Application of the Synthetic Aminosugars for Glycodiversification: Synthesis and Antimicrobial Studies of Pyranmycin Bryan Elchert, Jie Li, Jinhua Wang, Yu Hui, Ravi Rai, Roger Ptak, Priscilla Ward, Jon Y. Takemoto, Mekki Bensaci, and Cheng-Wei Tom Chang* Department of Chemistry and Biochemistry, and Department of Biology, Utah State University, 0300 Old Main Hill, Logan, Utah 84322-0300, U.S.A. Infectious Disease Research Department, Southern Research Institute, 431 Aviation Way, Frederick, Maryland 21701. ### **Supporting Information** Table of Content (S1-S2) ¹H NMR and ¹³C NMR Spectra for Selected Compounds (S3-S77) General Experimental Procedure (S78-S89) ## Table of Content | Compound Name | Page | |--|----------| | Methyl 4-azido-2,3,6-tri-O-benzyl-4-deoxy-a-D-galactopyranoside (4). | S3, S4 | | Methyl 2,3,6-tri-O-benzyl-a-D-galactopyranoside (5). | S5, S6 | | Methyl 4-azido-2,3,6-tri- <i>O</i> -benzyl-4-deoxy-a-D-glucopyranoside (6). | S7, S8 | | Methyl 2,3-di-O-benzyl-a-D-glucopyranoside (7). | S9, S10 | | Methyl 4,6-diazido-2,3-di-O-benzyl-4,6-dideoxy-a-D-galactopyranoside (8). | S11, S12 | | Methyl 2,3-di-O-benzyl-6-deoxy-a-D-glucopyranoside (9). | S13, S14 | | $\label{lem:methyl-def} \mbox{Methyl 4-azido-2,3-di-O-benzyl-4,6-dideoxy-a-D-galactopyranoside (10)}.$ | S15, S16 | | Methyl 2,3-di-O-benzyl-6-deoxy-a-D-galactopyranoside (11). | S17, S18 | | Methyl 4-azido-2,3-di-O-benzyl-4,6-dideoxy-a-D-glucopyranoside (12). | S19, S20 | | Methyl 6-azido-2,3-di-O-benzyl-6-deoxy-a-D-glucopyranoside (13). | S21, S22 | | Methyl 6-azido-2,3-di-O-benzyl-6-deoxy-a-D-galactopyranoside (14) | S23, S24 | | Methyl 4,6-diazido-2,3-di-O-benzyl-4,6-dideoxy-a-D-glucopyranoside (15). | S25, S26 | | Acetyl 4-azido-2,3,6-tri- <i>O</i> -acetyl-4-deoxy-a-D-galactopyranoside (16). | S27, S28 | | Acetyl 4-azido-2,3,6-tri- <i>O</i> -acetyl-4-deoxy-a-D-glucopyranoside (17). | S29, S30 | | Acetyl 4,6-diazido-2,3-di-O-acetyl-4,6-dideoxy-a-D-galactopyranoside (18). | S31, S32 | | Acetyl 4-azido-2,3-di-O-acetyl-4,6-dideoxy-a-D-galactopyranoside (19). | S33, S34 | | Acetyl 4,6-diazido-2,3-di-O-acetyl-4,6-dideoxy-a-D-glucopyranoside (20). | S35, S36 | | Acetyl 4,6-diazido-2,3-di-O-acetyl-4,6-dideoxy-a-D-glucopyranoside (22). | S37, S38 | | Cis, cis-3,5-diazidocyclohexanol (30). | S39, S40 | | Trans, trans-3,5-diazidocyclohexanol (30a). | S41, S42 | | Cis, cis-3,5-diazidocyclohexyl benzoate (30b). | S43, S44 | | Cis, cis-3,5-diazidocyclohexyl b-D-2,3,4-tri-O-acetyl-6-azido-6-deoxygluco-pyranoside (31). | S45 | |---|-----------| | Cis, cis-3,5-diaminocyclohexyl b-D-6-amino-6-deoxyglucopyranoside (32). | S46, S47 | | Cis, cis-3,5-diazidocyclohexyl b-D-2,3-di-O-acetyl-4,6-diazido-4,6-dideoxy-glucopyranoside (33). | S48, S49 | | Cis, cis-3,5-diaminocyclohexyl b-D-4,6-diamino-4,6-dideoxygluco-pyranoside (34). | S50, S51 | | Acetyl 2,4-di-O-acetyl-3-O-allyl-6-deoxy-D-glucopyranoside (37). | S52, S53 | | ${\bf 2,4-Di}\hbox{-}{\it O}\hbox{-}acetyl\hbox{-}{\it 3-O}\hbox{-}allyl\hbox{-}{\it 6-deoxy-a-D-glucopyranosyl}\ trichloroacetimidate\ (\bf 38).$ | S54, S55 | | 5'- <i>O</i> -(2,4-Di- <i>O</i> -acetyl-3- <i>O</i> -allyl-6-deoxy-b-D-glucopyranosyl)-6,3'4'-tri- <i>O</i> -benzyl-1,3,2'6'-tetraazidoneamine (39). | S56, S57 | | 5'-O-(2,4-Di-O-acetyl-3-O-(3-hydroxypropyl)-6-deoxy-b-D-glucopyranosyl)-6,3'4'-tri-O-benzyl-1,3,2'6'-tetraazidoneamine~(40). | S58, S59 | | 5'-O-(2,4-Di-O-acetyl-3-O-(3-(2',4'-di-O-acetyl-3'-O-(2''-azidoethyl)-6'-deoxy-b-D-glucopyranosyl)-propyl)-6-deoxy-b-D-glucopyranosyl)-6,3'4'-tri-O-benzyl-1,3,2'6'-tetraazidoneamine (42). | S60, S61 | | 5'- <i>O</i> -(2,4-Di- <i>O</i> -acetyl-3- <i>O</i> -(3-fluoropropyl)-6-deoxy-b-D-glucopyranosyl)-6,3'4'-tri- <i>O</i> -benzyl-1,3,2'6'-tetraazidoneamine (43). | S62, S63 | | 2,3,4-Tri-O-acetyl-6-deoxy-6-fluoro-a-D-glucopyranosyl trichloroacetimidate (46). | S64, S65 | | 5'- <i>O</i> -(2,3,4-Tri- <i>O</i> -acetyl-6-deoxy-6-fluoro-b-D-glucopyranosyl)-6,3'4'-tri- <i>O</i> -benzyl-1,3,2'6'-tetraazidoneamine (47). | S66, S67 | | $5'-O\hbox{-}(6-Deoxy\hbox{-}6-fluoro\hbox{-}b-D\hbox{-}glucopyranosyl) neamine (TC033).$ | S68, S69 | | $5'-O-(3-O-n-\text{Propyl-6-deoxy-b-D-glucopyranosyl}) neamine \ (TC040).$ | S70, S71 | | $5'-O-(3-O-(3-Hydroxypropyl)-6-deoxy-b-D-glucopyranosyl) neamine \ (TC041).$ | S72, S73 | | $5'-O-(3-O-(3-Fluoropropyl)-6-deoxy-b-D-glucopyranosyl) neamine \ (TC044).$ | S74, S75 | | 5'-O-(3-O-(3-O-(2-aminoethyl)-6-deoxy-b-D-glucopyranosyl) propyl)-6-deoxy-b-D-glucopyranosyl) neamine (TC045). | S76, S77 | | General Experimental Procedures | S78 - S89 | n proton,346 = 15 COGLEX = X = 11 0.1822[m*] = GSX 270 = DELTA_IRR Spec Site Spec Type | .) | | | |---|--|--| | | 0°L | | | File Name = 1d_13c_spectrum.35 Author Sample ID = 5#291222 Content = 51818 Pulse with Broat Creation Date = 25-FEB-2001 08:45:21 Sevision Date = 25-FEB-2001 09:03:14 Spec Site = 05X 270 | 0.9 | | | | 0.2 | | | 11.1.3 (us) 11.1.3 (us) 11.2 (us) 11.3 (us) 11.1 (us) 11.1 (us) 11.1 (us) | 0°t | Á: | | Scalvent | O'E | T. | | | O-2.0.2 | λο <mark>ό</mark> Με | | Comman H 13C
Cffset 67,94010394[MHz]
Coffset 100.0[ppm]
[points 93768
[points 94 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0.1 | | | | 0 | 14 CO.O. 190.0 180.0 170.0 160.0 150.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 | | S4 | Methyl 4-azido-2,3,6-tri- O -benzyl-4-deoxy- α -D-galactopyranoside (4) | eoxy-α-D-galactopyranoside (4). | | THE PARTY AND THE PARTY OF | | The state of s | X : parts per Million : 13C 200.0 190.0 180.0
170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 Methyl 4-azido-2,3,6-tri-O-benzyl-4-deoxy-α-D-glucopyranoside (6). X: parts per Million: 13C | ٦ | | · . | - | · | | , | - | | | • | . - | | |---|---------|---|---|--|--|--|--|---|--|----------------|------|--| | | | | | | | | | | | · I | 0 | , | | : | | | • | · . " | | | | | | • | | <u>,</u> | | | ī | | • | | | | : | | | | 1.0 | | | | | | : | | | | | | | | ₹ [| | | . | | | • | | | | | | | | | | | | | | • | | | | | | | | ₹°? | (| | | | | | | • | | | | | | | 9 | | | | | | | | | | | | | 3.0 | anos | | | | | | | | | | | | | ا (| opyr | | | | | • | | | | | · | | | | Methyl 2,3-di- O -benzyl- $lpha$ -D-glucopyranoside (7). | | | | | | | | | | | | <u></u> | 0.4 | -α-D- | | - | | | | | | | ~ · · · · · · · · · · · · · · · · · · · | | | | | enzyl | | | | | | | | | | | | | | \$ | | - | | | | | | | 0 | Q | | | | £. | | | | | | | | | 0, | OBn | | | | 7 7 | | | | | | | | | | / \{ \bar{0} | | | 0.6 | Met | | | | | | | | | Ď HÔ | 2 | | | | | | | | | | | | | _ | BnO | | | 0 | | | | | | · | | ··· | , | | | | | | | | | | | | | 8.0 | , | | | 0.001 | 0.06 | 0.08 | 0.07 | 0.09 | 0.02 | 0.04 | 0.05 | 0.02 | 0.01 | | | | | | | | | | | | U U : | | (snoilfilM) | | | | | | 1men
32
49 | | | | | | • | - | | | | | | <u></u> | . proton,779
. s#811365
. Single Pulse Experime
. 2-3x2-2001.22:35:35
. 2-3x1-2001.22:35:49 | | ď× | | | | | KIIZ) | Ţ. | | | | - | | 779
5
Pulm
2001:2 | XIII | 122 [ma] 12
14 pulas.
5446 [T] | | огм-р | cch | <u>. </u> | 43920 [
]
]
976 [IIz | 541 [kk | | | | : | A | proton,779
s#811365
Single Pul.
2-JAM-200:
2-JAM-200: | a CSX 270 | ppm]
1022[mi)
11032[mi)
11031• pt | (m)
(m)
(m)
(m)
(m)
(m)
(m)
(m)
(m)
(m) | 4 { #]
16
CHILOROFORM-D
9 {HE]
0.1 {me]
29 {db } | SPIN ON
SPIN ON
16.1 (dc
21.0 (dc | 11.3[um]
11.3[um]
10[um]
36[um]
3.03104[m] | 270.16743928 [HII]
5.0 [ppm]
16384
5.65 [u.e]
0.32991976 [HII] | 40540 | | | | | | | | | | | | | | น
ท | | | | | | Date | | nits
alay :
ar sample
iment
atrength | .5. | | n t t •
e u •
m • | tus
ration | tt.
Ans
ution | | | • | | | J | rile Name
Author
Sample ID
Content
Creation Dat
Revision Dat | ec Sita
ec Type
ta Form
nenaion
n Title | ១៤ ភូមិណ | 000 6 14 | Lexatio | pan state | emp_status
90
90 hi
90 lo
20 lo
acq duration
domain | fraq
offaet
Points
Prescer
Pulse | Д
#
| | S9 | | | 1 | YIII
Aut
Con
Cre | Spec
Spec
Data
Dimen | Die U Acq d Chang Exper | 000 1450
14440
14440
14440
14440
14440
14440
14440
14440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440
1440 | S C C C C C C C C C C C C C C C C C C C | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | ×××××× | × ^t | | | 0.7 | | 0.9 |)
) | | • | o [!] | ς | • | • • | | • | o!; | - | | ٠, | | | 0. | | | |
1 | o¦z | | . , | • | | | 0,1 | | | | |---------------------|---|----------------------|------------|---------|----------------|-------------------|------------------|---------------------------------|-------|------------------|-----|----------------|----|-------------------|--------------|---|-------------------|--------------|------|---------|--|-------|---------|------------------|-------------------------|------------|----------|---------------|----------------|-------------------|-------| • | | | | | | | | | | (snoi | (אנוו | | 1d 13c =pectrum, 33 | 79339
ngle
-res- | GSX 270
DELTA_HOR | 1D COMPLEX | 130 | 32760 | [Per]
57.5[us] | | #ingie_puise_dec
6.345446[T] | 27 | 36[um]
36[um] | 111 | 36[U#]
TDIX | 15 | 1(=) | CILOROTORM-D | | 0.1[ms]
29[dn] | NO HIGE | | 25 (dC) | TIME OFF | 8[us] | 39 [4#] | 1.9267584[#] | 13C
67.94010394[Miz] | 100.0[ppm] | 32768 | 2,6666667[um] | 0.51900643[Hz] | 17.00680272[kdfx] | | | | bor ID Debe no safon Date no faton Date no faton Date | Spec Site H | n : | Title n | Dim Sixe | lay | Changer sample m | Experiment Field strength to | Itr90 | Xxx90_10 | • | Trr pwidth m | | Relaxation delay= | Solvent | 3 | Spin lock 30 B | Spin state n | 9. t | : : | ֚֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | 2 06X | 1,3 | X acq duration H | X frag | X offset | X_points | pulse | | C. C. | | HO OBn OBn 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 Methyl 2,3-di-O-benzyl- α -D-glucopyranoside (7). - Indians were the properties of X : parts per Million : 13C | | | | | | | | 0 | | |--------|--|---|--|----------------------|---|---|---|--| | | | | | | | , 3 | 1.0
1.0 | (a) apreció | | · | | | | | | | 2.0
2.0 | in the second se | | | · <u> </u> | | • | | | | 3.0
ideoxv.o.D.c | | | | | | | , | | | 7.0 6.0 5.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1 | | | | | | | ž 0 | OMe | | 5.0. | | | | | | | Z. | 0
0 | · | 6.0 | | | | | | | o u | | | | | | | | | | | | | 8.0 | | | 0 13.0 | 110.0 | 0.6 0.8 | 0.7 0.8 | 0'5 0' | 0.5 | (2noilliM))
2,0
1 | 0 | | | | n proton,233
n S#740688
n Single Pulse Experimen
n 2-JUL-2000 20:36:07
n 2-JUL-2000 20:36:29 | = 65X 270
= DILLA RUR
= 1D CCGPLEX
= X
= 1A
= 16384
= [ppm]
= 0.1822 [ms]
= 0.1822 [ms] | 6.34546[T] H 11.3[us] H 10[vs] H 36[us] H 36[us] H 25[us] H 75 (us] H 75 (us) | | | 5.65[um] 0.32991976[Hx] 5.40540541[kHx] | | | | 4 | Tile Name
Author
Sample ID
Content
Creation Date
Revision Date | Spec Site
Spec Type
Data Tornat
Dim Title
Dim Sixe
Dim Sixe
Dim Unite
Acq delay
Acq delay | 'ield_strength
rry00
rry00 hi
rry00 lo
rry00 lo
rry pwidth
ock_status
secvr galn
seastation_dela | Solvent Spin Jose 19 | xsop mixers
xso hi
xsollo
x acq duration
x acq duration
x free
x offset | resolution
resolution
resolution | | S11 | | <u></u> | |---------| | | | | | | | | | | | | · | | | | BnO | | | | | |---------|------|-----------------------|-----|---|-------|-----|-----|--|--------|---|-----------| | | | | | | | e. | ÷ | | | | - | | 12.0 13 | 0,11 | 10.0 | 0.6 | 0.8 | 0 L | 0.8 | 0.2 | 0.4 | 0.5 | 2.0 | enoilliM) | | | | Spec Site a DELTA NOR | 4 # | Acq delay Changer_sample b Krpertment rield_strength b 6.345446[T] | IKE90 | | | Temp_get = 21.4[dC] Temp_set = 25[dC] Temp_state = 17kF OFF XP0 = 17kF OFF X90 = 8[us] | X90 hi | 100.0(ppm)
100.0(ppm)
12766
12.6666667[us]
12.6666667[us]
13.006643[itz] | | | | · | | | | | | | e 15 in 2 15 22 1 | • | | | 200.0 190.0 180.0 170.0 160.0 150.0 140.0 120.0 110.0 100.0 90.0 80.0, 70.0 60.0, 50.0 40.0 30.0 20.0 10.0 Methyl 4,6-diazido-2,3-di-O-benzyl-4,6-dideoxy-a-D-galactopyranoside (8). O-JANAMAN BURANAN HARAN KANDAN X : pai is per Million : 13C | Hand Brooms and the state of th | | | | | HAMMAN WANTER HAMMAN WANTER WA | Methyl 2,3-di- O -benzyl-6-de 0 xy- $lpha$ -D-gluc 0 pyran 0 side (9). | |--|-----|-----|-----|-----------------
--|--| | 190.0 180 | | | 717 | | 170.0 160.0 150.0 0 130.0 120.0 110.0 100.0 | Methyl 2,3-di-O-benzyl | | 0,1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.4 | 0.5 | |
 | - | | | Militarian process. 23 Control of the th | - | | | | | | | | | | |--|--|----------|-----------------|---------------|-----------|-------------|--------------------|------------|----------|-----------------------| | ### Author | | ~~~ | <u> </u> | | | | | · | | | | ### Name Supple | | 12.0 | | | | | | | | | | Spec Site Dear format fo | nnennu | 0.11 0. | | | | | | | | | | Date Tormat Date Tormat Date Tormat District Distric | n n | ŌĪ | | | | | | | | atiga ess | | Defin on the second control of co | #_
N # H | 0'6 | | | | | | | | | | | = [ppm]
= 0.1822[m#]
mpl= = 0 .1822[m#]
: = #ingl=_pul#e.
ingth = 6.38446[T] | 0.8 | | | | | | | | | | ###################################### | 1 6 1 1 1 1 | 0.7 | | | | | , | | | | | ### 15 12 12 12 12 12 12 12 | e valeb | 0,6 | | | <u> </u> | | | | | | | Tamp_set = 20.44[dc] Tamp_set = 20.44[dc] Tamp_set = 11.34[dc] Tamp_set = 11.34[dc] Tamp_set = 11.34[dc] Tamp_set = 11.34[dc] X00 hi X0 | oration and and and and and and and and and an | 0.8 | Ž'V | | | | 1 | | | Specie | | x 200 hl x 2 | | 0't | Oug | Λ | | · | | | | | | X points 16384 X present 16384 X resolution 15.65[us] X resolution 15.40540541[kHr] | hi
lo
iq duration u
main u
eq | ο.ε | | | | | | | | | | (snoillinx) (a.s. o.t. o.t. o.t. o.t. o.t. o.t. o.t. o | te
cans
lution n | | | | | | | | | | | S12 | I | | | ٠ | | | ,
<u>,</u>
- | | <u> </u> | . The transfer of the | | X: parts per | | | | | 0. | , Q, | 3.0, | 2.0 | .10 | ;;; | | | | | Methyl 4-az | rido-2,3-di-C | -benzyl-4 | ,6-dideoxy. | α-D-galact | opyranosid | e (10). | | | | S15 | X: parts | per Million : 1 | | | | | | | | Methyl 4-azido-2,3-di-O-benzyl-4,6-dideoxy-a-D-galactopyranoside (10). X : parts per Million : 13C 20.0 10.0 | 1d_13c_spectrum.22
s#297338
single Pulse with Brox
24_FEL-2001 10:08:38
24_FEL-2001 10:09:33 | GGSX 270 DELTA, MAR. 1D COMPLEX X X X X X X X X X X X X X X X X X X | • | |--|---|---| | Tile Name Author Sample ID Content Creation Date n | Spec Site Spec Type Data Format Dimnations Dim Title Dim Sire Dim Glasy Changer sample Field strangth | | 0.15 0.05 0.61 0.81 0.71 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.61 0.80 0.7 0.8 0.7 0.8 0.2 0.1 Bno Bno OM Methyl 2,3-di-O-benzyl-6-deoxy-α-D-galactopyranoside (11). 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 . 70.0 . 60.0 . 50.0 . 40.0 . 30.0 . 20.0 . 10.0 不是一个,我们 (SnoilliM) X: parts per Million: 13C ## 14.0 * 1.0 Methyl 4-azido-2,3-di-O-benzyl-4,6-dideoxy-α-D-glucopyranoside (12). 5.0 0, 15. X : parts per Million : 1H 8.0 2.0 3.0 0.1 O.Y 0.2 0.4 0.6 0.8 0.9 (Millions) 0.16743928 [MHz] m proton.239 CSX 270 DELTA NOR 1D COMPLEX rile Name Author Sample ID Content Creation Date
Revision Date Data Format Dimensions Dim Title Dim Sire Spec Site Spec Type S19 = 1d_13c_spectrum,20 = 5#649392 = 5ingle Pulse with Bros = 23-FEB-2001 20:10:07 = 23-FEB-2001 20:11:01 = 2.66666667[um] = 0.51900643[Hm] = 17.00680272[kHm] = 39[us] = 1.9267584[s] = 13C GSX 270 DELTA MGR in complex ppm] 7.5(u≢) Data Format Dimensions Dim Title Dim Sire Dim Units Acq delay Changer sample Expeximent X90 hi X90 lo X acq duration X domain Sample ID Content Creation Date Revision Date emp_state emp_state emp_status Spac Site Spac Type 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 (snoilliM) 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0, 60.0, 50.0 40.0 30.0 20.0 10.0 ووالماسين والمعاول والمواوية والمواو Methyl 4-azido-2,3-di-O-benzyl-4,6-dideoxy-α-D-glucopyranoside (12). والمصموات والمراحوات والمعاول والمنافئ والمراجع والمراع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراع والمراجع والمراع والمراع والمراجع والمراجع والمراجع والمراجع والم X : parts per Million : 13C | | | | 3500 to 1 | * | | |-------------|----------|-----------------------|---------------------------------------|---------------------------|---| | | | | | | | | | | | •• | 0.0 | • | | | | | | | | | | | | | 20 20 | | | | | | | 30. | (13) | | | | | | 表 40.0 | ige | | | | - | | 50.0 | anos | | | | | | 50.0 | | | | | | | 1 oc | nco | | • | | | | | g-C- | | | <u>o</u> | | | 08 | Methyl 6-azido-2,3-di-O-benzyl-6-deoxy-α-D-glucopyranoside (13). | | | - 1 O | | | 90.0 | -deo | | | ~ 3/E . | | • | - For | y 1- 6 | | | | | | 0.01 | ж | | | ₹, Õ₽ | | | · 20.02 | - | | | | · | | - 10°C | 3-di | | | | • | | DE LO | 0-7, | | | | | · · · · · · · · · · · · · · · · · · · | 140 | azid | | | | | | 150.0 | - - | | | | | | 0.09 | ethy | | | | | | 7644
0.0 1 | Σ | | | | | , | 17 0.0 | | | | | | | 18C | | | | | | | 190.0 | | | | | | | - | | | | | | | 200.0 | | | 0'5 0'5 | ο.ε | 2,0 | 0.1 | 2000 | | | 0.2 0.4 | o.s | 2.0 | (snoilliì
0, l | 0 | | | 0'5 0't | o.s | 0.2 | | 0 | | | - | ·. 0.£ | | (snoillì) | 0 | | |
مه
م | · . | | (snoillì) | 0 | | |
مه
م | : | | (snoillì) | 0 | | | - | : | [s]
394 [kdf z] | (snoillì) | 0 | | | | | HO BNO OME | $\langle \lambda \rangle$ | $\langle \lambda \rangle$ | Bnoome Bnoome Bnoome 10.0 20.0 20.0 20.0 10.0 | X90 hi X90 lo X acq duration X domain Spec Site Spec Type rile Name Author Sample ID Content Creation Date Revision Date Data Tormat Dimensions Dim Title Dim Sire Dim Units Acq delay Changer sample Freedan | | | | | Aco | | | 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0, 60.0 50.0 40.0 30.0 20.0 10.0 0 | Acetyl 4-azido-2,3,6-tri-O-acetyl-4-deoxy-α-D-galactopyranoside (16). | X:pn | |---|-----|-----|--|---|-----|------------------------|---|---|------| | - | 0'9 | 0.2 | 0.4 | 0,5 | 0.2 | 0,1 | onoilliliM) | | × | | | | | Spec Type DELTA, NGR Spec Type DELTA, NGR Dimensions N X Dim Title N 13C Dim Sire 22768 Dim Units Dippuls Dippuls Acq delay D 57.5[us] Changer, sample 0 Experiment Single pulse dec Tield strength H 5.34446[T] | | | X90 lo X acq duration | | \$2 | | | بر . | | | | | | |--|--|--------------|---|-----|---| | 5 | | 0.08 | 0.08 | | | | rile Name
Author
Sample ID
Content
Creation Date
Revision Date | m proton.2211 m 3#454216 m 5#454216 m 5#391e Pulse Experimen m 2-FEB-2002 12:39:06 m 2-FEB-2002 12:39:24 | 0.0 <i>T</i> | 0.07 | | | | Spec Site
Spec Type
Data Format | m GSX 270
m DELTA_MMR
m 1D COMPLEX | 0 | 0 | | | | Dimensions Dim Title Dim Sire Dim Gire Acc delay | n X
n 1H
n 16394
n [Ppn] | .09 | .09 | | | |] , , , , , , , , , | m single pulse.exp
m 6.345446[T]
m 11.6[us]
m 18[us] | 0.02 | 0.02 | | | |
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tracks
Tr | # 41[us]
1Dix
1Dix
29
4[s]
8
CLOROYONM-D
14[HE] | 40.0 | 0.01 | | | | Spin lock attn Spin set Spin state Spin status Temp get Temp set | 12 24 (db)
12 15 (hr)
12 5 DIN ON
12 19 18 (dc)
13 15 16 (dc)
14 15 16 OIF | 0.08 | AcO AcO AcO AcO | | - (A) | | X90 hi
X90 hi
X90 hi
X90 ho
X acq duration
X domain
X freq
X offeet | 11.6[us]
11.6[us]
14.[us]
13.03104[s]
11.8
12.03104[s]
13.0[ppm]
16.1310 | 20.0 | 20.0 | | | | X prescans X pulse X resolution X awap | | | 10.0 | . – | . | | makka akka akka akka ka ka ka ka ka ka ka | | ioilliM) | | | - 1 - 1 - 1 - 1 | | Name | | 0 | 8.0 | 1.0 | 0 | | | | | Acetyl 4-azido-2,3,6-tri-O-acetyl-4-deoxy-α-D-glucopyranoside (17). | | | | S29 | | | $X: parts \ per \ Million: 1H$ | | | 0.6 200,0 190,0 180,0 170,0 160,0 150,0 140,0 130,0 120,0 110,0 100,0 80,0, 70,0 60,0 50,0 40,0 30,0 20,0 10.0 6 0 大学の大学ではないないというないないないないないないないないないないないないないないない Acetyl 4-azido-2,3,6-tri-O-acetyl-4-deoxy- α -D-glucopyranoside (17). X : parts per Million : 13C | | Aco | | 8.0 7.0 6.0 7.0 7.0 6.0 7.0 7.0 6.0 7.0 7.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7 | Acetyl 4,0-dlazld0-2,3-dl-U-acetyl-4,6-dldeoxy-α-D-galactopyranoside (18). Χ : parts per Million : 114 | |------|---|---|---|--| | 30.0 | 0.05 | 0.01 | 0.6 | X | | | ttp de gtp. ttp de gtp. ttp de la | Temp get = 20 [dC] Temp_state = 72 [dC] Temp_status = 72 [dC] Temp_status = 11.3 [dx] Temp_status = 11.3 [dx] X90 hi = 11.3 [dx] X90 hi = 36 [dx] X domain = 36 [dx] X domain = 13 03104 [x] X freq = 270,16743928 [HHx] X freq = 16384 X prescans = 6 0 [ppm] X prescans = 6 0 [ppm] | ıtion | \$32 | |--| | 52 0.22 0. | 15 0.05 0.01 0.81 0.71 0.81 0.21 0.81 0.81 0.11 0.01 0.0 0.8, 0.7 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 | |------------|--| | | (snoilli) | | | 1d_13c_spectrum.29 2d_11525 2d_11525 2d_11D_2001 19:01:05 2d_10D_2001 19:01:05 2d_10D_2001 19:01:05 2d_10D_2001 19:01:05 2d_10D_2001 19:01 2d_10D_20D_2001 19:01 2d_10D_2001 | | | rile Name Author Sample ID Content Creation Date Spec Site Spec Site Spec Type Data Tornat Dim Title T | Acetyl 4,6-diazido-2,3-di-O-acetyl-4,6-dideoxy-α-D-glucopyranoside (20). 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90,0 80.0, 70,0 60.0 50.0 40.0 30.0 20.0 10.0 X : parts per Million : 13C | 14 THE RESERVE TO THE RESERVE | | | N3 Aco Aco OAc | |
---|-----------|--|--|--| | | 0.71 0.91 | ### ### ############################## | ### ### ### ########################## | 2.6666667[u*] 0.51900643[iix] 17.00690272[xiix] 17.00f00272[xiix] 0.00f0010010010010010010010010010010010010 | | The second secon | | | | E Z Z | | | 40 30 30 30 30 30 30 30 30 30 30 30 30 30 | X : parts per Million : 1H | |--|-----|--------|------------------|---|-----|---|---|----------------------------| | | 0.9 | o's | 0 ['] t | ο.ε | 0,2 | 1,0 | (anoilliM) | | | | | Author | |) hi
) lo
) lo
midth
status
status
cation_delay
statin
lock 90
lock 90 | | n = 14
= 270.16743928[MHz]
tt = 5.0[ppm]
:s = 16384
.ans = 5.8[us]
.ution = 0.3293976[Hz]
= 5.40540541[NHz] | | S39 | | The property of o | The column of th | | X : parts per Million : 13C | |--|--|-----|-----------------------------| | | ig (anoilliM) | | | | Source | File Name | S40 | | ``` 10 NWA plot parameters CX 20.00 cm F1P 180.000 ppm F1 18110.31 Hz F2 0.000 ppm F2 0.00 ppm F2 9.00000 ppm/Cn HZCM 905.51538 Hz/cm 29dc 65536 CDC13 7000 2 25500.000 Hz 1.3107700 sec 32768 20.000 usec 25.00 usec 20.00 d Haltz16 100.00 usec 5.00 usec 25.00 usec 25.00 usec 5.00 usec 25.00 usec 25.00 usec 300.00 usec 5.00 usec 5.00 usec 6.00 usec 5.00 usec 7.00 usec 7.00 usec 7.00 usec 7.00 usec 8.00 usec 8.00 usec 8.00 usec 7.00 usec 8.00 usec 7.00
usec 8.00 usec 8.00 usec 8.00 usec 8.00 usec 8.00 usec 8.00 usec 9.00 usec F2 - Processing parameters S1 32768 SF 100.6128220 MH2 WDK EN 6 SSB 0 LB 1.00 H2 GB 0 0 PC 1.40 Current Data Parameters NAME 090301 P1 DE SF01 NUCLEUS D11 EXPNO PROCNO FIDRES ``` Trans, trans-3,5-diazidocyclohexanol (30a). -09 -ස -00 -82 -82 140 mdd. -೧ -6 S44 Cis, cis-3,5-diazidocyclohexyl \(\beta\text{-D-2,3,4-tri-}O\)-acetyl-6-azido-6-deoxyglucopyranoside (31). Cis, cis-3,5-diaminocyclohexyl \(\beta \)-6-amino-6-deoxyglucopyranoside (32). | | | eoxyglucopyranoside (33). | |--|---|--| | | | tyl-4,6-diazido-4,6-dideoxy | | Angular de la companya company | N ₃ N ₃ N ₃ A _{CO} O O N ₃ A _{CO} O O O O O O O O O O O O O O O O O O | Cis, cis-3,5-diazidocyclohexyl β-D-2,3-di-O-acetyl-4,6-diazido-4,6-dideoxyglucopyranoside (33). X: parts per Million: 1.H | | | Tile Nume | S48 | Cis, cis-3,5-diazidocyclohexyl \(\beta\text{-D-2,3-di-}O\)-acetyl-4,6-diazido-4,6-dideoxyglucopyranoside (33). | ************************************** | | HO OH | Significates per Million: 11H X: parts per Million: 11H | |--|-----|---|--| | | 0.2 | 0,6 0.1 | (snoilliM) | | 1 | | Author A | · | | | | | | | | | | | **** | 30.0 20.0 10.0 | | |---|------|---|---|--|------|------|---|---|--|--|--| | | | | | | | | | | ·
Tana | 70.0 60.0 50.0 40.0 | lucopyranoside (37). | | | | | | | | OAc | | | - | 0.00 80.00 100.0 110.0
110.0 1 | 3-0-allyl-6-deoxy-D-g | | , | | | | | | 27 | , o v | | : | 140.0 130.0 120.0 | Acetyl 2,4-di-O-acetyl-3-O-allyl-6-deoxy-D-glucopyranoside (37). | | | 0.00 | | | | | | | | | 180.0 170.0 160.0 | Acetyl 2,4 X: parts per Million: 13C | | | 0.08 | 0.08 | 0.07 | 0.09 | 0.08 | 0.04 | ο.οε | 0.0Z | (znoilliM
0.01 | 0 | | | | | # 1d_13c_spectrum.651
= 5#770679
= 5ingle Pulse with Bros
= 20-JUN-2003 07:10:16
20-JUN-2003 08:39:37 | | # 34768
57.5[us]
57.5[us]
50.345446[T]
6.345446[T]
11.6[us] | | | = 27.10 On
= 23.3[dC]
= 40.3[dC]
= TEMP OFF
= ELMP OFF
= 8.9[ux] | = 19[um]
= 1.9265584[m]
= 13C
= 67.94010394[MHz]
= 32768
= 4 66666667[um] | = 0.51900643[Hz]
= 17.00680272[kHz] | | | | | 5 | File Name Author Sample ID Content Creation Date Revision Date | Spec Site
Spec Type
Data Format
Dimensions | Dim Units Acq delay Changer sample Experiment Tield strength Trengo | | | | X X90 Lo
X Acq duration
X Acmain
X Fraq
X Offset
X Point*
X Point*
X Point*
X Pulae | N X X | | S53 | 5'-0-(2,4-Di-O-acetyl-3-O-allyl-6-deoxy-β-D-glucopyranosyl)-6,3'4'-tri-O-benzyl-1,3,2'6'-40 0.9 X : parts per Million : 114 tetraazidoneamine (39). 8.0 10 20 30 40 80 60 10 80 80 80 100110120130140120120120180180180051025025023024028050 (Millions) S#379693 Single Pulme Experimen 5-0cr-2002 10:34:55 5-0cr-2002 10:35:16 270.16743928 [MHz] 5.0 [ppm] proton,3336 1D COMPLEX *trength Creation Date Revision Date Spec Site X Freduction THE PARTY OF P . . . 190.0 180.0 179.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 10.0 60.0 50.0 40.0 30.0 20.0 10.0 5'-O-(2,4-Di-O-acetyl-3-O-allyl-6-deoxy-β-D-glucopyranosyl)-6,3'4'-tri-O-benzyl-1,3,2'6'-X : parts per Million : 13C tetraazidoneamine (39). Acon 0.02 30.0 10.0 (knoilliM) | <u></u> | - | <u>S</u> | | |---------|---|----------|---| | | | | | | | | | | | | | | è | | | | | | Creation Date Revision Date Spec Site . 5 [ust] strangth S59 X: parts per Million: 13C | (| | | | | |----|-----|----------|----------|----| | | | | | | | | | | | | | | , , | | | 0. | | | | <u>ر</u> | | | | 7 | | | | | | | | L | 1 | | | 54 | | | 412 | | ID COMPLEX GSX 270 DELTA_NMR Data Format Spec Site Dimensions Dim Title Dim Sixe Dim Units 5#600602 Tile Name Creation Date [ppm] 57.5[um] Changer sample strength Mecvr gain Malaxation delay #ttn lock 20 [mm] 6 emp state resolution ### Author Switchest Switchest Content Conte | · | | | | | 4 | -0.0265 | | |---|--|------|--|------------|-------------|---|--------------------------| | | | | | | | loroacetimidate (46). | | | | | | | | | 2,3,4-Tri-O-acetyl-6-deoxy-6-fluoro-α-D-glucopyranosyl trichloroacetimidate (46). | | | | 0.04 | ο,οε | 20.0 | 10.0 | | 8.0 7.0, | X: parts per Million: 1H | | | | | | | (anoilliM) | | | | - | ### ################################## | | th the state of th | Temp state | Total [KRE] | AcO AcO NiH AcO NiH AcO OAce OAce OAce OAce OAce OAce OAce | 4 | | | | | | | | | | 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 3.2 4 Tri O ocetyl & deoxy-6-fluoro & D. chiconyranosyl trichlorocetimidate (46) | |-----|-----|--|------------|-------------|-----|-----|-----|--| | | | | | | | | | 170.0 160.0 150.0 140.0 | | I.I | 6°0 | | 9.0 | <i>5</i> .0 | + 0 | £.0 | 2.0 | 17 | | Marketan | | (1)-6,3'4'-tri-0-benzyl-1,3,2'6'- | |--------|--|---| | | | 0 1 6.0 1 1 1 1 1 1 1 1 1 | | O'ST O | proton.223 s#581203 s#581203 s#581203 s#581203 s#581203 s#581203 s#581203 single Pulse Experimen 17—UNR-2002 16:10:145 GSX 270 DELLA NOR X X X X X X X X X X X X X | S'-O-(2,3,4-T tetraazidone | | 9 | | Aco O O O O O O O O O O O O O O O O O O O | 5'-O-(2,3,4-Tri-O-acetyl-6-deoxy-6-fluoro-β-D-glucopyranosyl)-6,3'4'-tri-O-benzyl-1,3,2'6'tetraazidoneamine (47). 40.0 90.07 BOOM 70.06 100.0 110.0 120.0 1300 140.0 160.0 150.0 X : parts per Million : 13C | | | | | | | | | | | | 8.0 7.0 6.0 | 5'-O-(6-Deoxy-6-fluoro-β-D-glucopyranosyl)neamine (TC033). | X: parts per Million: 1H | |-----|---------------------|--|--|---|-------------|------------------------------|--|----------------------|---|---------------------|-----------------|--|--------------------------| | ļ- | 4,2 E,2 <u>\$</u> . | 2 1.2 0.2 6. | I 8.I | 7.I | 1 1.2 1,3 1 | 1.1 0.1 9.0 | 8.0 7.0 8.0 | 2.0 4.0 €.0 <u>2</u> | | oilliM)
I.0-2.0- | 0.6 | | | | أكد | |
#11e Name = proton.3005 Author = \$\frac{8}{2}\$ Sample ID = \$\frac{8}{2}\$\$ \$\frac{1}{2}\$\$ Total = \$\frac{1}{2}\$\$ \$\frac{1}{2}\$\$ Total = \$\frac{1}{2}\$\$\$ \$\frac{1}{2}\$\$\$ Total = \$\frac{1}{2}\$\$\$\$ Total = \$\frac{1}{2}\$\$\$\$\$\$\$\$ Pulse Experiment of \$2\$ | Spec Site = GSX 270
Spec Type = DELTA_NOR | Format
sions
itle
ixe
iixe
elay
er sample | | Relaxation delaym 4[s] Scans | Table to the state of | # 4 % H 5 % 9 C | X_pulse = 5.8[us]
X_resolution = 0.32991976[Er]
X_sweep = 5.40540541[kHz] | + NH ³ | F + 10 00 0 NH3 | ()
() | 668 | 0.2 | | 0 t | | ο ε | 2.0 | 0,1 | Ó | |--|-----------|---|--|-----|--|------------------------------------| | | | | | | | (snoilliM) | | = 1d_13c_spectrum.44
= 5#630161
= Single Fulse with Broa
= 1_JUL_2002_22:47:52
= 1_JUL_2002_22:47:52 | | = 1D COMPLEX = X = 13C = 32768 = [ppm] | | - | H | 0.51900643[Hz]
17.00680272[KHz] | | File Name Author Sample ID Content Creation Date Revision Date | Spec Site | a Format
busions
Title
Size
Units | Acq. calay changer ample = Experiment = Experiment = Experiment = Experiment = Experiment = Exponent Exponen | | etatus ii lo C duration gd sat nuts secans | X resolution u | 5'-O-(6-Deoxy-6-fluoro-β-D-glucopyranosyl)neamine (TC033). X : parts per Million : 13C -0 70,0 60.0 50,0 40.0 30,0 20.0 10.0 200.0 190.0 180,0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 14.0 0,E 0.8 0.4 0,8 0.9 0,1 0.7 0,2 5'-O-(3-O-n-Propyl-6-deoxy-\bar{\theta}\-D-glucopyranosyl)neamine (TC040). 220.0210.0200.0190.0180,0170.0160.0150.0140.0130.0120.0110.0100.0 90.0 80.0 700 60.0 500 40.0 30.0 20.0 10.0 X : parts per Million : 13C HOO HO HO HO WH (Ailillions) 0.65 0.45 0.45 0.60 0.81 0.71 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.91 0.92 0.8 0.7 0.8 0.8 0.8 0.8 0.8 0.5 0.5 0'01-- 70,0 60,0 50,0 40.0 30,0 20.0 10.0 220,0210,0200,0190,0180,0170,0160,0150,0140,0130,0120,0110,01,00,0 90.0 ,80.0 , 5'-O-(3-O-(3-Hydroxypropyl)-6-deoxy-\bar{b}-D-glucopyranosyl)neamine (TC041). X : parts per Million : 13C S73 = Single Pulse with Bross = 19-JAN-2003 09:09:48 = 19-JAN-2003 09:10:07 = 1d_13c_spectrum.598 2.6666667[u#] 0.51900643[Hz] 17.00680272[kHz] = 67.94010394[MHz] = 100.0[ppm] = 32768 = 39[u#] = 1.9267584[#] 1D COMPLEX GSX 270 DELTA NAGR . 5 [u.s.] File Name Author Sample ID Content Creation Date Revision Date Data Format Spec Site Spec Type ٠,- S75 X: parts per Million: 13C Z 5'-O-(3-O-(3-O-(2-aminoethyl)-6-deoxy-b-D-glucopyranosyl)propyl)-6-deoxy-b-Dglucopyranosyl)neamine (TC045). X : parts per Million : 13C 220.0210.0200.0190.0180,0170.0160.0150.0140.0130.0120.0110.0100.0 90.0 180.0 170.0 60.0 50.0 40.0 30.0 20.0 10.0 -10.0 Proton magnetic resonance spectra were recorded using spectrometers at 270 or 400 MHz. Chemical shifts were reported as parts per million (ppm) downfield from tetramethylsilane in δ unit, and coupling constants were given in cycles per second (Hz). Splitting patterns were designed as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. 13 C spectra were obtained using spectrometers at 68 MHz or 100 MHz. Routine 13 C NMR spectra were fully decoupled by broadband waltz decoupling. All NMR spectra were recorded at ambient temperature unless otherwise noted. Purchased chemical reagents and starting materials were used without purification unless otherwise noted. Dichloromethane was distilled over CaH₂. Other solvents were used without purification. Methyl 4-azido-2,3,6-tri-*O*-benzyl-4-deoxy-a-D-glucopyranoside (6). Please refer to the procedure for the preparation of 4. 1 H NMR (270 MHz, CDCl₃) δ 7.2 - 7.4 (m, 15H), 4.95 (d, J = 11.6 Hz, 1H), 4.80 (d, J = 11.6 Hz, 1H), 4.78 (d, J = 12.2 Hz, 1H), 4.63 (d, J = 12.2 Hz, 1H), 4.62 (d, J = 12.2 Hz, 1H), 4.60 (d, J = 3.3 Hz, 1H), 4.49 (d, J = 12.2 Hz, 1H), 3.84 (dd, J = 9.2 Hz, J = 9.6 Hz, 1H), 3.5 - 3.7 (m, 5H), 3.33 (s, 3H); 13 C NMR (68 MHz, CDCl₃) δ 138.10 (s), 137.95 (s), 137.81 (s), 128.6 (s), 128.5 (s), 128.4 (s), 128.2 (s), 128.1 (s), 127.9 (s), 127.8 (s), 98.4 (s), 80.2 (s), 79.7 (s), 75.8 (s), 73.6 (s), 73.4 (s), 69.3 (s), 68.7 (s), 61.8 (s), 55.5 (s); LRFAB m/e 507 [M+NH₄]⁺; HRFAB Calcd for C₂₈H₃₅N₄O₅ [M+NH₄]⁺ m/e 507.2607; measure m/e 507.2611. **Methyl 4,6-diazido-2,3-di-***O***-benzyl-4,6-dideoxy-a-D-galactopyranoside (8)**. Please refer to the procedure for the preparation of **4**. 1 H NMR (270 MHz, CDCl₃) δ 7.2-7.4 (m, 10H), 4.85 (d, J =11.7 Hz, 1H), 4.84 (d, J =12.1 Hz, 1H), 4.75 (d, J =11.7 Hz, 1H), 4.65 (d, J =12.1 Hz, 1H), 4.61 (d, J = 3.8 Hz, 1H), 4.04 (dd, J = 9.7 Hz, J = 3.8 Hz, 1H), 3.85 (dd, J = 9.7 Hz, J = 3.8 Hz, 1H), 3.8 - 3.9 (m, 2H), 3.53 (dd, J = 12.6 Hz, J = 7.9 Hz, 1H), 3.38 (s, 3H), 3.19 (dd, J = 12.6 Hz, J = 5.1 Hz, 1H); 13 C NMR (68 MHz, CDCl₃) δ 137.9 (s), 137.8 (s), 128.4 (s), 128.3 (s), 127.9 (s), 127.8 (s), 127.7 (s), 127.6 (s), 98.5 (s), 77.5 (s), 75.7 (s), 73.7 (s), 73.2 (s), 67.4 (s), 61.4 (s), 55.4 (s), 51.5 (s); LRCI m/e 442.4 [M+NH₄]⁺; HRCI Calcd for $C_{21}H_{28}N_7O_5$ [M+NH₄]⁺ m/e 442.2203; measure m/e 442.2198. Methyl 4-azido-2,3-di-*O*-benzyl-4,6-dideoxy-a-D-galactopyranoside (10). Please refer to the procedure for the preparation of 4. ¹H NMR (270 MHz, CDCl₃) δ 7.2 - 7.4 (m, 10H), 4.84 (d, J = 11.9 Hz, 1H), 4.82 (d, J = 12.2 Hz, 1H), 4.73 (d, J = 11.9 Hz, 1H), 4.64 (d, J = 12.2 Hz, 1H), 4.54 (d, J = 3.6 Hz, 1H), 4.01 (dd, J = 9.8 Hz, J = 3.6 Hz, 1H), 3.89 (dq, J = 6.3 Hz, J = 1.3 Hz, 1H), 3.82 (dd, J = 9.8 Hz, J = 3.6 Hz, 1H), 3.69 (dd, J = 3.6 Hz, J = 1.3 Hz, 1H), 3.33 (s, 3H), 1.21 (d, J = 6.3 Hz, 3H); ¹³C NMR (68 MHz, CDCl₃) δ 138.34 (s), 138.29 (s), 128.54 (s), 128.48 (s), 128.2 (s), 127.90 (s), 127.84 (s), 127.8 (s), 98.8 (s), 78.1 (s), 76.0 (s), 73.8 (s), 73.3 (s), 65.1 (s), 64.3 (s), 55.5 (s), 17.4 (s); LRFAB m/e 401 [M+NH₄]⁺; HRFAB Calcd for C₂₁H₂₉N₄O₄ [M+NH₄]⁺ m/e 401.2189; measure m/e 401.2204. Methyl 2,3-di-*O*-benzyl-6-deoxy-a-D-galactopyranoside (11). Please refer to the procedure for the preparation of 5. 1 H NMR (270 MHz, CDCl₃) δ 7.2 - 7.4 (m, 10H), 4.79 (d, J = 11.9 Hz, 2H), 4.69 (d, J = 11.6 Hz, 1H), 4.65 (d, J = 11.9 Hz, 1H), 4.60 (d, J = 3.3 Hz, 1H), 3.7 - 3.9 (m, 4H), 3.36 (s, 3H), 2.42 (broad, 1H, 4-OH), 1.25 (d, J = 6.6 Hz, 3H); 13 C NMR (68 MHz, CDCl₃) δ 138.4 (s), 138.2 (s), 128.6 (s), 128.5 (s), 128.1 (s), 127.95 (s), 127.88 (s), 98.6 (s), 78.0 (s), 75.5 (s), 73.5 (s), 72.9 (s), 70.4 (s), 65.1 (s), 55.4 (s), 16.2 (s); LRFAB m/e 376 [M+NH₄]⁺; HRFAB Calcd for C₂₁H₃₀N₁O₅ [M+NH₄]⁺ m/e 376.2124; measure m/e 376.2131. Methyl 4-azido-2,3-di-*O*-benzyl-4,6-dideoxy-a-D-glucopyranoside (12). Please refer to the procedure for the preparation of 4. 1 H NMR (270 MHz, CDCl₃) δ 7.2 - 7.4 (m, 10H), 4.94 (d, J = 10.5 Hz, 1H), 4.78 (d, J = 10.5 Hz, 1H), 4.76 (d, J = 12.0 Hz, 1H), 4.63 (d, J = 12.0 Hz, 1H), 4.51 (d, J = 3.7 Hz, 1H), 3.81 (dd, J = 9.6 Hz, J = 9.6 Hz, 1H), 3.50 (dd, J = 9.6 Hz, J = 3.7 Hz, 1H), 3.4 - 3.5 (m, 1H), 3.35 (s, 3H), 3.06 (dd, J = 9.6 Hz, J = 9.9 Hz, 1H), 1.25 (d, J = 5.9 Hz, 3H); 13 C NMR (68 MHz, CDCl₃) δ 138.1 (s), 138.0 (s), 128.6 (s), 128.5 (s), 128.4 (s), 128.2 (s), 128.1 (s), 127.9 (s), 98.1 (s), 80.7 (s), 79.9 (s), 75.8 (s), 73.4 (s), 68.1 (s), 65.9 (s), 55.4 (s), 18.5 (s); LRFAB m/e 401 [M+NH₄]⁺; HRFAB Calcd for C₂₁H₂₉N₄O₄ [M+NH₄]⁺ m/e 401.2189; measure m/e 401.2203. Methyl 6-azido-2,3-di-*O*-benzyl-6-deoxy-a-D-galactopyranoside (14). Please refer to the procedure for the preparation of 5. 1 H NMR (270 MHz, CDCl₃) δ 7.2 - 7.4 (m, 10H), 4.80 (d, J = 11.5 Hz, 1H), 4.75 (d, J = 11.5 Hz, 1H), 4.69 (d, J = 8.6 Hz, 1H), 4.66 (d, J = 3.6 Hz, 1H), 4.64 (d, J = 8.6 Hz, 1H), 3.8 - 3.9 (m, 3H), 3.83 (dd, J = 8.2 Hz, J = 3.6 Hz, 1H), 3.59 (dd, J = 12.8
Hz, J = 8.4 Hz, 1H), 3.40 (s, 3H), 3.26 (dd, J = 12.8 Hz, J = 4.3 Hz, 1H), 2.48 (s, 1H, 4-OH); 13 C NMR (68 MHz, CDCl₃) δ 138.3 (s), 138.0 (s), 128.7 (s), 128.5 (s), 128.1 (s), 127.99 (s), 127.96 (s), 98.6 (s), 77.3 (s), 75.6 (s), 73.6 (s), 73.2 (s), 69.8 (s), 68.3 (s), 55.6 (s), 51.3 (s); LRFAB m/e 417 [M+NH₄]⁺; HRFAB Calcd for C₂₁H₂₉N₄O₅ [M+NH₄]⁺ m/e 417.2138; measure m/e 417.2122. **Methyl 4,6-diazido-2,3-di-***O***-benzyl-4,6-dideoxy-a-D-glucopyranoside** (**15**). Please refer to the procedure for the preparation of **4**. 1 H NMR (270 MHz, CDCl₃) δ 7.2 - 7.4 (m, 10H), 4.97 (d, J = 10.6 Hz, 1H), 4.79 (d, J = 12.0 Hz, 1H), 4.63 (d, J = 12.0 Hz, 1H), 4.60 (d, J = 2.6 Hz, 1H), 3.87 (dd, J = 9.6 Hz, J = 9.0 Hz, 1H), 3.5 - 3.6 (m, 3H), 3.4 - 3.5 (m, 2H), 3.36 (s, 3H); ¹³C NMR (68 MHz, CDCl₃) δ 137.9(s), 137.8 (s), 128.6 (s), 128.5 (s), 128.4 (s), 128.20 (s), 128.16 (s), 128.0 (s), 98.2 (s), 79.86 (s), 79.85 (s), 75.8 (s), 73.5 (s), 69.2 (s), 62.5 (s), 55.7 (s), 51.8 (s); LRFAB m/e 442 [M+NH₄]⁺; HRFAB Calcd for C₂₁H₂₈N₇O₅ [M+NH₄]⁺ m/e 442.2203; measure m/e 442.2216. Acetyl 4-azido-2,3,6-tri-*O*-acetyl-4-deoxy-a-D-galactopyranoside (16). ¹H NMR (270 MHz, CDCl₃) (α anomer) δ 6.23 (d, J = 2.6 Hz, 1H), 5.32 (m, 2H), 4.0 - 4.2 (m, 4H), 2.072 (s, 3H), 2.070 (s, 3H), 2.01 (s, 3H), 1.95 (s, 3H); ¹³C NMR (68 MHz, CDCl₃) (α anomer) δ 170.4 (s), 170.1 (s), 169.7 (s), 168.8 (s), 89.5 (s), 69.5 (s), 68.5 (s), 66.5 (s), 62.5 (s), 60.4 (s), 20.8 (s), 20.7 (s), 20.5 (s, 2 carbons); LRFAB m/e 380.1 [M+Li]⁺; HRFAB Calcd for $C_{14}H_{19}N_3O_9Li$ [M+Li]⁺ m/e 380.1281; measure m/e 380.1274. Acetyl 4-azido-2,3,6-tri-*O*-acetyl-4-deoxy-a-D-glucopyranoside (17). ¹H NMR (270 MHz, CDCl₃) (α anomer) δ 6.27 (d, J = 4.0 Hz, 1H), 5.45 (dd, J = 10.2 Hz, J = 9.9 Hz, 1H), 5.03 (dd, J = 10.2 Hz, J = 4.0 Hz, 1H), 4.35 (dd, J = 12.5 Hz, J = 2.5 Hz, 1H), 4.26 (dd, J = 12.5 Hz, J = 3.6 Hz, 1H), 3.87 (ddd, J = 10.2 Hz, J = 3.6 Hz, J = 2.5 Hz, 1H), 3.67 (dd, J = 10.2 Hz, J = 9.9 Hz, 1H), 2.16 (s, 3H), 2.12 (s, 6H), 2.00 (s, 3H); ¹³C NMR (68 MHz, CDCl₃) (α anomer) δ 170.5 (s), 169.90 (s), 169.84 (s), 168.4 (s), 89.2 (s), 70.5 (s), 70.2 (s), 69.3 (s), 62.4 (s), 59.9 (s, C-4), 21.0 (s), 20.82 (s), 20.77 (s), 20.5 (s); LRFAB m/e 380.1 [M+Li]⁺; HRFAB Calcd for C₁₄H₁₉N₃O₉Li [M+Li]⁺ m/e 380.1281; measure m/e 380.1272. Acetyl 4,6-diazido-2,3-di-*O*-acetyl-4,6-dideoxy-a-D-galactopyranoside (18). ¹H NMR (270 MHz, CDCl₃) (α anomer) δ 6.30 (d, J = 2.6 Hz, 1H), 5.38 (m, 2H), 4.14 (m, 1H), 4.09 (ddd, J = 6.6 Hz, J = 6.9 Hz, J = 1.3 Hz, 1H), 3.54 (dd, J = 12.5 Hz, J = 6.6 Hz, 1H), 3.37 (dd, J = 12.5 Hz, J = 6.9 Hz, 1H), 2.14 (s, 3H), 2.13 (s, 3H), 2.01 (s, 3H); ¹³C NMR (68 MHz, CDCl₃) (α anomer) δ 170.2 (s), 169.8 (s), 168.8 (s), 89.5 (s), 69.7 (s), 69.5 (s), 66.5 (s), 60.4 (s), 50.8 (s), 20.9 (s), 20.60 (s), 20.56 (s); LRFAB m/e 363.1 [M+Li]⁺; HRFAB Calcd for $C_{12}H_{16}N_6O_7Li$ [M+Li]⁺ m/e 363.1241; measure m/e 363.1234. Acetyl 4azido-2,3-di-*O*-acetyl-4,6-dideoxy-a-D-galactopyranoside (19). ¹H NMR (270 MHz, CDCl₃) (α anomer) δ 6.22 (d, J = 2.6 Hz, 1H), 5.30 (m, 2H), 4.16 (qd, J = 6.3 Hz, J = 1.0 Hz, 1H), 3.92 (m, 1H), 2.09 (s, 3H), 2.08 (s, 3H), 1.97 (s, 3H), 1.24 (d, J = 6.3 Hz, 3H); ¹³C NMR (68 MHz, CDCl₃) (α anomer) δ 170.0 (s), 169.6 (s), 168.9 (s), 89.6 (s), 69.9 (s), 67.1 (s), 66.4 (s), 63.8 (s. C-4), 20.7 (s), 20.5 (s, 2 carbons), 17.0 (s); LRFAB m/e 322.1 [M+Li]⁺; HRFAB Calcd for $C_{12}H_{17}N_3O_7Li$ [M+Li]⁺ m/e 322.1227; measure m/e 322.1235. Acetyl 4-azido-2,3-di-*O*-acetyl-4,6-dideoxy-a-D-glucopyranoside (20). ¹H NMR (270 MHz, CDCl₃) (α anomer) δ 6.22 (d, J = 2.6 Hz, 1H), 5.3 (m, 2H), 4.16 (qd, J = 6.3 Hz, J = 1.0 Hz, 1H), 3.92 (m, 1H), 2.09 (s, 3H), 2.08 (s, 3H), 1.97 (s, 3H), 1.24 (d, J = 6.3 Hz, 3H); ¹³C NMR (68 MHz, CDCl₃) (α anomer) δ 170.0 (s), 169.1 (s), 89.2 (s), 70.4 (s), 69.7 (s), 68.6 (s), 65.7 (s), 20.1 (s), 20.8 (s), 20.6 (s), 18.3 (s); LRFAB m/e 363.1 [M+Li]⁺; HRFAB Calcd for $C_{12}H_{16}N_6O_7Li$ [M+Li]⁺ m/e 363.1241; measure m/e 363.1231. Acetyl 4,6-diazido-2,3-di-O-acetyl-4,6-dideoxy-a-D-glucopyranoside (22). ¹H NMR (270 MHz, CDCl₃) (α anomer) δ 6.29 (d, J = 3.6 Hz, 1H), 5.45 (dd, J = 10.1 Hz, J = 9.6 Hz, 1H), 5.02 (dd, J = 10.1 Hz, J = 3.6 Hz, 1H), 3.77 (dd, J = 10.2 Hz, J = 9.6 Hz, 1H), 3.58 (dd, J = 13.6 Hz, J = 2.0 Hz, 1H), 3.50 (ddd, J = 10.2 Hz, J = 3.4 Hz, J = 2.0 Hz, 1H), 3.43 (dd, J = 13.6 Hz, J = 3.4 Hz, 1H), 2.15 (s, 3H), 2.10 (s, 3H), 1.99 (s, 3H); ¹³C NMR (68 MHz, CDCl₃) (α anomer) δ 169.9 (s), 169.8 (s), 168.8 (s), 89.2 (s), 71.4 (s), 69.3 (s), 69.3(s), 60.0 (s), 51.0 (s), 21.0 (s), 20.8 (s), 20.5 (s); LRFAB m/e 363.1 [M+Li]⁺; HRFAB Calcd for $C_{12}H_{16}N_6O_7Li$ [M+Li]⁺ m/e 363.1241; measure m/e 363.1231. For the synthesis of 23 - 29, please refer to reference 28. **2,4-Di-***O*-acetyl-3-*O*-allyl-6-deoxy-a-D-glucopyranosyl trichloroacetimidate (38). Please refer the general procedure for the preparation of glycosyl trichloroacetimidate. 1 H NMR (270 M Hz, CDCl₃) δ 8.58 (s, N*H*CCl₃), 6.44 (d, J = 3.6 Hz, 1H), 5.80 (dddd, J = 17.4 Hz, J = 10.2 Hz, J = 5.3 Hz, J = 5.6 Hz, 1H), 5.21 (dd, J = 17.4 Hz, J = 1.6 Hz, 1H), 5.12 (dd, J = 10.2 Hz, J = 1.6 Hz, 1H), 4.98 (dd, J = 9.9 Hz, J = 3.6 Hz, 1H), 4.87 (dd, J = 9.9 Hz, J = 9.6 Hz, 1H), 4.17 (dd, J = 12.9 Hz, J = 5.3 Hz, 1H), 4.07 (dd, J = 12.9 Hz, J = 5.6 Hz, 1H), 3.97(dq, J = 9.9 Hz, J = 6.3 Hz, 1H), 3.90 (dd, J = 9.9 Hz, J = 9.6 Hz, 1H), 2.10 (s, 3H), 2.03 (s, 3H), 1.19 (d, J = 6.3 Hz, 3H); 13 C NMR (68MHz, CDCl₃) δ 169.9 (s), 169.6 (s), 160.9 (s), 134.5 (s), 116.8 (s), 93.6 (s), 76.5 (s), 74.2 (s), 73.6 (s), 72.4 (s), 68.7 (s), 21.0 (s), 20.7 (s), 17.4 (s). **2,3,4-Tri-***O***-acetyl-6-deoxy-6-fluoro-a-D-glucopyranosyl trichloroacetimidate** (**46**). Please refer the general procedure for the preparation of glycosyl trichloroacetimidate. ¹H NMR (270 MHz, CDCl₅) δ 8.67 (s, 1H), 6.54 (d, J = 5.4 Hz, 1H), 5.55 (t, J = 10.8 Hz, 1H), 5.15 (t, J = 10.8 Hz, 1H), 5.05 (dd, J = 8.1 Hz, J = 5.4 Hz, 1H), 4.6 – 4.5 (m, 1H), 4.4 – 4.3 (m, 1H), 4.2 – 4.1 (m, 1H), 2.03 (s, 3H), 2.0 (s, 3H), 1.9 (s, 3H); ¹³C NMR (68 MHz, CDCl₅) δ 170.1 (s), 169.8 (s), 169.5 (s), 160.8 (s), 92.9 (s), 90.7 (s), 80.7 (d, J_{CF} = 177 Hz), 70.7 (d, J_{CF} = 19 Hz), 69.7 (d, J_{CF} = 8.8 Hz), 67.6 (s), 67.4 (s), 20.8 (s), 20.6 (s), 20.5 (s). Cis, cis-3,5-diazidocyclohexyl b-D-2,3,4-tri-O-acetyl-6-azido-6-deoxyglucopyranoside (31). Please refer to the general procedure for glycosylation. The compound is mixed with inseparable impurities, and characterized only by 1 H and 13 C NMR. 1 H NMR (270 MHz, CDCl₃) δ 5.19 (t, J = 9.6 Hz, 1H), 4.94 (dd, J = 9.6 Hz, J = 7.9 Hz, 1H), 4.93 (t, J = 9.6 Hz, 1H), 4.63 (d, J = 7.9 Hz, 1H), 3.67 (ddd, J = 9.6 Hz, J = 4.7 Hz, J = 2.3 Hz, 1H), 3.60-3.78 (m, 1H), 3.30-3.51 (m, 1H), 3.32 (tt, J = 11.9 Hz, J = 4.1 Hz, 2H), 3.11 (dd, J = 13.2 Hz, J = 2.3 Hz), 2.16-2.38 (m, 3H), 2.04 (s, 3H), 2.02 (s, 3H), 1.99(s, 3H), 1.18-1.46(m, 3H); 13 C NMR (68 MHz, CDCl₃) δ 169.6 (s), 168.9 (s), 168.6 (s), 98.7 (s), 73.7 (s), 73.3 (s), 71.9 (s), 70.8 (s), 69.1 (s), 54.6 (s), 54.4 (s), 50.6 (s), 37.5 (s), 36.1 (s), 35.9 (s), 35.8 (s), 20.1 (s), 20.0 (s). Cis, cis-3,5-diazidocyclohexyl b-D-2,3,4-tri-O-acetyl-6-azido-6-deoxyglucopyranoside (31). Please refer to the general procedure for glycosylation. The compound is mixed with inseparable impurities, and characterized only by 1 H and 13 C NMR. 1 H NMR (270 MHz, CDCl₃) δ 5.19 (t, J = 9.6 Hz, 1H), 4.94 (dd, J = 9.6 Hz, J = 7.9 Hz, 1H), 4.93 (t, J = 9.6 Hz, 1H), 4.63 (d, J = 7.9 Hz, 1H), 3.67 (ddd, J = 9.6 Hz, J = 4.7 Hz, J = 2.3 Hz, 1H), 3.60-3.78 (m, 1H), 3.30-3.51 (m, 1H), 3.32 (tt, J = 11.9 Hz, J = 4.1 Hz, 2H), 3.11 (dd, J = 13.2 Hz, J = 2.3 Hz), 2.16-2.38 (m, 3H), 2.04 (s, 3H), 2.02 (s, 3H), 1.99(s, 3H), 1.18-1.46(m, 3H); 13 C NMR (68 MHz, CDCl₃) δ 169.6 (s), 168.9 (s), 168.6 (s), 98.7 (s), 73.7 (s), 73.3 (s), 71.9 (s), 70.8 (s), 69.1 (s), 54.6 (s), 54.4 (s), 50.6 (s), 37.5 (s), 36.1 (s), 35.9 (s), 35.8 (s), 20.1 (s), 20.0 (s). Cis, cis-3,5-diazidocyclohexyl b-D-2,3-di-O-acetyl-4,6-diazido-4,6-dideoxyglucopyranoside (33). Please refer to the general procedure for glycosylation. 1 H NMR (270 MHz, CDCl₃) δ 5.11 (t, J = 9.6 Hz, 1H), 4.85 (dd, J = 9.6 Hz, J = 7.9 Hz, 1H), 4.58 (d, J = 7.9 Hz, 1H), 3.64 (tt, J = 12.0 Hz, J = 4.3 Hz, 1H), 3.57 (t, J = 9.6 Hz, 1H), 3.45 (d, J = 4.3 Hz, 1H), 3.40 (dt, J = 9.6 Hz, J = 4.3 Hz, 1H), 3.25 (tt, J = 12.0 Hz, J = 4.3 Hz, 2H), 2.27-2.38 (m, 1H), 2.15-2.26 (m, 2H), 2.06 (s, 3H), 2.00 (s, 3H), 1.27 (q, J = 12.0 Hz, 2H), 1.15-1.45 (m, 1H); 13 C NMR (68 MHz, CDCl₃) δ 169.4 (s), 168.8 (s), 98.7 (s), 73.3 (s), 73.1 (s), 72.9 (s), 71.0 (s), 60.0 (s), 54.4 (s), 54.3 (s), 50.8 (s), 37.5 (s), 36.1 (s), 35.9 (s), 20.1 (s), 20.0 (s); LRFAB m/e 501 [M+Na]⁺; HRFAB Calcd for $C_{12}H_{22}N_{12}O_6Na$ [M+Na]⁺ m/e 501.1683; measure m/e 501.1692. ## 5-O-(2,4-Di-O-acetyl-3-O-allyl-6-deoxy-b-D-glucopyranosyl)-6,3'4'-tri-O-benzyl-1,3,2'6'- **tetra-azidoneamine** (39). Please refer to the general procedure for glycosylation. ¹H NMR (270 M Hz, CDCl₃) δ 7.2 – 7.5 (m, 15H), 5.76 (dddd, J = 17.1 Hz, J = 10.2 Hz, J = 5.6 Hz, J = 5.6 Hz, 1H), 5.71 (d, J = 3.6 Hz, 1H), 5.20 (dd, J = 17.1 Hz, J = 1.6 Hz, 1H), 5.14 (dd, J = 10.2 Hz, J = 1.6 Hz, 1H), 5.03 (d, J = 11.2 Hz, 1H), 5.00 (d, J = 11.9 Hz, 1H), 4.8 - 4.9 (m, 5H), 4.70 (d, J = 9.9 Hz, 1H), 4.59 (d, J = 11.2 Hz, 1H), 4.20 (m, 1H), 4.0 - 4.1 (m, 4H), 3.2 - 3.6 (m, 10H), 2.30 (ddd, J = 13.5 Hz, J = 4.6 Hz, J = 4.6 Hz, 1H), 2.13 (s, 3H), 2.06 (s, 3H), 1.46 (ddd, J = 13.5 Hz, J = 12.5 Hz, J = 12.5 Hz, 1H), 1.20 (d, J = 6.3 Hz, 3H); ¹³C NMR (68 MHz, CDCl₃) δ 169.5(s), 168.8(s), 137.9 (s, 2C), 137.2 (s), 134.5 (s), 128.7 (s), 128.7 (s), 128.5 (s), 128.4 (s), 128.2 (s), 127.9 (s), 117.0 (s), 99.0 (s), 97.5 (s), 85.2 (s), 79.7 (s), 79.5 (s), 78.7 (s), 77.3 (s), 75.5 (s, 2 carbons), 75.3 (s), 75.0 (s), 74.4 (s), 72.9 (s), 72.3 (s), 71.1 (s), 70.6 (s), 63.0 (s), 60.7 (s), 59.5 (s), 51.2
(s), 32.6 (s), 21.2 (s), 21.1 (s), 17.0 (s); MALDI Calcd for $C_{46}H_{54}N_{17}O_{12}K$ [M+K]⁺ m/e 1005.3616; measure m/e 1005.3566. 5-*O*-(3-*O*-(3-(2,4-Di-*O*-acetyl-3-*O*-(2-azidoethyl)-6-deoxy-b-D-glucopyranosyl)-*n*-propyl)-6-deoxy-b-D-glucopyranosyl)-6,3'4'-tri-*O*-benzyl-1,3,2'6'-tetraazidoneamine (42). Please refer to the general procedure for glycosylation. ¹H NMR (270 MHz, CDCl₃) δ 7.3-7.5 (m, 15H), 5.88 (d, *J* = 3.9 Hz, 1H), 4.8 - 5.0 (m, 8H), 4.60 (d, *J* = 11.2 Hz, 1H), 4.32 (d, *J* = 7.9 Hz, 1H), 3.9 - 4.2 (m, 4H), 3.0 - 3.7 (m, 21H), 2.28 (ddd, *J* = 13.3 Hz, *J* = 4.3 Hz, *J* = 4.0 Hz, 1H), 2.10 (s, 3H), 2.08 (s, 3H), 1.80 (m, 2H), 1.46 (ddd, *J* = 13.3 Hz, *J* = 12.5 Hz, *J* = 12.5 Hz, 1H), 1.30 (d, *J* = 5.3 Hz, 3H), 1.23 (d, *J* = 5.9Hz, 3H); ¹³C NMR (68 MHz, CDCl₃) δ 169.7 (s), 169.5 (s), 137.9 (s), 137.8 (s), 137.1 (s), 128.9 (s), 128.6 (s), 128.5 (s), 128.2 (s), 128.0 (s), 127.8 (s), 102.0 (s), 100.6 (s), 96.5 (s), 84.7 (s), 84.3 (s), 80.4 (s), 79.6 (s), 79.1 (s), 78.7 (s), 76.0 (s), 75.5 (s), 75.1 (s), 75.0 (s), 74.6 (s), 73.7 (s), 72.1 (s), 72.0 (s), 70.9 (s), 70.5 (s), 69.1 (s), 68.3 (s), 65.5 (s), 63.2 (s), 60.7 (s), 60.5 (s), 59.8 (s), 51.2 (s), 51.1 (s), 32.6 (s), 30.1 (s), 21.1 (s), 21.0 (s), 17.4 (s), 17.2 (s); MALDI Calcd for $C_{54}H_{69}N_{15}O_{17}Na$ [M+Na]⁺ m/e 1222.4888; measure m/e 1222.4854. 5-O-(2,3,4-Tri-O-acetyl-6-deoxy-6-fluoro-b-D-glucopyranosyl)-6,3'4'-tri-O-benzyl-1,3,2'6'-tetraazidoneamine (47). Please refer to the general procedure for glycosylation. ¹H NMR (270 MHz, CDCl₃) δ 7.2 - 7.5 (m, 15H), 5.66 (d, J = 2.7 Hz, 1H), 5.20 (d, J = 7.6 Hz, 1H), 5.0 - 5.1 (m, 3H), 4.8 - 5.0 (m, 3H), 4.5 - 4.7 (m, 2H), 4.21 (ddd, J = 9.9 Hz, J = 4.9 Hz, J = 2.6 Hz, 1H), 4.09 (dd, J = 8.9 Hz, J = 9.2 Hz, 1H), 4.03 (dd, J = 8.9 Hz, J = 8.6 Hz, 1H), 3.2 - 3.6 (m, 10H), 2.32 (ddd, J = 13.2 Hz, J = 4.3 Hz, J = 4.3 Hz, 1H), 2.10 (s, 3H), 2.015 (s, 3H), 2.010 (s, 3H), 1.48 (ddd, J = 13.2 Hz, J = 4.3 Hz, J = 4.3 Hz, 1H), 2.10 (s, 3H), 2.015 (s, 3H), 2.010 (s, 3H), 1.48 (ddd, J = 13.2 Hz, J = 4.3 Hz, J = 4.3 Hz, 1H), 2.10 (s, 3H), 2.015 (s, 3H), 2.010 (s, 3H), 1.48 (ddd, J = 13.2 Hz, J = 4.3 13.2 Hz, J = 12.5 Hz, J = 12.5 Hz, 1H; ¹³C NMR (68 MHz, CDCl₃) δ 170.3 (s), 169.4 (s), 168.9 (s), 137.9 (s), 136.8 (s), 129.0 (s), 128.8 (s), 128.7 (s), 128.5 (s), 128.2 (s), 128.0 (s), 98.9 (s), 97.6 (s), 85.0 (s), 80.9 (d, J = 213 Hz), 79.4 (s), 78.7 (s), 78.0 (s), 77.3 (s), 75.8 (s), 75.7 (s), 75.3 (s), 75.0 (s), 72.8 (s), 71.6 (s), 71.1 (s), 68.2 (d, J = 7.5 Hz), 62.9 (s), 60.7 (s), 59.5 (s), 51.2 (s), 32.5 (s), 21.0 (s), 20.7 (s), 20.6 (s); MALDI Calcd for C₄₅H₅₁O₁₃N₁₂FNa [M+Na]⁺ m/e 1009.3575; measure m/e 1009.3602. *Cis*, *cis*-3,5-diaminocyclohexyl b-D-4,6-diamino-4,6-dideoxygluco-pyranoside (34). Please refer to the procedure for the synthesis of 32. 1 H NMR (270 MHz, D₂O) (acetate salt) δ 4.66 (d, J = 7.9 Hz, 1H), 4.0 (m, 2H), 3.66 (dd, J = 9.9 Hz, J = 9.9 Hz, 1H), 3.48 (d, J = 13.2 Hz, 1H), 3.3 - 3.4 (m, 3H), 3.1 - 3.2 (m, 2H), 2.3 - 2.5 (m, 3H), 2.00 (s, 12H), 1.3 - 1.6 (m, 3H); 13 C NMR (68 MHz, D₂O) (acetate salt) δ 177.6 (s), 100.8 (s), 73.04 (s), 73.00 (s), 71.6 (s), 68.9 (s), 53.3 (s), 45.4 (s), 45.3 (s), 40.0 (s), 35.8 (s), 34.6 (s), 33.0 (s), 21.0 (s). LRFAB m/e 291 [MH]⁺; HRFAB Calcd for $C_{12}H_{27}N_4O_4$ [MH]⁺ m/e 291.2032; measure m/e 291.2025. 5-*O*-(6-Deoxy-6-fluoro-b-D-glucopyranosyl)neamine (TC033). Please refer to the procedure for the final synthesis. 1 H NMR (270 MHz, D₂O) (chloride salt) δ 5.83 (d, J = 2.7 Hz, 1H), 5.08 (d, J = 8.1 Hz, 1H), 4.55 (d, J = 8.1 Hz, 1H), 4.0 - 3.8 (m, 8H), 3.6 - 3.3 (m, 8H), 2.4 (m, 2H); 13 C NMR (68 MHz, D₂O) (acetate salt) δ 178.2 (s), 102.6 (s), 96.1 (s), 81.4 (d, $J_{CF} = 163$ Hz), 80.1 (s), 75.5 (s), 75.4 (s), 74.9 (d, $J_{CF} = 13.6$ Hz), 73.3 (s), 73.0 (s), 70.7 (s), 69.6 (s), 68.1 (s, 2 carbons), 53.4 (s), 49.8 (s), 48.6 (s), 40.0 (s), 28.2 (s), 21.4 (s). LRFAB m/e 487 [MH]⁺; HRFAB Calcd for C₁₈H₃₆O₁₀N₄F [MH]⁺ m/e 487.2415; measure m/e 487.2427. 5-*O*-(3-*O*-*n*-Propyl-6-deoxy-b-D-glucopyranosyl)neamine (TC040). Please refer to the procedure for the final synthesis. 1 H NMR (270 M Hz, 1 DO) (acetate salt) δ 5.81 (d, J = 3.6 Hz, 1H), 5.00 (d, J = 7.9 Hz, 1H), 3.8 - 4.0 (m, 5H), 3.70 (dd, J = 6.6 Hz, J = 6.9 Hz, 2H), 3.1 - 3.5 (m, 10H), 2.45 (m, 1H), 1.94 (s, 12H), 1.83 (m, 1H), 1.53 (m, 2H), 1.25 (d, J = 5.9 Hz, 3H), 0.82 (t, J = 7.5 Hz, 3H); 13 C NMR (68 MHz, 1 DO) (acetate salt) δ 178.7 (s), 102.7 (s), 96.3 (s), 83.7 (s), 80.7 (s), 76.0 (s), 75.1 (s), 74.5 (s), 73.3 (s), 73.1 (s), 72.9 (s), 70.8 (s), 69.6 (s), 68.2 (s), 53.5 (s), 49.8 (s), 48.8 (s), 40.1 (s), 28.2 (s), 22.8 (s), 21.7 (s), 16.6 (s), 9.8 (s); MALDI Calcd for $C_{21}H_{46}N_{4}O_{10}N_{8}$ [M+Na] $^{+}$ m/e 533.2793; measure m/e 533.2817. 5-*O*-(3-*O*-(3-Hydroxypropyl)-6-deoxy-b-D-glucopyranosyl)neamine (TC041). Please refer to the procedure for the final synthesis. 1 H NMR (270 M Hz, D₂O) (acetate salt) δ 5.80 (d, J = 3.6 Hz, 1H), 5.02 (d, J = 7.9 Hz, 1H), 3.8 - 4.0 (m, 7H), 3.64 (dd, J = 6.3 Hz, J = 6.3 Hz, 2H), 3.2 - 3.5 (m, 10H), 2.45 (m, 1H), 1.92 (s, 12H), 1.7 - 2.0 (m, 3H), 1.26 (d, J = 6.0 Hz, 3H); 13 C NMR (68 MHz, D₂O) (acetate salt) δ 178.2 (s), 102.6 (s), 96.4 (s), 84.1 (s), 80.7 (s), 76.1 (s), 74.4 (s), 73.2 (s), 73.1 (s), 72.9 (s), 70.6 (s), 70.3 (s), 69.6 (s), 68.3 (s), 59.0 (s), 53.4 (s), 49.7 (s), 48.7 (s), 40.0 (s), 31.9 (s), 28.2 (s), 21.4 (s), 16.6 (s); MALDI Calcd for C₂₁H₄₆N₄O₁₁Na [M+Na]⁺ m/e 549.2742; measure m/e 549.2738. δ 178.5 (s), 102.6 (s), 96.3 (s), 84.1 (s), 82.4 (d, $J_{CF} = 157.8$ Hz), 80.7 (s), 76.1 (s), 74.4 (s), 73.2 (s), 73.1 (s), 72.9 (s), 70.6 (s), 69.6 (s), 69.1 (d, $J_{CF} = 5.2$ Hz), 68.3 (s), 53.4 (s), 49.7 (s), 48.7 (s), 40.0 (s), 30.5 (d, $J_{CF} = 19.2$ Hz), 28.2 (s), 21.6 (s), 16.6 (s); MALDI Calcd for $C_{21}H_{45}FN_4O_{10}Na$ [M+Na]⁺ m/e 551.2699; measure m/e 551.2719. ## 5-O-(3-O-(2-aminoethyl)-6-deoxy-b-D-glucopyranosyl)-n-propyl)-6-deoxy-b-D-gluco- **pyranosyl)neamine** (**TC045**). Please refer to the procedure for the final synthesis. 1 H NMR (270 MHz, D_{2} O) (acetate salt) δ 5.78 (d, J = 3.6 Hz, 1H), 4.99 (d, J = 7.9 Hz, 1H), 4.35 (m, 1H), 3.6 - 4.0 (m, 10H), 3.1 - 3.5 (m, 17H), 2.43 (m, 1H), 1.94 (s, 15H), 1.8 - 2.0 (m, 3H), 1.24 (d, J = 5.9 Hz, 3H), 1.20 (d, J = 5.9Hz, 3H); 13 C NMR (68 MHz, D_{2} O) (acetate salt) δ 178.2 (s), 102.6 (s), 102.1 (s), 96.4 (s), 84.2 (s), 84.1 (s), 80.8 (s), 76.1 (s), 74.6 (s), 74.4 (s), 73.3 (s), 73.1 (s, 2 carbons), 72.9 (s), 71.9 (s), 70.6 (s), 70.0 (s), 69.6 (s), 68.3 (s), 68.2 (s), 67.5 (s), 53.4 (s), 49.7 (s), 48.7 (s), 40.0 (s), 39.7 (s), 29.7 (s), 28.2 (s), 21.4 (s), 16.7 (s), 16.6 (s); MALDI Calcd for $C_{29}H_{57}N_{5}O_{15}Na$ [M+Na]⁺ m/e 738.3743; measure m/e 738.3786.