

Supporting Information

Figure S1. The *k*³-weighted polarized Mn EXAFS spectra. Inset shows the crystal setting with respect to the incident X-ray **e**-vector and the two rotation axes, $\phi_{crystal}$ and $\chi_{crystal}$. The solid line (red), X-ray **e**-vector parallel to the crystal *b*-axis ($\phi_{crystal} = 90^\circ$, $\chi_{crystal} = 0^\circ$); dotted line (green), X-ray **e**-vector parallel to the *c*-axis ($\phi_{crystal} = 0^\circ$, $\chi_{crystal} = 0^\circ$); dash-dot line (blue), X-ray **e**-vector parallel to the *c*-axis ($\phi_{crystal} = 0^\circ$, $\chi_{crystal} = 0^\circ$); dash-dot line (blue), X-ray **e**-vector parallel to the *a*-axis ($\phi_{crystal} = 90^\circ$).

Figure 2S. Fourier transforms of the k^3 -weighted polarized Mn EXAFS spectra. The solid line (red), X-ray **e**-vector parallel to the crystal *b*-axis ($\phi_{crystal} = 90^\circ$, $\chi_{crystal} = 0^\circ$); dotted line (green), X-ray **e**-vector parallel to the *c*-axis ($\phi_{crystal} = 0^\circ$, $\chi_{crystal} = 0^\circ$); dash-dot line (blue), X-ray **e**-vector parallel to the *a*-axis ($\phi_{crystal} = 0^\circ$, $\chi_{crystal} = 90^\circ$). At ($\phi_{crystal}$, $\chi_{crystal}$) = (0°, 0°), the Mn-Mn vector (at ~2.7 Å, the second Fourier peak) amplitude was maximal, while it was close to the noise level at ($\phi_{crystal}$, $\chi_{crystal}$) = (90°, 0°) orientation. The Mn-ligand vector amplitude at ~2 Å was also minimal at the ($\phi_{crystal}$, $\chi_{crystal}$) = (90°, 0°) orientation.

