Supporting information

Synthesis

Owing to high stability of fully oxidized ligands and lanthanide salts all manipulations can be performed without strictly anhydrous conditions. Nevertheless, all solvents used (methanol, dichloromethane) were dried and distilled prior to use. ${ }^{1}$ Preparation of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}$ $\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2} \cdot \mathrm{H}_{2} \mathrm{O}_{2}$ was reported previously, ${ }^{2}$ and $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}$ was obtained by oxidation of $\mathrm{Ph}_{2} \mathrm{P}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{PPh}_{2}$ with hydrogen peroxide in tetrahydrofuran.

Preparation of $\operatorname{Pr}\left[\mathrm{Ph}_{2} \mathbf{P}(\mathbf{O})-\mathrm{C}_{5} \mathbf{H}_{3} \mathbf{N}-\mathrm{P}(\mathbf{O}) \mathrm{Ph}_{2}\right]_{2}\left(\mathrm{NO}_{3}\right)_{3}(\mathbf{1})$

$\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}-\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2} . \mathrm{H}_{2} \mathrm{O}_{2}(250 \mathrm{mg}, 0.487 \mathrm{mmol})$ was dissolved in dichloromethane (10 ml) and the suspension of $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(85 \mathrm{mg}, 0.195 \mathrm{mmol})$ in dichloromethane (10 $\mathrm{ml})$ was added. After the mixture was stirred overnight, the dichloromethane was allowed to evaporate slowly over approximately 10 days. Pale green solid was then isolated and washed with methanol. The product consists of crystals suitable for single crystal X-ray diffraction (characterized as $\operatorname{Pr}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}-\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}\right]_{2}\left(\mathrm{NO}_{3}\right)_{3} .2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and the powder (microcrystalline) fraction (characterized by elemental analysis as $\operatorname{Pr}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right.$ $\left.\left.\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}\right]_{2}\left(\mathrm{NO}_{3}\right)_{3}\right)$. Yield $100 \mathrm{mg}\left(39.8 \%\right.$, calc. for $\left.\operatorname{Pr}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}-\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}\right]_{2}\left(\mathrm{NO}_{3}\right)_{3}\right)$. M.p. $>280^{\circ} \mathrm{C}$. IR: $3062 \mathrm{w}, 1590 \mathrm{w}, 1567 \mathrm{w}, 1539 \mathrm{vw}, 1438 \mathrm{vs}, 1306 \mathrm{vs}, 1205 \mathrm{~m}, 1170 \mathrm{~s}, 1150 \mathrm{vs}$, $1123 \mathrm{~s}, ~ 1091 \mathrm{~s}, ~ 1029 \mathrm{~m}, ~ 997 \mathrm{w}, ~ 988 \mathrm{w}, ~ 817 \mathrm{w}, 751 \mathrm{~s}, 745 \mathrm{~s}, 727 \mathrm{~m}, 709 \mathrm{~m}, ~ 693 \mathrm{~s}, 555 \mathrm{vs}, 537 \mathrm{~s}$, $528 \mathrm{vs}, 509 \mathrm{w}$. Microanalyses (microcrystalline phase): C 54.2 , H 3.6 , N 5.4 calc., C 54.5 , H 3.5 , N 5.2 found.

Preparation of $\operatorname{Pr}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}\right]_{1.5}\left(\mathrm{NO}_{3}\right)_{3}(2)$

A mixture of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}(250 \mathrm{mg}, 0.581 \mathrm{mmol})$ and $\operatorname{Pr}\left(\mathrm{NO}_{3}\right)_{3} .6 \mathrm{H}_{2} \mathrm{O}(126 \mathrm{mg}$, 0.290 mmol) in methanol (30 ml) was sealed in a $250-\mathrm{ml}$ stainless-steel reactor with a Teflon liner, heated to $140{ }^{\circ} \mathrm{C}$ for 2 days, and then slowly cooled to room temperature. After 2 days pale green crystals were collected and washed with methanol. Yield 219 mg (77.7%). M.p. > $280{ }^{\circ} \mathrm{C}$. IR: 3056w, $1590 \mathrm{vw}, 1437 \mathrm{vs}, 1406 \mathrm{~m}, 1398 \mathrm{~m}, 1309 \mathrm{vs}, 1274 \mathrm{~s}$, 1201m, 1186m, 1170s, $1146 \mathrm{vs}, 1124 \mathrm{~s}, 1090 \mathrm{vs}, 1036 \mathrm{~m}, 1027 \mathrm{~m}, 998 \mathrm{w}, 935 \mathrm{w}, 872 \mathrm{vw}, 817 \mathrm{w}, 810 \mathrm{vw}, 785 \mathrm{vw}, 769 \mathrm{~m}$, $750 \mathrm{~s}, 728 \mathrm{~s}, 703 \mathrm{~m}, 694 \mathrm{~m}, 653 \mathrm{vw}, 563 \mathrm{vw}, 552 \mathrm{vw}, 533 \mathrm{vs}, 511 \mathrm{~s}$. Microanalyses: C 48.2, H 3.7, N 4.3 calc., C 48.3, H 3.7, N 4.5 found.

Thermogravimetric analysis

The samples were heated in static air at 5% min to $1000{ }^{\circ} \mathrm{C}$ on a MOM Derivatograph C instrument.

Infrared spectroscopy

IR spectra ($4000-400 \mathrm{~cm}^{-1}$) were collected on an EQUINOX 55/S/NIR FTIR spectrometer. Samples were prepared as nujol mulls.

Elemental analysis

Microanalyses were performed using a Fisons EA 1108 instrument.

X-ray powder diffraction

A Stoe-Cie transmission diffractometer STADI P was used to acquire the diffraction data.

Crystallography

Diffraction data were collected on a KUMA KM-4 κ-axis diffractometer with graphitemonochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA$) equipped with CCD detector and low-
temperature device (120 K). Both structures were solved by direct methods and refined by full-matrix least-squares techniques using anisotropic thermal parameters for the nonhydrogen atoms. The software packages used were: Xcalibur CCD system for the data collection/reduction, ${ }^{3}$ and ShelXTL for the structure solution, refinement, and drawing preparation (thermal ellipsoids are drawn at the 50% probability level). ${ }^{4}$ Details of the data collection, cell determination, and structure refinement are listed in Table 1.

References

(1) Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, Pergamon Press, 1988.
(2) Sevcik, R.; Necas, M.; Novosad, J. Polyhedron 2003, 22, 1585-1593.
(3) Oxford Diffraction Ltd., Xcalibur CCD System, CrysAlis Software System, Version 1.170. Oxford, England, 2003.
(4) Bruker, SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA, 1997.

Table 1. Crystal data and refinement parameters.

	$\mathbf{1}$	$\mathbf{2}$
Empirical formula	$\mathrm{C}_{60} \mathrm{H}_{50} \mathrm{Cl}_{4} \mathrm{~N}_{5} \mathrm{O}_{13} \mathrm{P}_{4} \mathrm{Pr}$	$\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{P}_{3} \mathrm{Pr}$
Formula weight	1455.64	972.53
Temperature $[\mathrm{K}]$	$120(2)$	$120(2)$
Crystal system	Orthorhombic	Monoclinic
Space group	$\mathrm{Pca} 2_{1}$	$\mathrm{P} 2_{1} / \mathrm{n}$
$\mathrm{a}[\AA]$	$15.20(1)$	$13.022(2)$
$\mathrm{b}[\AA]$	$16.44(1)$	$19.989(4)$
$\mathrm{c}[\AA]$	$24.33(2)$	$16.747(4)$
$\alpha\left[{ }^{\circ}\right]$	90	90
$\beta\left[^{\circ}\right]$	90	$108.38(2)$
$\gamma\left[{ }^{\circ}\right]$	90	90
Volume $\left[\AA^{3}\right]$	$6077(9)$	$4137(1)$
Z	4	4
Calc. density	1.591	1.562
$\mu\left[\mathrm{~mm}{ }^{-1}\right]$	1.151	1.359
Crystal size $[\mathrm{mm}]$	$0.30 \times 0.20 \times 0.20$	$0.50 \times 0.40 \times 0.40$
v range $\left[{ }^{\circ}\right]$	3.11 to 24.99	3.28 to 25.00
No. of refections	37297	19663
Independent data	10645	6531
Final R indices	$0.0428,0.0923$	$0.0330,0.0871$
$\Delta \rho_{\text {max }} / \Delta \rho_{\text {min }}\left[\mathrm{e} . \AA^{-3}\right]$	1.445 and -0.848	1.174 and -0.833

