Dramatic Effects of Boryl Substituents on Thermal Ring-Closing Reaction of Vinylallenes

Masahiro Murakami,* Shinji Ashida, and Takanori Matsuda
Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan

Supporting Information

General. All reactions were carried out under a nitrogen atmosphere. Column chromatography was performed with silica gel 60 N (Kanto). Preparative thin-layer chromatography was performed with silica gel $60 \mathrm{PF}_{254}$ (Merck). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Gemini $2000\left({ }^{1} \mathrm{H}\right.$ at 300.07 Hz and ${ }^{13} \mathrm{C}$ at 75.46 Hz$)$ spectrometer. ${ }^{11}$ B NMR spectra were recorded on a Varian Mercury $400\left({ }^{11} \mathrm{~B}\right.$ at 128.48 Hz$)$. Proton chemical shifts are referenced to residual CHCl_{3}. Carbon chemical shifts are referenced to CDCl_{3}. Boron chemical shifts are referenced to external standard $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. High resolution mass spectra were recorded on a JEOL JMS-SX102A spectrometer.

Materials. Unless otherwise noted, all chemicals and anhydrous solvents were obtained from commercial suppliers and used as received. Bis(diethylamido)(trimethylstannyl)borane ${ }^{1}$ and 1-(trimethylsilyl)penta-1,4-diyne ${ }^{2}$ were prepared according to the literature procedures.

Preparation and Ring-Closing Reaction of Boryl-Substituted Vinylallenes

(Z)-1-Phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-
(trimethylstannyl)ethene (1): To a benzene solution (10 mL) of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($346 \mathrm{mg}, 0.30 \mathrm{mmol}$) were added bis(diethylamido)(trimethylstannyl)borane $(3.18 \mathrm{~g}, 10.0 \mathrm{mmol})$ and phenylacetylene $(1.13 \mathrm{~g}, 10.0 \mathrm{mmol})$ at room temperature, and the

[^0]mixture was stirred for 1 h . To the mixture was added pinacol ($1.18 \mathrm{~g}, 10.0 \mathrm{mmol}$), and the mixture was stirred for 1 h at room temperature. The reaction mixture was passed through a plug of Florisil ${ }^{\circledR}$ (ether) and concentrated. The residue was subjected to column chromatography on silica gel (ether) to afford $\mathbf{1}(3.83 \mathrm{~g}, 97 \%)$. 1a: ${ }^{1} \mathrm{H}$ NMR $\delta 0.18\left(\mathrm{~s},{ }^{2} J_{\mathrm{Sn}-\mathrm{H}}\right.$ $=54.9,53.1 \mathrm{~Hz}, 9 \mathrm{H}), 1.30(\mathrm{~s}, 12 \mathrm{H}), 6.28\left(\mathrm{~s},{ }^{3} J_{\mathrm{Sn}-\mathrm{H}}=153.0,146.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.02-7.08(\mathrm{~m}$, $2 \mathrm{H}), 7.13-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.31(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta-5.5\left({ }^{1} J_{\mathrm{Sn}-\mathrm{C}}=353.7,338.7 \mathrm{~Hz}\right)$, $24.9,83.5,126.09(J=18.6 \mathrm{~Hz}), 126.12,127.8,133.3(\mathrm{br}), 149.1,176.0$; HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BO}_{2} \mathrm{Sn}\left(\mathrm{M}^{+}-\mathrm{Me}\right)$ 379.0891, found 379.0891.

(\boldsymbol{E})-4-Phenyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)penta-1,2,4triene (2a): To a DMF solution (5.5 mL) of $\mathrm{PhCH}_{2} \mathrm{PdCl}\left(\mathrm{PPh}_{3}\right)_{2}(59.7 \mathrm{mg}, 0.078$ mmol) and $\mathrm{CuI}(23.7 \mathrm{mg}, 0.12 \mathrm{mmol})$ were added propargyl bromide (2.65 g , $22.5 \mathrm{mmol})$ and $1(1.76 \mathrm{~g}, 4.5 \mathrm{mmol})$, and the mixture was stirred for 1 h at room temperature then for 18 h at $35{ }^{\circ} \mathrm{C}$. To the mixture was added saturated KF aqueous solution, and the mixture was extracted with ether, passed through a plug of Florisi ${ }^{\circledR}$ (ether), and concentrated. The residue was subjected to column chromatography on silica gel (hexane: $\mathrm{AcOEt}=40: 3$) to afford 2a ($542 \mathrm{mg}, 45 \%$). 2a: ${ }^{1} \mathrm{H}$ NMR $\delta 1.34(\mathrm{~s}, 12 \mathrm{H}), 4.84$ (dd, $J=6.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.45-5.47(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 24.9,77.3,83.2,94.5,118.8$ (br), 127.5, 127.8, 127.9, 142.1, 156.1, 212.9; ${ }^{11} \mathrm{~B}$ NMR δ 29.3; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~B} 268.1635$, found 268.1640.
(E)-2-Phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,3,4-
triene (2b): According to the procedure analogous to that described for $\mathbf{2 a}, \mathbf{2 b}$ ($59 \mathrm{mg}, 11 \%$) was prepared from $1(784 \mathrm{mg}, 2.0 \mathrm{mmol})$ and 3-chloro-1-butyne ($352 \mathrm{mg}, 4.0 \mathrm{mmol}$). 2b: ${ }^{1} \mathrm{H}$ NMR $\delta 1.32(\mathrm{~s}, 12 \mathrm{H}), 1.62(\mathrm{dd}, J=7.2,3.3 \mathrm{~Hz}$, $3 \mathrm{H}), 5.15$ (ddq, $J=6.3,1.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dd}, J=1.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}$ sext, $J=$ $0.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.26-7.36 (m, 5H); ${ }^{13} \mathrm{C}$ NMR $\delta 13.5,24.9,83.1,87.7,94.6,118.4$ (br), 127.5, 127.7, 127.9, 142.5, 157.3, 209.8; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~B} 282.1791$, found 282.1793.

(Z)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-(trimethylsilyl)-2-(trimethylstannyl)pent-1-en-4-yne (3): According to the procedure analogous to that described for $\mathbf{1 , 3}$ ($2.23 \mathrm{~g}, 52 \%$) was prepared from bis(diethylamido)(trimethylstannyl)borane ($3.19 \mathrm{~g}, 10 \mathrm{mmol}$) and 1-(trimethylsilyl)penta-1,4-diyne ($1.62 \mathrm{~g}, 12.0 \mathrm{mmol}$). 3: ${ }^{1} \mathrm{H}$ NMR $\delta 0.15$ ($\mathrm{s}, 9 \mathrm{H}$), 0.20 (s , $\left.{ }^{2} J_{\mathrm{Sn}-\mathrm{H}}=55.8,53.4 \mathrm{~Hz}, 9 \mathrm{H}\right), 1.25(\mathrm{~s}, 12 \mathrm{H}), 3.29\left(\mathrm{~d}, J=1.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{Sn}-\mathrm{H}}=34.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.39(\mathrm{t}$, $\left.J=1.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{Sn}-\mathrm{H}}=149.3 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta-6.4\left({ }^{1} J_{\mathrm{Sn}-\mathrm{C}}=353.7,338.6 \mathrm{~Hz}\right), 0.1,24.8$, 35.2, 83.3, 88.7, 103.9, 130.9 (br), 169.3; HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{BO}_{2} \mathrm{SiSn}\left(\mathrm{M}^{+}-\mathrm{Me}\right)$ 413.1130, found 413.1129.

(Z)-2-Phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-(trimethylsilyl)pent-1-en-4-yne (3'): To a DMF solution (2.0 mL) of $\mathrm{PhCH}_{2} \mathrm{PdCl}\left(\mathrm{PPh}_{3}\right)_{2}(37 \mathrm{mg}, 0.050 \mathrm{mmol})$ and $\mathrm{CuI}(19 \mathrm{mg}, 0.10$ mmol) were added iodobenzene ($244 \mathrm{mg}, 1.2 \mathrm{mmol}$) and $3(4.27 \mathrm{~g}, 1.0 \mathrm{mmol}$), and the mixture was stirred for 1 h at room temperature and then for 3 h at $90^{\circ} \mathrm{C}$. The reaction mixture was passed through a plug of Florisi ${ }^{\circledR}$ and concentrated. The residue was subjected to column chromatography on silica gel (hexane: $\mathrm{AcOEt}=9: 1$) to afford $\mathbf{3}^{\prime}(82 \mathrm{mg}, 24 \%)$. $3^{\prime}:{ }^{1} \mathrm{H}$ NMR $\delta 0.16(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{~s}, 12 \mathrm{H}), 3.38(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.22-7.31 (m, 5H); ${ }^{13} \mathrm{C}$ NMR $\delta 0.1,24.6,31.2,83.1,88.7,103.1,117.6$ (br), 127.5, 127.6, 127.7, 141.9, 154.5; HRMS (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{BO}_{2} \mathrm{Si} 340.2030$, found 340.2030.

(Z)-4-Phenyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)penta-

 1,2,4-triene (4): To a MeOH solution (1.0 mL) of $\mathbf{3}^{\prime}(47.4 \mathrm{mg}, 0.14 \mathrm{mmol})$ was added MeOH solution (1.0 mL) of $\mathrm{NaOH}(40 \mathrm{mg}, 1.0 \mathrm{mmol})$, and the mixture was stirred for 24 h at room temperature. To the mixture were added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution and brine, and the mixture was extracted with ether, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was subjected to flash chromatography on silica gel (hexane: $\mathrm{AcOEt}=9: 1$) followed by HPLC purification (hexane: $\mathrm{AcOEt}=20: 1$) to afford 4 ($6 \mathrm{mg}, 16 \%$). 4: ${ }^{1} \mathrm{H}$ NMR $\delta 1.10(\mathrm{~s}, 12 \mathrm{H}), 4.81$ (dd, $\left.J=6.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.58(\mathrm{~d}, J=0.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.11(\mathrm{dt}, J=0.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.30(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 24.6,78.0,99.2,127.1$,
3-Methylene-1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

 $\mathbf{y l})$ cyclobutene (5a). A xylene solution (5.0 mL) of $\mathbf{2 a}(156 \mathrm{mg}, 0.58 \mathrm{~mol})$ was heated for 3 h at $140^{\circ} \mathrm{C}$. After evaporating the solvent, the residue was subjected to flash chromatography on silica gel (hexane: $\mathrm{AcOEt}=9: 1$) to afford $\mathbf{5 a}(150 \mathrm{mg}$, 96\%). 5a: ${ }^{1} \mathrm{H}$ NMR $\delta 1.22(\mathrm{~s}, 6 \mathrm{H}), 1.24(\mathrm{~s}, 6 \mathrm{H}), 3.19(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~d}, \mathrm{~J}=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.46(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 24.5,24.7,35.7$ (br), 83.5, 99.3, 125.6, 126.5, 128.2, 128.3, 133.7, 144.8, 151.6; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~B} 268.1635$, found 268.1636.
(Z) and $\quad(E)$-3-Etylidene-1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclobutene (5b):
${ }^{1} \mathrm{H}$ NMR $\delta 1.21$ (s, 12H, major and minor), 1.238 ($\mathrm{s}, 6 \mathrm{H}$, major), 1.243 ($\mathrm{s}, 6 \mathrm{H}$, minor), $1.72(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, minor), 1.79 (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, major), 3.13 ($\mathrm{s}, 1 \mathrm{H}$, major), 3.18 ($\mathrm{s}, 1 \mathrm{H}$, minor), 4.96 (q, J $=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, major), $5.30(\mathrm{dq}, J=1.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $6.60(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 6.79 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$, major), 7.19-7.45 (m, 5H); ${ }^{13} \mathrm{C}$ NMR $\delta 13.8,14.4,24.48,24.54$, $24.65,24.71,33.8$ (br), 83.4, 83.5, 109.9, 110.2, 124.5, 125.2, 125.3, 126.4, 127.8, 127.9, 128.2, 134.2, 136.9, 138.1, 147.7, 149.7 [some signals are overlapping]; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~B} 282.1791$, found 282.1794 .
Stereochemical Assignment of $\mathbf{5 b}$. The two isomers, (Z) - and $(E)-\mathbf{5 b}$, were subjected to NOE experiments. No NOE between the cyclobutene vinyl proton ($\delta 6.79$) and the ethylidene vinyl proton ($\delta 4.96$) was observed for $(Z) \mathbf{5 b}$, whereas NOE between the cyclobutene vinyl proton and the ethylidene methyl proton ($\delta 1.79$) was observed. On the other hand, an NOE between the cyclobutene vinyl proton ($\delta 6.60$) and the ethylidene vinyl proton $(\delta 5.30)$ was observed for $(E)-\mathbf{5 b}$.

(Z)-5b

(E)-5b
(4-Methylene-2-phenylcyclobut-2-enyl)phenylmethanol (13). A xylene solution (2.0 mL) of vinylallene $\mathbf{2 a}(132 \mathrm{mg}, 0.49 \mathrm{mmol})$ was heated for 5 h at $140{ }^{\circ} \mathrm{C}$ to afford 5a. To the solution was added benzaldehyde ($72 \mathrm{mg}, 0.68$ mmol) at room temperature, and the mixture was heated for 48 h at $80^{\circ} \mathrm{C}$. The reaction mixture was acidified with $0.1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$, extracted with ether, dried over MgSO_{4}, and concentrated. The residue was subjected to column chromatography on silica gel (hexane:ether $=3: 1$) to give $\mathbf{1 3}$ as a diastereomeric mixture ($87 \mathrm{mg}, 71 \%, 17: 1$ by ${ }^{1} \mathrm{H}$ NMR). 13: ${ }^{1} \mathrm{H}$ NMR $\delta 2.10(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dt}, J=4.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.42(\mathrm{~m}, 10 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 55.5,73.1,99.9,126.0,126.1,127.3,128.0,128.4,128.6,130.7,133.0,142.7$, 145.0, 152.2; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}$ 248.1201, found 248.1200. For the minor diastereomer: ${ }^{1} \mathrm{H}$ NMR $\delta 4.02(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H})$, the remaining signals were not resolved.

Kinetic Studies on Ring-Closing Reactions of Boryl-Substituted Vinylallenes 2a, 2b, and 4

Rate Measurements: The ring-closing reactions of $\mathbf{2 a}, \mathbf{2 b}$, and $\mathbf{4}$ were monitored using ${ }^{1} \mathrm{H}$ NMR spectroscopy. The boryl-substituted vinylallene was dissolved in benzene- d_{6} or o -xylene- d_{10}. The solution in an NMR tube was heated in a temperature-controlled oil bath at the specified temperature. The reaction was intercepted at intervals, and the ${ }^{1} \mathrm{H}$ NMR spectrum was recorded. The conversion was determined on the basis of the ${ }^{1} \mathrm{H}$ NMR integrations of the allenic (vinylic) protons of the reactants and products. The \%conversion versus time data were subjected to least-squares analysis.

Ring-Closing Reaction of 2a

$90{ }^{\circ} \mathrm{C}$		$100{ }^{\circ} \mathrm{C}$		$110{ }^{\circ} \mathrm{C}$		$120{ }^{\circ} \mathrm{C}$	
time $/ \mathrm{h}$	conv. $/ \%$	time $/ \mathrm{h}$	conv. $/ \%$	time $/ \mathrm{h}$	conv. $/ \%$	time $/ \mathrm{h}$	
conv. $/ \%$							
0	0.0	0	0.0	0	0.0	0	
1	5.5	1	15.8	1	39.9	1	

$T\left({ }^{\circ} \mathrm{C}\right)$	$k\left(\mathrm{~s}^{-1}\right)$	$1000 / T\left(\mathrm{~K}^{-1}\right)$	$\ln k$
90	1.69×10^{-5}	2.75	-11.0
100	4.25×10^{-5}	2.68	-10.1
110	1.31×10^{-4}	2.61	-8.94
120	2.72×10^{-4}	2.54	-8.21

$$
\begin{aligned}
& \ln A=26.2 ; A=10^{11.4} \mathrm{~s}^{-1} \\
& E_{\mathrm{a}}=1000 R \times 13.5=26.8 \mathrm{kcal} / \mathrm{mol}
\end{aligned}
$$

Ring-Closing Reaction of 2b

$110{ }^{\circ} \mathrm{C}$		$120{ }^{\circ} \mathrm{C}$		$130{ }^{\circ} \mathrm{C}$	
time $/ \mathrm{h}$	conv. $/ \%$	time/h	conv. $/ \%$	time/h	conv. $/ \%$
0	0.0	0	0.0	0	0.0
1	7.2	1	18.6	1	42.9
2	13.6	2	33.6	2	62.0
3	19.2	3	41.2	3	75.5
4	24.4	4	49.5	4	84.2
5	28.9	5	56.9		

Ring-Closing of $\mathbf{2 b}$ at $120^{\circ} \mathrm{C}$

$T\left({ }^{\circ} \mathrm{C}\right)$	$k\left(\mathrm{~s}^{-1}\right)$	$1000 / T\left(\mathrm{~K}^{-1}\right)$	$\ln k$
110	1.94×10^{-5}	2.61	-10.9
120	4.83×10^{-5}	2.54	-9.94
130	1.31×10^{-4}	2.48	-8.94

$\ln A=27.6 ; A=10^{12.0} \mathrm{~s}^{-1}$
$E_{\mathrm{a}}=1000 R \times 14.7=29.3 \mathrm{kcal} / \mathrm{mol}$

Ring-Closing Reaction of 4

$100{ }^{\circ} \mathrm{C}$		$110{ }^{\circ} \mathrm{C}$		$120{ }^{\circ} \mathrm{C}$	
time $/ \mathrm{h}$	conv. $/ \%$	time $/ \mathrm{h}$	conv. $/ \%$	time $/ \mathrm{h}$	
conv. $/ \%$					
0	0.0	0	0.0	0	
0.0					
5	2.2	5	7.4	1	

Ring-Closing of 4 at $110^{\circ} \mathrm{C}$

$T\left({ }^{\circ} \mathrm{C}\right)$	$k\left(\mathrm{~s}^{-1}\right)$	$1000 / T\left(\mathrm{~K}^{-1}\right)$	$\ln k$
100	1.33×10^{-6}	2.68	-13.5
110	4.78×10^{-6}	2.61	-12.3
120	1.30×10^{-5}	2.54	-11.2

$\ln A=31.4 ; A=10^{13.6} \mathrm{~s}^{-1}$
$E_{\mathrm{a}}=1000 R \times 16.7=33.2 \mathrm{kcal} / \mathrm{mol}$

$098 \cdot \tau \tau \geq-2$

[^0]: (1) Nöth, H.; Schwerthöffer, R. Chem. Ber. 1981, 114, 3056.
 (2) Ashe, A. J., III; Chan, W.-T.; Smith, T. W.; Taba, K. M. J. Org. Chem. 1981, 46, 881.

