁺ m/e 1009.3575; measure m/e 1009.3602.

Cis, *cis*-3,5-diaminocyclohexyl b-D-4,6-diamino-4,6-dideoxygluco-pyranoside (34). Please refer to the procedure for the synthesis of 32. 1 H NMR (270 MHz, D₂O) (acetate salt) δ 4.66 (d, J = 7.9 Hz, 1H), 4.0 (m, 2H), 3.66 (dd, J = 9.9 Hz, J = 9.9 Hz, 1H), 3.48 (d, J = 13.2 Hz, 1H), 3.3 - 3.4 (m, 3H), 3.1 - 3.2 (m, 2H), 2.3 - 2.5 (m, 3H), 2.00 (s, 12H), 1.3 - 1.6 (m, 3H); 13 C NMR (68 MHz, D₂O) (acetate salt) δ 177.6 (s), 100.8 (s), 73.04 (s), 73.00 (s), 71.6 (s), 68.9 (s), 53.3 (s), 45.4 (s), 45.3 (s), 40.0 (s), 35.8 (s), 34.6 (s), 33.0 (s), 21.0 (s). LRFAB m/e 291 [MH]⁺; HRFAB Calcd for $C_{12}H_{27}N_4O_4$ [MH]⁺ m/e 291.2032; measure m/e 291.2025.

5-*O*-(6-Deoxy-6-fluoro-b-D-glucopyranosyl)neamine (TC033). Please refer to the procedure for the final synthesis. 1 H NMR (270 MHz, D₂O) (chloride salt) δ 5.83 (d, J = 2.7 Hz, 1H), 5.08 (d, J = 8.1 Hz, 1H), 4.55 (d, J = 8.1 Hz, 1H), 4.0 - 3.8 (m, 8H), 3.6 - 3.3 (m, 8H), 2.4 (m, 2H); 13 C NMR (68 MHz, D₂O) (acetate salt) δ 178.2 (s), 102.6 (s), 96.1 (s), 81.4 (d, $J_{CF} = 163$ Hz), 80.1 (s), 75.5 (s), 75.4 (s), 74.9 (d, $J_{CF} = 13.6$ Hz), 73.3 (s), 73.0 (s), 70.7 (s), 69.6 (s), 68.1 (s, 2 carbons), 53.4 (s), 49.8 (s), 48.6 (s), 40.0 (s), 28.2 (s), 21.4 (s). LRFAB m/e 487 [MH]⁺; HRFAB Calcd for C₁₈H₃₆O₁₀N₄F [MH]⁺ m/e 487.2415; measure m/e 487.2427.

5-*O*-(3-*O*-*n*-Propyl-6-deoxy-b-D-glucopyranosyl)neamine (TC040). Please refer to the procedure for the final synthesis. 1 H NMR (270 M Hz, 1 DO) (acetate salt) δ 5.81 (d, J = 3.6 Hz, 1H), 5.00 (d, J = 7.9 Hz, 1H), 3.8 - 4.0 (m, 5H), 3.70 (dd, J = 6.6 Hz, J = 6.9 Hz, 2H), 3.1 - 3.5 (m, 10H), 2.45 (m, 1H), 1.94 (s, 12H), 1.83 (m, 1H), 1.53 (m, 2H), 1.25 (d, J = 5.9 Hz, 3H), 0.82 (t, J = 7.5 Hz, 3H); 13 C NMR (68 MHz, 1 DO) (acetate salt) δ 178.7 (s), 102.7 (s), 96.3 (s), 83.7 (s), 80.7 (s), 76.0 (s), 75.1 (s), 74.5 (s), 73.3 (s), 73.1 (s), 72.9 (s), 70.8 (s), 69.6 (s), 68.2 (s), 53.5 (s), 49.8 (s), 48.8 (s), 40.1 (s), 28.2 (s), 22.8 (s), 21.7 (s), 16.6 (s), 9.8 (s); MALDI Calcd for $C_{21}H_{46}N_{4}O_{10}N_{8}$ [M+Na] $^{+}$ m/e 533.2793; measure m/e 533.2817.

5-*O*-(3-*O*-(3-Hydroxypropyl)-6-deoxy-b-D-glucopyranosyl)neamine (TC041). Please refer to the procedure for the final synthesis. 1 H NMR (270 M Hz, D₂O) (acetate salt) δ 5.80 (d, J = 3.6 Hz, 1H), 5.02 (d, J = 7.9 Hz, 1H), 3.8 - 4.0 (m, 7H), 3.64 (dd, J = 6.3 Hz, J = 6.3 Hz, 2H), 3.2 - 3.5 (m, 10H), 2.45 (m, 1H), 1.92 (s, 12H), 1.7 - 2.0 (m, 3H), 1.26 (d, J = 6.0 Hz, 3H); 13 C NMR (68 MHz, D₂O) (acetate salt) δ 178.2 (s), 102.6 (s), 96.4 (s), 84.1 (s), 80.7 (s), 76.1 (s), 74.4 (s), 73.2 (s), 73.1 (s), 72.9 (s), 70.6 (s), 70.3 (s), 69.6 (s), 68.3 (s), 59.0 (s), 53.4 (s), 49.7 (s), 48.7 (s), 40.0 (s), 31.9 (s), 28.2 (s), 21.4 (s), 16.6 (s); MALDI Calcd for C₂₁H₄₆N₄O₁₁Na [M+Na]⁺ m/e 549.2742; measure m/e 549.2738.

δ 178.5 (s), 102.6 (s), 96.3 (s), 84.1 (s), 82.4 (d, $J_{CF} = 157.8$ Hz), 80.7 (s), 76.1 (s), 74.4 (s), 73.2 (s), 73.1 (s), 72.9 (s), 70.6 (s), 69.6 (s), 69.1 (d, $J_{CF} = 5.2$ Hz), 68.3 (s), 53.4 (s), 49.7 (s), 48.7 (s), 40.0 (s), 30.5 (d, $J_{CF} = 19.2$ Hz), 28.2 (s), 21.6 (s), 16.6 (s); MALDI Calcd for $C_{21}H_{45}FN_4O_{10}Na$ [M+Na]⁺ m/e 551.2699; measure m/e 551.2719.

5-O-(3-O-(2-aminoethyl)-6-deoxy-b-D-glucopyranosyl)-n-propyl)-6-deoxy-b-D-gluco-

pyranosyl)neamine (**TC045**). Please refer to the procedure for the final synthesis. 1 H NMR (270 MHz, D_{2} O) (acetate salt) δ 5.78 (d, J = 3.6 Hz, 1H), 4.99 (d, J = 7.9 Hz, 1H), 4.35 (m, 1H), 3.6 - 4.0 (m, 10H), 3.1 - 3.5 (m, 17H), 2.43 (m, 1H), 1.94 (s, 15H), 1.8 - 2.0 (m, 3H), 1.24 (d, J = 5.9 Hz, 3H), 1.20 (d, J = 5.9Hz, 3H); 13 C NMR (68 MHz, D_{2} O) (acetate salt) δ 178.2 (s), 102.6 (s), 102.1 (s), 96.4 (s), 84.2 (s), 84.1 (s), 80.8 (s), 76.1 (s), 74.6 (s), 74.4 (s), 73.3 (s), 73.1 (s, 2 carbons), 72.9 (s), 71.9 (s), 70.6 (s), 70.0 (s), 69.6 (s), 68.3 (s), 68.2 (s), 67.5 (s), 53.4 (s), 49.7 (s), 48.7 (s), 40.0 (s), 39.7 (s), 29.7 (s), 28.2 (s), 21.4 (s), 16.7 (s), 16.6 (s); MALDI Calcd for $C_{29}H_{57}N_{5}O_{15}Na$ [M+Na]⁺ m/e 738.3743; measure m/e 738.3786.