Fine-tuning Monophosphine Ligands for Enhanced Enantioselectivity. Influence of Chiral Hemilabile Pendant Groups

Aibin Zhang and T. V. RajanBabu

Department of Chemistry, 100 W. 18th Avenue, The Ohio State University, Columbus, OH 43210

Supporting Information

General methods. Reactions requiring air-sensitive manipulations were conducted under an inert atmosphere of nitrogen by using Schlenk techniques or a Vacuum Atmospheres drybox. Methylene chloride and DMSO were distilled from calcium hydride under nitrogen and stored over molecular sieves. Tetrahydrofuran, hexane and benzene were distilled under nitrogen from sodium/benzophenone ketyl. 2-Bromobenzaldehyde, (2R, 3R)-butanediol, (2S, 3S)-butanediol, (2R, 5R)-hexanediol, (2S, 5S)-hexanediol, (2S, 4S)-pentanediol, N,N-diisopropylethylamine, 4methylstyrene, 4-bromostyrene, 4-methoxystyrene and 2-methyl-2-butene were purchased from Acros. LiAlH₄ (1M in diethyl ether), diethyl phosphite, styrene and 2-vinylnaphthalene were purchased from Aldrich. Allylic nickel bromide¹, $Na^+[[3,5-(CF_3)_2C_6H_3]_4B]^-(Na^+-BARF)^2$, 4isobutylstyrene³, 6-methoxy-2-vinylnaphthalene³ were prepared according to the literature. Ethylene (99.5%) was purchased from Matheson Inc., and passed through Drierite before use. For ozonolysis, ozone gas was delivered using a Welsbach ozone generator. Analytical TLC was performed on E. Merck precoated (0.25 mm) silica gel 60 F₂₅₄ plates. Flash column chromatography was carried out on silica gel 40 (Scientific Adsorbents Incorporated, Microns Flash). Gas chromatographic analyses were performed on a Hewlett-Packard 5890 equipped with an HP-ultra-1 crosslinked methyl silicone capillary column (25 m length x 0.2 mm i.d.) and a FID detector connected to a HP 3396 integrator. Helium was used as the carrier gas. Chiral gas chromatographic separations were accomplished using Chirasil-L-Val on WCOT fused silica (25 m x 0.25 mm, 0.12 mm film thickness) capillary GC column purchased from Chrompack. Enatiomeric excesses of all compounds were determined by HPLC using a Daicel Chiralcel OJ column using hexane/isopropanol as solvents where base-line separation was obtained. Optical rotations were recorded in solution on a Perkin-Elmer Model 241 polarimeter at the sodium

D line in chloroform. The optical rotations of ligands were not measured because of their air-sensitivity.

Preparation of Ligands

Preparation of (2R,5R)-hexanediol cyclic sulfate⁴:

$$\begin{array}{c} OH \\ \hline \\ OH \\ OH \end{array} \xrightarrow{1. \text{ SOCl}_2} \\ 2. \text{ RuCl}_3/\text{NaIO}_4 \end{array} \xrightarrow{0.00} \\ O \xrightarrow{0} \\ O \xrightarrow$$

To a solution of (2R,5R)-hexanediol (1.18g, 10 mmol) in CCl₄ (7 mL) was added via syringe thionyl chloride (1.2 mL, 16.5 mmol). The resulting brown solution was then heated at reflux for 1.5 h. After the solution was cooled to r.t., the reaction mixture was concentrated on a rotary evaporator to afford a brown oil. The oil was then dissolved in a mixture of CCl₄ (7 mL), CH₃CN (7 mL) and H₂O (10 mL) and the mixture was cooled to 0° C. To the cold mixture was added RuCl₃'3H₂O (7.3 mg, 0.028 mmol), followed by NaIO₄ (4.43 g, 20.7 mmol). The reaction was allowed to stir at r.t. for 1 h. H₂O (40 mL) was added, the reaction mixture was extracted with diethyl ether (4x40 mL) and the combined extracts were washed with brine. After drying over MgSO₄ and the solution was filtered through a pad of silica gel, the colorless solution was concentrated to yield white solid (1.57 g, 87%) which was used without further purification. ¹H NMR (CDCl₃, 250 MHz) δ 4.95-4.75 (m, 2H), 2.10-1.80 (m, 4H), 1.46 (d, *J* = 6.35 Hz, 6H).

Preparation of (2S,5S)-hexanediol cyclic sulfate⁴:

The procedure is the same as the above. Starting from (2*S*,5*S*)-hexanediol (1.18 g, 10 mmol) to get 1.55g (86%) of (2*S*,5*S*)-hexanediol cyclic sulfate. ¹H NMR (CDCl₃, 250 MHz) δ 4.90-4.65 (m, 2H), 2.10-1.80 (m, 4H), 1.41 (d, *J* = 6.35 Hz, 6H).

Preparation of 2-(2-bromophenyl)-(4*R*,5*R*)-dimethyl-[1,3]dioxolane⁵:

To a solution of 2-bromobenzaldehyde (1.76 g, 9.5 mmol) and (2*R*,3*R*)-butanediol (0.94 g, 10.4 mmol) in benzene (5 mL) was added *p*-toluenesulfonic acid monohydrate (19 mg, 0.1 mmol). The resulting solution was heated under reflux with Dean-Stark trap for 5 h. The reaction mixture was poured into aqueous NaHCO₃ and extracted with diethyl ether. The organic layers were combined, dried and concentrated to afford the crude product which was purified by flash chromatography (eluent: hexane:ethyl acetate=40:1) to give 2.04 g (84%) of 2-(2-bromophenyl)-(4*R*,5*R*)-dimethyl-[1,3]dioxolane. ¹H NMR (CDCl₃, 250 MHz) δ 7.62 (dd, *J* = 7.75, 1.75 Hz, 1H), 7.53 (dd, *J* = 7.75, 1.03 Hz, 1H), 7.32 (td, *J* = 7.50, 0.83 Hz, 1H), 7.18 (td, *J* = 7.75, 1.78 Hz, 1H), 6.22 (s, 1H), 3.90-3.70 (m, 2H), 1.38 (t, *J* = 5.50 Hz, 3H), 1.32 (t, *J* = 5.50 Hz, 3H); ¹³C NMR (CDCl₃, 62.9 MHz) δ 16.75, 17.06, 78.66, 80.43, 101.47, 122.93, 127.43, 128.09, 130.46, 132.91, 137.31. **Preparation of [2-((4***R***,5***R***)-dimethyl-[1,3]dioxolan-2-yl)-phenyl]-phosphonic acid diethyl ester⁶:**

A mixture of 2-(2-bromophenyl)-(4R,5R)-dimethyl-[1,3]dioxolane (1.99 g, 7.74 mmol), diethylphosphite (2.3 mL, 17.8 mmol), Pd(OAc)₂ (87 mg, 0.39 mmol), dppb (165 mg, 0.39 mmol) and *N*,*N*-diisopropylethylamine (5.4 mL, 31 mmol) in DMSO (11 mL) was heated with stirring at 100°C under nitrogen atmosphere overnight. After the mixture was cooled to r.t., 10 mL of water was added slowly and the mixture was extracted with ethyl acetate. The extracts were combined, washed with water, dried over MgSO₄ and concentrated *in vacuo* to give a crude oil which was purified by column chromatography

(eluent: hexane:ethyl acetate = 4:1) to afford 1.28 g (53%) of [2-((4*R*,5*R*)-dimethyl-[1,3]dioxolan-2-yl)-phenyl]-phosphonic acid diethyl ester and 100 mg (5%) of 2-(2bromophenyl)-(4*R*,5*R*)-dimethyl-[1,3]dioxolane was recovered. ¹H NMR (CDCl₃, 250 MHz) δ 7.83 (dd, *J* = 14.0, 7.75 Hz, 1H), 7.70 (t, *J* = 5.50 Hz, 1H), 7.46 (t, *J* = 7.50 Hz, 1H), 7.40-7.25 (m, 1H), 6.43 (s, 1H), 4.15-3.85 (m, 4H), 3.80-3.60 (m, 2H), 1.40-1.05(m, 12H); ¹³C NMR (CDCl₃, 62.9 MHz) δ 15.90 (d, *J*_{P,C} = 6.60 Hz), 16.62, 17.06, 61.86 (d, *J*_{P,C} = 5.2 Hz), 78.62, 80.13, 98.96 (d, *J*_{P,C} = 3.8 Hz), 125.18, 127.30 (d, *J*_{P,C} = 13.5 Hz), 128.30 (t, *J*_{P,C} = 14.5 Hz), 132.42 (d, *J*_{P,C} = 2.8 Hz), 133.49 (d, *J*_{P,C} = 9.1 Hz), 141.65 (d, *J*_{P,C} = 10.1 Hz); ³¹P NMR (C₆D₆, 101.3 MHz) δ 18.94.

Preparation of 2-[(4*R*,5*R*)-dimethyl-[1,3]dioxolan-2-yl]-phenyl-phosphane⁷:

To a solution of [2-((4*R*,5*R*)-dimethyl-[1,3]dioxolan-2-yl)-phenyl]-phosphonic acid diethyl ester (314 mg, 1mmol) in THF (10 mL) was added a solution of LiAlH₄ (2.5 mL, 1 M in ether, 2.5 mmol) slowly at r.t. in drybox. After the addition, the reaction mixture was stirred for additional 30 min at r.t. The reaction was quenched with minimum amount of saturated aqueous NH₄Cl and the solvent was removed under reduced pressure. Dry benzene (2x5 mL) was added to remove water azetropically from the solid residue. The solid was extracted with hexane three times and the extracts were combined and concentrated to afford a crude oil which was purified by flash column chromatography (eluent: hexane:ether = 40:1) to get 52 mg (25%) of 2-[(4*R*,5*R*)-dimethyl-[1,3]dioxolan-2-yl]-phenyl-phosphane. ¹H NMR (CDCl₃, 250 MHz) δ 7.55-7.35 (m, 2H), 7.25-7.05(m, 2H), 6.03 (d, *J*_{P,H} = 2.0 Hz, 1H), 3.90 (d, *J*_{P,H} = 206 Hz, 2H), 3.85-3.65 (m, 2H), 1.29 (d, *J* = 4.50 Hz, 3H), 1.23 (d, *J* = 4.50 Hz, 3H); ¹³C NMR (CDCl₃, 62.9 MHz) δ 16.79, 17.35, 78.60, 80.62, 101.80 (d, *J*_{P,C} = 9.0 Hz), 127.00 (d, *J*_{P,C} = 3.4 Hz), 128.28, 128.73 (d, *J*_{P,C} = 3.2 Hz), 128.92, 136.93 (d, *J*_{P,C} = 6.4 Hz), 140.92 (d, *J*_{P,C} = 10.9 Hz); ³¹P NMR (C₆D₆, 101.3 MHz) δ -126.08.

Preparation of 2-[2-((2S,5S)-dimethyl-phospholan-1-yl)-phenyl]-(4R,5R)-dimethyl-[1,3]dioxolane (1a)⁸:

To a solution of 2-[(4R,5R)-dimethyl-[1,3]dioxolan-2-yl]-phenyl-phosphane (52 mg, 0.25)mmol) in THF (10 mL) was added KH (10.3 mg, 0.26 mmol in 0.5 mL of THF) at -30°C in drybox. The mixture was allowed to warm to r.t. and stirred for 1.5h. To the resulting solution was added slowly a solution of (2R,5R)-hexanediol cyclic sulfate (45 mg, 0.25mmol) in THF (1mL) and the mixture was stirred for 2h at r.t. Finally KH (10.3 mg, 0.26 mmol in 0.5 mL of THF) was added at r.t. and stirred for additional 2 h. The reaction was quenched with a few drops of methanol and the solvents were removed under vacuum to get a crude oil. Purification by column chromatography (eluent:hexane:ether = 40:1) afforded 31 mg (42%) of 2-[2-((2S,5S)-dimethylphospholan-1-yl)-phenyl]-(4R,5R)-dimethyl-[1,3]dioxolane. ¹H NMR (C₆D₆, 250 MHz) δ 7.98 (ddd, J = 7.75, 3.25, 1.48 Hz, 1H), 7.35 (dt, J = 7.50, 1.65 Hz, 1H), 7.24 (td, J =7.50, 1.30 Hz, 1H), 7.18-7.08 (m, 2H), 3.85-3.50 (m, 2H), 2.60-2.42 (m, 1H), 2.40-2.18 (m, 1H), 2.14-1.92 (m,1 H), 1.92-1.73 (m, 1H), 1.55-1.35 (m,1 H), 1.30-1.10 (m, 4H), 1.08 (d, J = 5.80 Hz, 3H), 1.04 (d, J = 6.0 Hz, 3H), 0.91 (dd, J = 9.75, 7.0 Hz, 3H); ¹³C NMR (C₆D₆, 62.9 MHz) δ 16.53 (d, $J_{P,C}$ = 1.3 Hz), 16.94, 17.52, 21.03 (d, J = 36.5 Hz), 35.17 (d, $J_{P,C} = 7.6$ Hz), 35.36 (d, $J_{P,C} = 5.0$ Hz), 36.70 (d, $J_{P,C} = 2.1$ Hz), 37.17 (d, J_{P,C} = 2.1 Hz), 37.17 (d, $J_{P,C} = 2.1$ Hz), 37.17 (d, J_{P,C} = 2.1 Hz), 37.17 (d, $J_{P,C} = 2.1$ Hz), 37.17 (d, J_{P,C} = 2.1 Hz), 3 2.6 Hz), 79.10, 80.52, 100.66 (d, $J_{P,C} = 31.5$ Hz), 127.06 (d, $J_{P,C} = 5.5$ Hz), 128.19, 128.72, 132.74 (d, $J_{P,C} = 3.7$ Hz), 136.75 (d, $J_{P,C} = 36.2$ Hz), 145.22 (d, $J_{P,C} = 20.7$ Hz); ³¹P NMR (C₆D₆, 101.3 MHz) δ -5.35; HRMS (ESI) m/z 293.1649 ([M+H]⁺, exact mass calcd for C₁₇H₂₆O₂P 293.1665).

Preparation of 2-[2-((2S,5S)-diethyl-phospholan-1-yl)-phenyl]-(4R,5R)-dimethyl-[1,3]dioxolane (1b)⁸:

The procedure is the same as the above. Starting from 2-[(4*R*,5*R*)-dimethyl-[1,3]dioxolan-2-yl]-phenyl-phosphane (58 mg, 0.28 mmol) and (3*R*,6*R*)-octanediol cyclic sulfate (57.4 mg, 0.28 mmol) to get 40 mg (45%) of 2-[2-((2*S*,5*S*)-diethyl-phospholan-1yl)-phenyl]-(4*R*,5*R*)-dimethyl-[1,3]dioxolane. ¹H NMR (C₆D₆, 250 MHz) δ 8.0-7.9 (m, 1H), 7.39 (dt, *J* = 6.0, 1.5 Hz, 1H), 7.30-7.05 (m, 3H), 3.75-3.45 (m, 2H), 2.40-2.25 (m, 1H), 2.15-1.80 (m, 3H), 1.75-1.35 (m, ca.5H), 1.25-1.10 (m, ca.1H), 1.07 (d, *J* = 6.0 Hz, 3H), 1.03 (d, *J* = 6.0 Hz, 3H), 0.91 (t, *J* = 7.25 Hz, 3H), 0.80 (t, *J* = 7.13 Hz, 3H); ¹³C NMR (C₆D₆, 62.9 MHz) δ 14.35 (d, *J*_{P,C} = 1.7 Hz), 14.50 (d, *J*_{P,C} = 5.4 Hz), 16.93, 17.51, 24.50, 29.33 (d, *J*_{P,C} = 33.1 Hz), 34.35 (d, *J*_{P,C} = 1.5 Hz), 34.52 (d, *J*_{P,C} = 3.2 Hz), 43.06 (d, *J*_{P,C} = 12.6 Hz), 45.25 (d, *J*_{P,C} = 11.3 Hz), 79.06, 80.52, 100.65 (d, *J*_{P,C} = 33.5 Hz), 127.19 (d, *J*_{P,C} = 5.8 Hz), 128.10, 128.84, 133.86 (d, *J*_{P,C} = 3.9 Hz), 137.49 (d, *J*_{P,C} = 35.4 Hz), 145.45 (d, *J*_{P,C} = 21.4 Hz); ³¹P NMR (C₆D₆, 101.3 MHz) δ -14.81; HRMS (ESI) m/z 359.1736 ([M+O+Na]⁺, exact mass calcd for C₁₉H₂₉O₃PNa 359.1747).

Preparation of 2-(2-bromophenyl)-(4S,5S)-dimethyl-[1,3]dioxolane⁵:

The procedure is the same as the above. Starting from 2-bromobenzaldehyde (0.59 mL, 5 mmol) and (2*S*,3*S*)-butanediol (0.5 g, 5.58 mmol) to get 1.11 g (85%) of 2-(2-bromophenyl)-(4*S*,5*S*)-dimethyl-[1,3]dioxolane. ¹H NMR (CDCl₃, 400 MHz) δ 7.63 (dd, J = 7.72, 1.74 Hz, 1H), 7.54 (dd J = 7.96, 1.12 Hz, 1H), 7.34 (td, J = 7.60, 0.96 Hz, 1H), 7.20 (td, J = 7.84, 1.72 Hz, 1H), 6.24 (s, 1H), 3.95-3.75 (m, 2H), 1.39 (d, J = 5.80 Hz,

3H), 1.34 (d, J = 5.80 Hz, 3H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 17.19, 17.51, 79.07, 80.84, 101.89, 123.35, 127.87, 128.55, 130.90, 133.32, 137.76.

Preparation of [2-((4*S*,5*S*)-dimethyl-[1,3]dioxolan-2-yl)-phenyl]-phosphonic acid diethyl ester⁶:

The procedure is the same as the above. Starting from 2-(2-bromophenyl)-(4*S*,5*S*)-dimethyl-[1,3]dioxolane (1.765 g, 6.87 mmol), diethylphosphite (2.0 mL, 15.8 mmol), Pd(OAc)₂ (76 mg, 0.34 mmol), dppb (145 mg, 0.34 mmol) and *N*,*N*-diisopropylethylamine (4.8 mL, 28 mmol) to get 1.2 g (58%) of [2-((4*S*,5*S*)-dimethyl-[1,3]dioxolan-2-yl)-phenyl]-phosphonic acid diethyl ester and 500 mg (28%) of 2-(2-bromophenyl)-(4*S*,5*S*)-dimethyl-[1,3]dioxolane was recovered. ¹H NMR (CDCl₃, 400 MHz) δ 7.90 (ddd, *J* = 14.0, 6.50, 1.20 Hz, 1H), 7.76 (td, *J* = 5.50, 1.20 Hz, 1H), 7.54 (t, *J* = 7.50 Hz, 1H), 7.45-7.30 (m, 1H), 6.50 (s, 1H), 4.20-3.90 (m, 4H), 3.85-3.70 (m, 2H), 1.40-1.15 (m,12H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 16.47, 17.14, 17.58, 62.36, 79.11, 80.63, 99.48, 126.25, 127.90 (t, *J*_{P,C} = 14.1 Hz), 128.92 (d, *J*_{P,C} = 14.1 Hz), 132.93, 133.93 (d, *J*_{P,C} = 8.1 Hz), 142.22 (d, *J*_{P,C} = 10.1 Hz); ³¹P NMR (CDCl₃, 101.3 MHz) δ 19.02; HRMS (ESI) m/z 337.1188 ([M+Na]⁺, exact mass calcd for C₁₅H₂₃O₅PNa 337.1175).

Preparation of 2-[(4S,5S)-dimethyl-[1,3]dioxolan-2-yl]-phenyl-phosphane⁷:

The procedure is the same as the above. Starting from [2-((4*S*,5*S*)-dimethyl-[1,3]dioxolan-2-yl)-phenyl]-phosphonic acid diethyl ester (315 mg, 1mmol) to get 53 mg (25%) of 2-[(4*S*,5*S*)-dimethyl-[1,3]dioxolan-2-yl]-phenyl-phosphane. ¹H NMR (CDCl₃, 250 MHz) δ 7.65-7.45 (m, 2H), 7.40-7.10 (m, 2H), 6.09 (d, *J*_{P,H} = 2.0 Hz, 1H), 3.96 (d, *J*_{P,H} = 205 Hz, 2H), 3.90-3.70 (m, 2H), 1.35 (d, *J* = 5.80 Hz, 3H), 1.27 (d, *J* = 5.80 Hz, 3H); ¹³C NMR (CDCl₃, 62.9 MHz) δ 17.22, 17.78, 79.02, 81.04, 102.23, 127.44 (d, *J*_{P,C} = 3.4 Hz), 128.70, 129.16 (d, *J*_{P,C} = 3.2 Hz), 129.35, 136.82 (d, *J*_{P,C} = 6.3 Hz), 141.34 (d, *J*_{P,C} = 10.7 Hz); ³¹P NMR (CDCl₃, 101.3 MHz) δ -126.05; HRMS (ESI) m/z 249.0645 ([M+O+Na]⁺, exact mass calcd for C₁₁H₁₅O₃PNa 249.0651).

Preparation of 2-[2-((2*S*,5*S*)-dimethyl-phospholan-1-yl)-phenyl]-(4*S*,5*S*)-dimethyl-[1,3]dioxolane (2)⁸:

The procedure is the same as the above. Starting from 2-[(4*S*,5*S*)-dimethyl-[1,3]dioxolan-2-yl]-phenyl-phosphane (52 mg, 0.25 mmol) and (2*R*,5*R*)-hexanediol cyclic sulfate (45 mg, 0.25 mmol) to get 34 mg (47%) of 2-[2-((2*S*,5*S*)-dimethyl-phospholan-1-yl)-phenyl]-(4*S*,5*S*)-dimethyl-[1,3]dioxolane. ¹H NMR (C₆D₆, 250 MHz) δ 7.97 (ddd, *J* = 7.75, 3.25, 1.50 Hz, 1H), 7.33 (dt, *J* = 7.50, 1.50 Hz, 1H), 7.22 (td, *J* = 7.50, 1.25 Hz, 1H), 7.15-7.05 (m, 2H), 3.70-3.45 (m, 2H), 2.60-2.40 (m, 1H), 2.40-2.15 (m, 1H), 2.10-1.92 (m, 1H), 1.90-1.72 (m, 1H), 1.53-1.30 (m, 1H), 1.30-1.12 (m, 4H), 1.09 (d, *J* = 5.75 Hz, 3H), 1.05 (d, *J* = 6.75 Hz, 3H), 0.89 (dd, *J* = 9.75, 7.0 Hz, 3H); ¹³C NMR (C₆D₆, 62.9 MHz) δ 16.94 (d, *J*_{P,C} = 5.25 Hz), 17.42, 17.89, 21.45(d, *J*_{P,C} = 36.5 Hz), 35.52 (d, *J*_{P,C} = 16.25 Hz), 35.71 (d, *J*_{P,C} = 31.1 Hz), 127.66 (d, *J*_{P,C} = 5.7 Hz), 128.61, 129.04, 133.14 (d, *J*_{P,C} = 3.6 Hz), 137.15 (d, *J*_{P,C} = 28.9 Hz), 145.60 (d, *J*_{P,C} = 20.4 Hz); ³¹P NMR (C₆D₆, 101.3 MHz) δ -5.03; HRMS (ESI) m/z 293.1681 ([M+H]⁺, exact mass calcd for C₁₇H₂₆O₂P 293.1665).

Preparation of 2-(2-bromophenyl)-[1,3]dioxolane⁵:

The procedure is the same as the above. Starting from 2-bromobenzaldehyde (3.7g, 20 mmol) and ethylene glycol (1.36g, 22 mmol) to get 4.2 g (92%) of 2-(2-bromophenyl)-[1,3]dioxolane. ¹H NMR (CDCl₃, 250 MHz) δ 7.47 (td, J = 7.75, 1.75 Hz, 2H), 7.22 (t, J = 7.5 Hz, 1H), 7.12 (td, J = 5.25, 1.55 Hz, 1H), 5.99 (s, 1H), 4.15-3.90 (m, 4H); ¹³C NMR (CDCl₃, 62.9 MHz) δ 65.68, 103.52, 127.23, 128.66, 129.23, 136.83, 140.66. **Preparation of (2 -[1,3]dioxolan-2-yl-phenyl)-phosphonic acid diethyl ester**⁶:

The procedure is the same as the above. Starting from 2-(2-bromophenyl)-[1,3]dioxolane (4.04 g, 17.6 mmol), diethylphosphite (5.2 mL, 40.5 mmol), Pd(OAc)₂ (198 mg, 0.88 mmol), dppb (375 mg, 0.88 mmol) and *N*,*N*-diisopropylethylamine (12.3 mL, 70.4 mmol) in DMSO (20 mL) to get 2.82 g (56%) of (2 -[1,3]dioxolan-2-yl-phenyl)-phosphonic acid diethyl ester and 1.45 g (36 %) of 2-(2-bromophenyl)-[1,3]dioxolane was recovered. ¹H NMR (CDCl₃, 250 MHz) δ 7.94 (dd, *J* = 14.0, 7.75 Hz, 1H), 7.76 (t, *J* = 6.50 Hz, 1H), 7.56 (t, *J* = 7.50 Hz, 1H), 7.50-7.35 (m, 1H), 6.40 (s, 1H), 4.30-3.95 (m, 8H), 1.30 (t, *J* = 7.0 Hz, 6H); ³¹P NMR (CDCl₃, 101.3 MHz) δ 18.94.

Preparation of 2 - [1,3] dioxolan-2-yl-phenyl-phosphane⁷:

The procedure is the same as the above. Starting from (2 -[1,3]dioxolan-2-yl-phenyl)phosphonic acid diethyl ester (572 mg, 2 mmol) to get 56 mg (15.4%) of 2 -[1,3]dioxolan-2-yl-phenyl-phosphane. ¹H NMR (CDCl₃, 250 MHz) δ 7.55-7.35 (m, 2H), 7.30-7.05 (m, 2H), 5.90 (s, 1H), 3.89 (d, $J_{P,H}$ = 205 Hz, 2H), 4.20-3.90 (m, 4H); ³¹P NMR (CDCl₃, 101.3 MHz) δ -126.04.

Preparation of 2-[2-((2S,5S)-dimethyl-phospholan-1-yl)-phenyl]-[1,3]dioxolane (3)⁸:

The procedure is the same as the above. Starting from 2 -[1,3]dioxolan-2-yl-phenyl-phosphane (56 mg, 0.31 mmol) and (2*R*,5*R*)-hexanediol cyclic sulfate (55.4 mg, 0.31mmol) to get 37 mg (45%) of 2-[2-((2S,5S)-dimethyl-phospholan-1-yl)-phenyl]-[1,3]dioxolane. ¹H NMR (CDCl₃, 250 MHz) δ 7.75-7.60 (m, 1H), 7.50-7.40 (m, 1H), 7.40-7.28 (m, 2H), 6.60 (d, *J*_{P,H} = 6.7 Hz, 1H), 4.25-4.00 (m, 4H), 2.80-2.60 (m, 1H), 2.50-2.20 (m, 2H), 2.15-1.95 (m, 1H), 1.70-1.45 (m, 1H), 1.45-1.25 (m, 4H), 0.76 (dd, J = 10.1, 7.25 Hz, 3H); ¹³C NMR (CDCl₃, 62.9 MHz) δ 15.99 (d, *J*_{P,C} = 1.3 Hz), 20.84 (d, *J*_{P,C} = 35.2 Hz), 34.80 (d, *J*_{P,C} = 7.6 Hz), 34.96 (d, *J*_{P,C} = 5.4 Hz), 36.39 (d, *J*_{P,C} = 2.3 Hz), 36.83 (d, *J*_{P,C} = 2.7 Hz), 65.42 (d, *J*_{P,C} = 5.7 Hz), 101.31 (d, *J*_{P,C} = 30.2 Hz), 126.10 (d, *J*_{P,C} = 5.7 Hz), 128.29, 128.68, 132.50 (d, *J*_{P,C} = 3.5 Hz), 136.06 (d, *J*_{P,C} = 33.9 Hz), 143.08 (d, *J*_{P,C} = 20.1 Hz); ³¹P NMR (CDCl₃, 101.3 MHz) δ -4.64; HRMS (ESI) m/z 303.1126 ([M+O+Na]⁺, exact mass calcd for C₁₅H₂₁O₃PNa 303.1121).

Preparation of 2-(2-bromophenyl)-(4S,6S)-dimethyl-[1,3]-dioxane⁵:

The procedure is the same as the above. Starting from 2-bromobenzaldehyde (0.80 g, 4.36 mmol mmol) and (2*S*,4*S*)-pentanediol (0.5 g, 4.8 mmol) to get 1.05 g (90%) of 2-(2-bromophenyl)-(4*S*,6*S*)-dimethyl-[1,3]-dioxane. ¹H NMR (CDCl₃, 400 MHz) δ 7.73 (dd, *J* = 7.96, 1.68 Hz, 1H), 7.51 (dd, *J* = 7.96, 0.99 Hz, 1H), 7.32 (td, *J* = 7.96, 0.99 Hz, 1H), 7.16 (td, *J* = 7.96, 1.68 Hz, 1H), 6.11 (s, 1H), 4.53-4.40 (m, 1H), 4.28-4.15 (m, 1H), 2.05-1.90 (m, 1H), 1.52 (d, *J* = 7.0 Hz, 3H), 1.42 (d, *J* = 13.6 Hz, 1H), 1.28 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 16.94, 21.83, 36.66, 68.33, 69.04, 93.26, 122.38, 127.48, 128.20, 130.05, 132.47, 137.76.

Preparation of [2-((4*S*,6*S*)-dimethyl-[1,3]dioxan-2-yl)phenyl]-phosphonic acid diethyl ester⁶:

The procedure is the same as the above. Starting from 2-(2-bromophenyl)-(4*S*,6*S*)-dimethyl-[1,3]-dioxane (0.79 g, 2.9 mmol), diethylphosphite (0.86 mL, 6.7 mmol), Pd(OAc)₂ (33 mg, 0.15 mmol), dppb (62 mg, 0.15 mmol) and *N*,*N*-diisopropylethylamine (2.0 mL, 11.6 mmol) in DMSO (6 mL) to get 0.69 g (73%) of [2 -((4*S*,6*S*)-dimethyl-[1,3]dioxan-2-yl)phenyl]-phosphonic acid diethyl ester. ¹H NMR (CDCl₃, 250 MHz) δ 8.00-7.85 (m, 2H), 7.57 (t, *J* = 7.50 Hz, 1H), 7.45-7.30 (m, 1H), 6.54 (s, 1H), 4.55-4.40 (m, 1H), 4.30-3.90 (m, 5H), 2.10-1.90 (m, 1H), 1.50 (d, *J* = 7.0 Hz, 3H), 1.42 (t, *J* = 13.5 Hz, 1H), 1.35-1.20 (m, 9H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 16.65 (t, *J*_{P,C} = 6.5 Hz), 17.63, 22.33, 37.34, 62.46 (t, *J*_{P,C} = 5.2 Hz), 68.73, 69.50, 91.91 (d, *J*_{P,C} = 3.9 Hz), 125.80 (d, *J*_{P,C} = 181 Hz), 128.13 (d, *J*_{P,C} = 13.6 Hz), 128.75 (d, *J*_{P,C} = 14.1 Hz), 133.34 (d, *J*_{P,C} =

2.5 Hz), 133.95 (d, $J_{P,C} = 9.1$ Hz), 142.78 (d, $J_{P,C} = 10.1$ Hz); ³¹P NMR (CDCl₃, 101.3 MHz) δ 19.47.

Preparation of [2-((4S,6S)-dimethyl-[1,3]dioxan-2-yl)phenyl]-phosphane⁷:

The procedure is the same as the above. Starting from [2 -((4*S*,6*S*)-dimethyl-[1,3]dioxan-2-yl)phenyl]-phosphonic acid diethyl ester (328 mg, 1 mmol) to get 73 mg (32.6%) of [2 -((4*S*,6*S*)-dimethyl-[1,3]dioxan-2-yl)phenyl]-phosphane. ¹H NMR (C₆D₆, 400 MHz) δ 8.00-7.85 (m, 1H), 7.30 (t, J = 6.60 Hz, 1H), 7.10 (t, J = 7.40 Hz, 1H), 6.93 (t, J = 7.40 Hz, 1H), 6.01 (s, 1H), 4.35-4.15 (m, 2H), 3.90-3.75 (m, 1H), 3.74 (s, 1H), 1.80-1.65 (m, 1H), 1.18 (d, J = 6.96 Hz, 3H), 1.09 (d, J = 6.2 Hz, 3H), 0.86 (d, J = 13.2 Hz, 3H); ¹³C NMR (C₆D₆, 62.9 MHz) δ 16.95, 21.94, 36.76, 67.87, 68.76, 93.26 (d, J_{P,C} = 9.7 Hz), 126.81 (d, J_{P,C} = 3.4 Hz), 128.22 (d, J_{P,C} = 2.0 Hz), 128.28, 128.83, 136.21 (d, J_{P,C} = 4.7 Hz), 143.01 (d, J_{P,C} = 12.3 Hz); ³¹P NMR (C₆D₆, 101.3 MHz) δ -112.92.

Preparation of 2-[2-((2*S*,5*S*)-dimethyl-phospholan-1-yl)-phenyl]-(4*S*,6*S*)-dimethyl-[1,3]dioxane (4)⁸:

The procedure is the same as the above. Starting from [2 -((4S,6S)-dimethyl-[1,3]dioxan-2-yl]phenyl]-phosphane (39 mg, 0.17 mmol) and (2R,5R)-hexanediol cyclic sulfate (31.3 mg, 0.17mmol) to get 20 mg (38%) of 2-[2-((2S,5S)-dimethyl-phospholan-1-yl)-phenyl]-

(4*S*,6*S*)-dimethyl-[1,3]dioxane. ¹H NMR (C₆D₆, 400 MHz) δ 8.18 (ddd, J = 7.8, 3.3, 1.4 Hz, 1H), 7.32 (dt, J =7.5, 1.6 Hz, 1H), 7.22 (td, J = 7.5, 1.4 Hz, 1H), 7.11 (td, J = 7.5, 1.6 Hz, 1H), 6.96 (d, $J_{P,H}$ = 7.4 Hz, 1H), 4.30-4.20 (m, 1H), 4.00-3.90 (m, 1H), 2.60-2.45 (m, 1H), 2.40-2.25 (m, 1H), 2.10-1.95 (m, 1H), 1.90-1.70 (m, 2H), 1.53-1.40 (m, 1H), 1.39 (d, J = 7.0 Hz, 3H), 1.30-1.15 (m, 4H), 1.12 (d, J = 6.1 Hz, 3H), 0.95-0.85 (m, 4H); ¹³C NMR (C₆D₆, 100.6 MHz) δ 16.70, 17.57 (d, $J_{P,C}$ = 2.0 Hz), 20.98 (d, $J_{P,C}$ = 36.2 Hz), 22.18, 35.02 (d, $J_{P,C}$ = 12.6 Hz), 35.16 (d, $J_{P,C}$ = 10.1 Hz), 36.66 (d, $J_{P,C}$ = 2.8 Hz), 37.02, 37.13 (d, $J_{P,C}$ = 2.5 Hz), 67.98, 69.14, 92.36 (d, $J_{P,C}$ = 31.2 Hz), 127.46 (d, $J_{P,C}$ = 5.4 Hz), 127.85, 128.74, 132.36 (d, $J_{P,C}$ = 3.7 Hz), 135.10 (d, $J_{P,C}$ = 33.2 Hz), 146.02 (d, $J_{P,C}$ = 21.1 Hz); ³¹P NMR (C₆D₆, 101.3 MHz) δ 8.28; HRMS (ESI) m/z 345.1588 ([M+O+Na]⁺, exact mass calcd for C₁₈H₂₇O₃PNa 345.1590).

Preparation of 2-[2-((2*R*,5*R*)-dimethyl-phospholan-1-yl)-phenyl]-(4*S*,6*S*)-dimethyl-[1,3]dioxane (5)⁸:

The procedure is the same as the above. Starting from [2 -((4*S*,6*S*)-dimethyl-[1,3]dioxan-2-yl)phenyl]-phosphane (53 mg, 0.24 mmol) and (2S,5S)-hexanediol cyclic sulfate (43.2 mg, 0.24mmol) to get 27 mg (36%) of 2-[2-((2*R*,5*R*)-dimethyl-phospholan-1-yl)-phenyl]-(4S,6S)-dimethyl-[1,3]dioxane. ¹H NMR (C₆D₆, 400 MHz) δ 8.18 (ddd, *J* = 7.8, 3.3, 1.4 Hz, 1H), 7.34 (dt, *J* = 7.5, 1.6 Hz, 1H), 7.22 (td, *J* = 7.5, 1.4 Hz, 1H), 7.11 (td, *J* = 7.5, 1.6 Hz, 1H), 6.85 (d, *J*_{P,H} = 7.2 Hz, 1H), 4.35-4.25 (m, 1H), 4.20-4.05 (m, 1H), 2.60-2.45 (m, 1H), 2.45-2.30 (m, 1H), 2.10-1.95 (m, 1H), 1.95-1.80 (m, 1H), 1.80-1.70 (m, 1H), 1.55-1.40 (m, 1H), 1.35-1.15 (m, 7H), 1.11 (d, *J* = 6.2 Hz, 3H), 0.98-0.85 (m, 4H); ¹³C NMR (C₆D₆, 100.6 MHz) δ 16.86 (d, *J*_{P,C} = 2.0 Hz), 17.14, 20.93 (d, *J*_{P,C} = 36.2 Hz), 22.13, 35.01 (d, *J*_{P,C} = 10.4 Hz), 35.12 (d, *J*_{P,C} = 7.3 Hz), 36.54 (d, *J*_{P,C} = 2.9 Hz), 36.99, 37.14 (d, *J*_{P,C} = 2.4 Hz), 67.74, 68.77, 92.26 (d, *J*_{P,C} = 29.9 Hz), 126.99 (d, *J*_{P,C} = 5.5 Hz), 128.63, 132.49 (d, $J_{P,C} = 3.6 \text{ Hz}$), 135.58 (d, $J_{P,C} = 33.6 \text{ Hz}$), 145.88 (d, $J_{P,C} = 21.1 \text{ Hz}$); ³¹P NMR (C₆D₆, 101.3 MHz) δ 9.42; HRMS (ESI) m/z 345.1582 ([M+O+Na]⁺, exact mass calcd for C₁₈H₂₇O₃PNa 345.1590).

Asymmetric Hydrovinylation Reactions of Vinylarene Compounds

General procedure for asymmetric hydrovinylation reaction of Vinylarene compounds using [(allyl)NiBr]₂ and ligands in the presence of NaBARF in CH₂Cl₂:

To a solution of $[(allyl)NiBr]_2$ in CH₂Cl₂ (1.5 mL) at room temperature was added a solution of ligand in CH₂Cl₂ (1.5 mL) in drybox. The resulting solution was added to a suspension of NaBARF in CH₂Cl₂ (1 mL). After stirring at room temperature for 1.5 h, the mixture was filtered through a small plug of celite and the precipitate was rinsed with CH₂Cl₂ (1 mL). The filtrate was collected in a Schlenk flask and was taken out of drybox. The catalyst solution was cooled to the desigated temperature in the table. Under one atmosphere of ethylene, the solution of vinylarene compounds in CH₂Cl₂ (3 mL) was added dropwise to the catalyst solution. After stirring for 2h at this temperature, the mixture was quenched with half-saturated aqueous NH₄Cl solution and extracted three times with 10 mL portions of CH₂Cl₂. The combined organic layers were dried over anhydrous MgSO₄ and passed through a small plug of silica gel. The filtrate was concentrated to afford the crude products which were analyzed by GC. The enantiomeric excess of the alkene products were determined by HPLC on Chiracel OJ column (hexane/isopropanol system).

Asymmetric hydrovinylation reaction of 4-isobutylstyrene using [(allyl)NiBr]₂, ligand in the presence of NaBARF in CH₂Cl₂:

1-Isobutyl-4-[(*R***)-1-methylallyl]benzene**: catalyst amount: 0.35 mol%; $[\alpha]_D = -7.63$ (91%ee) (c 2.19 CHCl₃) [lit.: $[\alpha]_D = -5.84$ (83%ee, neat),⁹-6.80 (c 2.09 CHCl₃, 74%ee)¹⁰]; ¹H NMR (400 MHz, CDCl₃) δ 7.10 (d, J = 6.0 Hz, 2H), 7.05 (d, J = 6.0 Hz, 2H), 6.05-5.95 (m, 1H), 5.05-4.95 (m, 2H), 3.50-3.35 (m, 1H), 2.42 (d, J = 7.2 Hz, 2H), 1.90-1.75 (m, 1H), 1.33 (d, J = 7.0 Hz, 3H), 0.88 (d, J = 6.6 Hz, 6H); GC conditions: 1.0 mL helium/min, 10 min at 100°C, 4°C/min, 10 min at 200°C; HPLC conditions: 100% hexane, 0.25 mL/min, retention time (min): 21.57 (*R*), 24.08 (*S*).

Ligand	Temp. (°C)	Conv. (%)	Regioselectivity (%)	Ee (%)	Configuration
1a	-55	99.9	99.6	91	R
1a	-70	100	97.5	88	R
1a	-40	100	99	90	R
1b	-55	83.4	100	88	R
2	-55	99.2	89.8	71	R
3	-55	100	100	85	R
4	-55	100	100	85	R
5	-55	100	100	90	S

Asymmetric hydrovinylation reaction of 4-bromostyrene using [(allyl)NiBr]₂, ligand 1a in the presence of NaBARF in CH₂Cl₂:

1-Bromo-4-[(*R***)-1-methylallyl]benzene**: catalyst amount: 0.35 mol%; reaction temperature: -55°C, conversion:100%, regioselectivity:100%, 71% ee, configuration: *R*; $[\alpha]_D = -8.65$ (c 3.07 CHCl₃) (lit.¹⁰: $[\alpha]_D = +9.9$ (89%ee, c 7.02 CHCl₃)); ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 9.2 Hz, 2H), 7.07 (d, *J* = 9.2 Hz, 2H), 6.00-5.90 (m, 1H), 5.05-4.95 (m, 2H), 3.45-3.35 (m, 1H), 1.32 (d, *J* = 7.0 Hz, 3H); GC conditions: 1.0 mL helium/min, 10 min at 100°C, 4°C/min, 25 min at 200°C; HPLC conditions: 100% hexane, 0.30 mL/min, retention time (min): 21.57 (*S*), 27.70 (*R*).

Asymmetric hydrovinylation reaction of 4-methylstyrene using [(allyl)NiBr]₂, ligand 1a in the presence of NaBARF in CH₂Cl₂:

1-Methyl-4-[(*R***)-1-methylallyl]benzene**: catalyst amount: 0.35 mol%; reaction temperature: -55°C, conversion:100%, regioselectivity:100%, 87% ee, configuration: *R*; $[\alpha]_D = -9.11$ (c 2.13 CHCl₃) (lit⁹: $[\alpha]_D = +6.78$ (83%ee, neat)); ¹H NMR (250 MHz, CDCl₃) δ 7.10 (s, 4H), 6.10-5.90 (m, 1H), 5.10-4.95 (m, 2H), 3.50-3.35 (m, 1H), 2.31 (s, 3H), 1.32 (d, J = 7.0 Hz, 3H); GC conditions: 1.0 mL helium/min, 5 min at 80°C, 4°C/min, 15 min at 180°C; HPLC conditions: 100% hexane, 0.30 mL/min, retention time (min): 23.97 (*S*), 25.03 (*R*).

Asymmetric hydrovinylation reaction of styrene using [(allyl)NiBr]₂, ligand 1a in the presence of NaBARF in CH₂Cl₂:

[(*R*)-1-methylallyl]benzene: catalyst amount:0.35 mol%; reaction temperature: -55°C, conversion:100%, regioselectivity: 99.7%, 88% ee, configuration: *R*; [α]_D = -4.90 (c 2.06 CHCl₃) (lit.⁹,¹¹: [α]_D = -5.91 (neat)); ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.25 (m, 2H), 7.25-7.10 (m, 3H), 6.15-5.90 (m, 1H), 5.10-4.95 (m, 2H), 3.50-3.40 (m, 1H), 1.35 (d, J = 7.0 Hz, 3H); GC conditions: 1.0 mL helium/min, 5 min at 80°C, 4°C/min, 15 min at 180°C; HPLC conditions: 100% hexane, 0.30 mL/min, retention time (min): 19.84 (*R*), 22.62 (*S*).

Asymmetric hydrovinylation reaction of 4-methoxystyrene using [(allyl)NiBr]₂, ligand 1a in the presence of NaBARF in CH₂Cl₂:

1-Methoxy-4-[(*R*)-1-methylallyl]benzene: catalyst amount:0.35 mol%; reaction temperature: -55°C, conversion:80.2%, regioselectivity: 100%, 73% ee, configuration: *R*; GC conditions: 1.0 mL helium/min, 15 min at 120°C, 4°C/min, 30 min at 220°C; HPLC conditions: hexane:isopropanol=95:5, 0.50 mL/min, retention time (min): 26.37 (*R*), 27.90 (*S*).

Asymmetric hydrovinylation reaction of 6-methoxy-2-vinylnaphthalene using [(allyl)NiBr]₂, ligand 1a in the presence of NaBARF in CH₂Cl₂:

2-Methoxy-6-[(*R***)-1-methylallyl]naphthalene**: catalyst amount:1.40 mol%; reaction temperature: -55°C, conversion:72.8%, regioselectivity: 100%, 86% ee, configuration: *R*; GC conditions: 1.0 mL helium/min, 15 min at 150°C, 4°C/min, 15 min at 250°C; HPLC conditions: hexane:isopropanol=95:5, 0.50 mL/min, retention time (min): 29.74 (*R*), 33.10 (*S*).

Asymmetric hydrovinylation reaction of 2-vinylnaphthalene using [(allyl)NiBr]₂, ligand 1a in the presence of NaBARF in CH₂Cl₂:

2-[(R)-1-methylallyl]naphthalene: catalyst amount:0.70 mol%; reaction temperature: - 55°C, conversion: 21%, regioselectivity: 100%, 86% ee, configuration: R; GC conditions: 1.0 mL Helium/min, 5 min at 130°C, 4°C/min, 15 min at 230°C; HPLC conditions: 100% hexane, 0.50 mL/min, retention time (min): 36.36 (R), 39.58 (S).

1-Isobutyl-4-[(R)-1-methylallyl]benzene (92 mg, 0.49 mmol) was dissolved in a mixture of CH₂Cl₂ and CH₃OH (1:1, 8 mL) and cooled to -78°C. Ozone was passed through the solution until it became blue. At that time ozone flow was stopped and nitrogen was bubbled for about 20 min to expel all the dissolved ozone from the solution. Excess of Me₂S (1 mL) was added and the solution was warmed to room temperature and stirred for 30 min. Excess of water was added and the mixture was extracted with diethyl ether. The combined organic layers were washed with brine and dried over anhydrous MgSO₄. The solvent was removed under reduced pressure to get the crude aldehyde which was used for the next step without purification.

To the solution of the crude aldehyde in diethyl ether (2 mL) was added 2-methyl-2butene (2 mL) and cooled to 0°C. Sodium chlorite (93 mg, 80%, 0.82 mmol) which has been powered well was added to the resulting mixture at 0°C and stirred vigorously. The reaction mixture was allowed to warm to room temperature for 10 minutes. 5 mL of water was added and stirred for 3 mintues, then 3 mL of 2N HCl was added and stirred for additional 5 minutes. The reaction mixture was extracted with diethyl ether. The combined extracts were washed with brine, dried over anhydrous MgSO₄ and concentrated to get 95 mg of crude (S)-(+)-ibuprofen. ¹H NMR (CDCl₃, 400 MHz) δ 7.20 (d, *J* = 7.80 Hz, 2H), 7.08 (d, *J* = 7.80 Hz, 2H), 3.69 (q, *J* = 7.20 Hz, 1H), 2.43 (d, *J* = 7.20 Hz, 2H), 1.90-1.75 (m, 1H), 1.48 (d, *J* = 7.20 Hz, 3H), 0.88 (d, *J* = 6.6 Hz, 6H). Determination of enantiomeric excess of ibuprofen: To the solution of ibuprofen (1 mg)

In CH_2Cl_2 (1 mL) was added 40 uL of esterification solution which was prepared by mixing (-)-menthol (350 mg), DCC (120 mg), DMAP (6 mg), 25 uL of 1M HCl and CH_2Cl_2 (1 mL). The mixture was shaken for about 15 min and analyzed by Chirasil-L-Val on WCOT fused silica (25 m x 0.25 mm, 0.12 µm film thickness) capillary GC

column to give 89%ee. GC conditions: 1.0 mL helium/min, 20 min at 150° C, 0.5° C/min, 30 min at 180° C, retention time (min): 23.568 (*S*), 24.307 (*R*).

Asymmetric hydrovinylation reaction of 4-isobutylstyrene using 0.035 mol% of [(allyl)NiBr]₂:

To a solution of [(allyl)NiBr]₂ (2.5 mg, 0.007 mol) in CH₂Cl₂ (1 mL) at room temperature was added a solution of ligand **1a** (4.3 mg, 0.014 mmol) in CH₂Cl₂ (1 mL) in drybox. The resulting solution was added to a suspension of NaBARF (12.9 mg, 0.0146 mmol) in CH₂Cl₂ (1 mL). 1 mL of CH₂Cl₂ was used to rinse the vial and combined with the above mixture and the resulting mixture was stirred for 1.5 h at room temperature. The above solution (0.4 mL) was transferred into a dry Schlenk flask and taken out of drybox. The catalyst solution was cooled to -55°C and added dropwise the solution of 4-isobutylstyrene (320 mg, 2mmol) in CH₂Cl₂ (1 mL) under 1 atm of ethylene. After stirring at -55°C for 4h, the mixture was quenched with half-saturated aqueous NH₄Cl solution and extracted three times with 10 mL portions of CH₂Cl₂. The combined organic layers were dried over anhydrous MgSO₄ and passed through a small plug of silica gel. The filtrate was concentrated to afford the crude products which were analyzed by GC to get 86% conversion and 100% regioselectivity. The enantiomeric excess of product was determined by HPLC on Chiracel OJ column to be 76%.

References:

- 1. Corey, E. J.; Semmelhack, M. F. J. Am. Chem. Soc. 1967, 89, 2755.
- 2. Brookhart, M.; Grant, B.; Volpe, A. F. Organometallics 1992, 11, 3920.
- 3. Nugent, W. A.; McKinney, R. J. J. Org. Chem. 1985, 50, 5370.
- 4. Burk, M. J.; Elaster, J. E.; Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1993, 115, 10125.
- 5. Harada, T.; Nakamura, T.; Kinugasa, M.; Oku, A. J. Org. Chem. 1999, 64, 7594.
- 6. Uozumi, Y.; Tanahashi, A.; Lee, S.-Y.; Hayashi, T. J. Org. Chem. 1993, 58, 1945.
- 7. Reduction of diethoxyphosphoryl compounds: (a) Kalbitz, J.; Leibring, E.; Schmidt, H.
- Z. Anorg. Allg. Chem. 1994, 620, 2041; (b) Kyba, E. P.; Liu, S. T.; Harris, R. L. Organometallics 1983, 2, 1877.
- 8. Nandi, M.; Jin, J.; RajanBabu, T. V. J. Am. Chem. Soc. 1999, 121, 9899.

9. Hayashi, T.; Konishi, M.; Fukushima, M.; Kanehira, K.; Hioki, T.; Kumada, M. J. Org. Chem. 1983, 48, 2195.

10. Park, H. and RajanBabu, T. V. J. Am. Chem. Soc. 2002, 124, 734.

11. Hayashi, T.; Konishi, M.; Fukushima, M.; Mise, T.; Kagotani, M.; Tajika, M.; Kumada, M. J. Am. Chem. Soc. 1982, 104, 180.

19:02101

₩dd

SI 25

SI- 30

and the second second

55-31

[esgean]

55- 32

	Brz Hz Sec Sec	M 2 C C C C C C C C C C C C C C C C C C	21 24 24 24 24	cm ppm Hz ppm Hz Hz Yz Kz Hz/cm
tta Parameters ZAB-1-170 10	sition Paramet 20030723 17.07 5.07 5.0030723 2020 32768 2030 32768 2030 2030 2030 2030 2030 2030 2030 203	6.00 1.0000000 1.00000000 1.00000000 1.00000000	ssing paramete 32768 400.1300478 EM 0 0 0.30 0.30 0.30	rt parameters 30.00 8.815 3527.19 0.226 -0.226 -0.2013 120.56592
Current Da NAME EXPNO PROCNO	F2 - Acqui Date	DE TE 01 P1 P1 SF01 SF01	FF2 - Proce Sf WDW SSB SSB CB CB PC	10 NMA plo CX F1 F1 F2 PPMCM H2CM

	tens H H S S S S S S S S S S S S S S S S S S	usec dB MHz	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	SI: HH ZH	cm Ppm H2 Ppm A2 H2/cm H2/cm
Data Parameters ZAB-1-170 11	Tition Parame 20030723 17.20 57.10 59626 65536 65536 65236 10 5125.624 1.3042184 1.3042184 1.3042184 1.3042184 1.3042184 1.3042184 1.3042184 0.030300000 0.030000000 0.000020000	<pre>cHANNEL f1 13C 5.90 -6.00 100.6237959</pre>	<pre>channel f2 waltz16 waltz16 if f2 f4 f5 f5</pre>	cessing paramete 32768 100.6127464 6 0 1.00 1.40	IOL parameters 30.00 176.971 17664.35 -6.441 -6.441 -648.09 6.04710 608.41504
Current NAME EXPNO PROCNO	F2 - Acc Date - Inme PROBHD PULPROG PULPROG PULPROG SOLVENT SOLVENT SOLVENT AC SOLVENT C C E C C C C C C C C C C C C C C C C	NUC1 P1 PL1 SF01	CPDPRG2 NUC2 PCPD2 PL2 PL13 PL13 SF02 SF02	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 NMR P CC F1P F2P PPMCM H2CM

.

r

55-35

wdd

 F2 - Acquisition Parameters

 Date_____20030728

 Time
 20030728

 Time
 10.06

 INSTAUM
 spect

 PROBHD
 5 mm BBD BB

 PULPAGG
 2930

 TD
 32768

 SOLVENT
 2605

 NS
 2768

 SOLVENT
 15

 SMH
 8278.164

 SMH
 0.55639

 AG
 1.9782375

 AG
 1.9782375

 AG
 0.252639

 AG
 1.9792375

 AG
 0.055

 AG
 1.9792375

 AG
 0.055

 AG
 1.97920.0 K

 DM
 60.00 usec

 DI
 1.00000000 sec
 Current Data Parameters NAME 2AB-1-176 EXPMG 10 PAOCNO 1

55 37

ndd

Current Data	Parameters	
NAME	ZAB-1-176	
EXPNO	= -	
F2 - Acquisit	cion Parametr	ers
Date		
l 1me	10.14	
	-pace	
	95454	
SOI VENT	0000	
NS	458	
DS	4	
SWH	25125.629	HZ
F I DRES	0.383387	HZ
AG DA	1.3042164	sec
RG	4096	
MO	19.900	usec
DE	6.00	usec
TE	300.0	×
01	2.00000000	sec
d11	0.03000000	sec
d12	0.00002000	sec
	CHANNEL 11	
NUC1	130	
P1	05.0	user.
PL1	-00.d- 00.d-	00 11
sr U1		7134
	CHANNEL 12	医尿道体育 建苯基苯基 化化合金
CPDPRG2	walt216	
NUC2	H	
PCP02	80.00	usec
PL2	-6.00	dB
PL 12	15.80	dB
PL13	15.80	dB
SF 02	400.1316005	ZHW
- Cronore	ino naramete	510
	32768	
5.5	100.6127464	MHZ
30	M	
101 101	0	
LB C	1.00	HZ
68	0	
PC	1.40	
10 NMH Plot	parameters	i i
č		1 1 1
11	104.300	
F 1		200
1.1.1	-567 65	- 1 1
	5 6B673	na nam/cm
EJE1	572 15796	H2 / CB
MULAH	3/6.101.0/0	mv/20

ພປປ

........... 10 NMR plot parameters CX 30.00 cm 30.00 cm 31.00 cm 31.0.68 H2 72 -0.491 ppm 72 -196.37 H2 PPMCM 0.29215 ppm/cm H2CM 116.90147 H2/cm CHANNEL f1 ******
 1H
 7.50 Usec
 -6.00 dB
 400.1324710 MHz F2 - Processing parameters SI 32768 32768 32768 MDM EA SSB C 0 C 0 C 30 H2 C 3 Current Data Parameters NAME 2AB-1-172 EXPNO 10 PROCNO 1 NUC1 P1 PL1 SF01

ST 40

wdd

10000000

1.0 mL helium/min, 10 min at 100°C, 4°C/min, 10 min at 200°C

, L

55-41

Daicel Chiralcel OJ Column, 100% hexane, 0.25 mL/min

SI-42

10 NMR plot parameters CX 30.00 cm F1P 8.971 ppm F1 3589.67 H2 F2P -0.587 ppm F2P -0.587 ppm F2 -334.80 ppm/cm H2CM 127.48212 H2/cm F2 - Acquisition Parameters Date _______20030701 Time ______20030701 Time ______20030701 INTRUM _______2004 PA03040 5 mm BB0 BB-PA03040 5 mm BB0 BB-PA03040 BB-PA03040 BB-A0 ______20030 SQLVENT ______2003 NN ______2003000 Sec RG ______00 usec DM _____00 usec DM ______00 usec DM _____00 usec DM ______00 usec DM _______00 usec DM ______00 use F2 - Processing parameters S1 32768 SF 400.1300171 MH2 WDM EN EN SSB 0.30 M2 LB 0.30 M2 GB 0.30 M2 GB 0.30 M2 CP 700 M2 Current Data Parameters NAME 2AB-1-146 EXPNO 10 PROCND 1 NUC1 P1 PL1 SF01 40

udd

,

1. Sec. 1. Sec

1

1.0 mL helium/min, 5 min at 80°C, 4°C/min, 15 min at 180°C

...

SI- 44

TOTAL AREA= 5542700 MUL FACTOR= 1.0000E+00

Daicel Chiralcel OJ Column, 100% hexane, 0.30 mL/min

1.0 mL helium/min, 5 min at 80°C, 4°C/min, 15 min at 180°C

Daicel Chiralcel OJ Column, 100% hexane, 0.30 mL/min

ST-48

SI- 49

Sī- 50

it parameters 30.00 cm 8.524 ppm 3410.53 Hz -0.322 ppm -128.75 Hz 0.29484 ppm/cm 117.97598 Hz/cm F2 - Acquisition Parameters Date ______20030709 Time ______20030709 INTRUM _______3024 NCPRDG ______2030 PULPROG _____2030 PULPROG _____2030 PULPROG _____22768 SOUVENT ______16 2 8278.146 Hz 0.252629 Hz 1.9792372 sec 50.400 usec 6.00 usec 300.0 K 1.0000000 sec F2 - Processing parameters SI 3276B SF 400.1300171 MHz MDW 558 C 0.30 Hz E8 0.30 Hz E8 0.30 Hz E8 0.30 Hz Current Data Parameters NAME 2AB-1-153 EXPNO 20 PROCNO 1 10 NMR Plot P CX F1P F2P F2P F2CM H2CM INSTRUM PROBHD FULPROG FULPROG SOLVENT NS SMH SSMH AG SMH AG DM DM DG DG D1 D1 NUCI P1 PL1 SF01

ST-52

· Area

	tens H2 Sec V5 Sec Sec	usec dB MH2 srs MH2	24	cm Ppm Hz Ppm Hz Az∕cm Hz∕cm
Data Parameters 2A8-1-212 10	uisition Perame 20031022 17.29 spect 5 mm BBD BB- 3786 32786 32786 15 237872 15 23789 15 15 15 15 15 15 15 15 15 15 15 15 15		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ot parameters 30.00 12.202 4882.46 -0.593 -237.44 0.42652 170.66316
Current NAME EXPNO PROCNO	F2 - Acq Date 1 jme PHOBHO PHOBHO PHOBHO PULPHOG FUD POL FID PC FID FID FID FID FID FID FID FID FID FID	NUC1 P1 PL1 SF01 S1 S1 S1	1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0	1D NMR P1 CX F1P F1 F2P F2P PPMCM H2CM

5T-53

20 min at 150°C, 0.5°C/min, 30 min at 180°C Chirasil-L-Val Column, 1.0 mL helium/min,

 $S \rightarrow$

MUL FACTOR-1.0000E+00 1018F 885421-8388 78101

Chirasil-L-Val Column, 1.0 mL helium/min, 20 min at 180°C D.5°C/min, 30 min at 180°C

51-56

Current Data Parameters NAKE 2AB-1-279 EXPNO 10 PROCNO 10 Date 2031105 ITAPHAN Spect 20031105 ITAPHAN Spect 20031105 ITAPHAN Spect 20331105 ITAPHANG 5 mm BB0 BB-PROBHO 5 mm BB0 BB0 PTCM

1.0 mL helium/min, 10 min at 100°C, 4°C/min, 10 min at 200°C

51-58

,

00+30000°)	=801363 UUP
20+32SS118	=038800101

	8 9 5186	\$89°8	849	819349E+93	58 52
	810.9	96918	JA Ū	ZIS#1	54 53
$S \rightarrow$	0S1 8	\$95.6	8A	155430	53,28
80%9L 8>	- 781 T	22210	Sd	982996	28,83
	8,623	81215	дd	Þ2681	SMIGI
	38119	82713	89	012821	14136
	SIGIA	62917	БĿ	08021	96111
	78339	用不知	3471	角王另府	51
					%A398

1997

•

F85 # NU9

Effect of Side-chain Chirality

