Dramatic Effects of Boryl Substituents on Thermal Ring-Closing Reaction of Vinylallenes

Masahiro Murakami,* Shinji Ashida, and Takanori Matsuda

Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan

Supporting Information

General. All reactions were carried out under a nitrogen atmosphere. Column chromatography was performed with silica gel 60 N (Kanto). Preparative thin-layer chromatography was performed with silica gel 60 PF₂₅₄ (Merck). ¹H and ¹³C NMR spectra were recorded on a Varian Gemini 2000 (¹H at 300.07 Hz and ¹³C at 75.46 Hz) spectrometer. ¹¹B NMR spectra were recorded on a Varian Mercury 400 (¹¹B at 128.48 Hz). Proton chemical shifts are referenced to residual CHCl₃. Carbon chemical shifts are referenced to CDCl₃. Boron chemical shifts are referenced to external standard BF₃·OEt₂. High resolution mass spectra were recorded on a JEOL JMS-SX102A spectrometer.

Materials. Unless otherwise noted, all chemicals and anhydrous solvents were obtained from commercial suppliers and used as received. Bis(diethylamido)(trimethylstannyl)borane¹ and 1-(trimethylsilyl)penta-1,4-diyne² were prepared according to the literature procedures.

Preparation and Ring-Closing Reaction of Boryl-Substituted Vinylallenes

Ph (Z)-1-Phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-

(trimethylstannyl)ethene (1): To a benzene solution (10 mL) of $Pd(PPh_3)_4$ (346 mg, 0.30 mmol) were added bis(diethylamido)(trimethylstannyl)borane

(3.18 g, 10.0 mmol) and phenylacetylene (1.13 g, 10.0 mmol) at room temperature, and the

⁽¹⁾ Nöth, H.; Schwerthöffer, R. Chem. Ber. 1981, 114, 3056.

⁽²⁾ Ashe, A. J., III; Chan, W.-T.; Smith, T. W.; Taba, K. M. J. Org. Chem. 1981, 46, 881.

mixture was stirred for 1 h. To the mixture was added pinacol (1.18 g, 10.0 mmol), and the mixture was stirred for 1 h at room temperature. The reaction mixture was passed through a plug of Florisil[®] (ether) and concentrated. The residue was subjected to column chromatography on silica gel (ether) to afford **1** (3.83 g, 97%). **1a:** ¹H NMR δ 0.18 (s, ²*J*_{Sn-H} = 54.9, 53.1 Hz, 9H), 1.30 (s, 12H), 6.28 (s, ³*J*_{Sn-H} = 153.0, 146.4 Hz, 1H), 7.02-7.08 (m, 2H), 7.13–7.21 (m, 1H), 7.24–7.31 (m, 2H); ¹³C NMR δ –5.5 (¹*J*_{Sn-C} = 353.7, 338.7 Hz), 24.9, 83.5, 126.09 (*J* = 18.6 Hz), 126.12, 127.8, 133.3 (br), 149.1, 176.0; HRMS (EI) calcd for C₁₆H₂₄BO₂Sn (M⁺ – Me) 379.0891, found 379.0891.

(E)-4-Phenyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)penta-1,2,4-

triene (2a): To a DMF solution (5.5 mL) of PhCH₂PdCl(PPh₃)₂ (59.7 mg, 0.078 mmol) and CuI (23.7 mg, 0.12 mmol) were added propargyl bromide (2.65 g, 22.5 mmol) and **1** (1.76 g, 4.5 mmol), and the mixture was stirred for 1 h at room temperature then for 18 h at 35 °C. To the mixture was added saturated KF aqueous solution, and the mixture was extracted with ether, passed through a plug of Florisil[®] (ether), and concentrated. The residue was subjected to column chromatography on silica gel (hexane:AcOEt = 40:3) to afford **2a** (542 mg, 45%). **2a:** ¹H NMR δ 1.34 (s, 12H), 4.84 (dd, J = 6.8, 2.0 Hz, 2H), 5.45-5.47 (m, 1H), 7.16 (t, J = 6.8 Hz, 1H), 7.28-7.40 (m, 5H); ¹³C NMR δ 24.9, 77.3, 83.2, 94.5, 118.8 (br), 127.5, 127.8, 127.9, 142.1, 156.1, 212.9; ¹¹B NMR δ 29.3; HRMS (EI) calcd for C₁₇H₂₁O₂B 268.1635, found 268.1640.

(E)-2-Phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-1,3,4-

triene (2b): According to the procedure analogous to that described for 2a, 2b (59 mg, 11%) was prepared from 1 (784 mg, 2.0 mmol) and 3-chloro-1-butyne (352 mg, 4.0 mmol). 2b: ¹H NMR δ 1.32 (s, 12H), 1.62 (dd, J = 7.2, 3.3 Hz,

3H), 5.15 (ddq, J = 6.3, 1.4, 7.1 Hz, 1H), 5.42 (dd, J = 1.2, 0.6 Hz, 1H), 7.05 (d sext, J = 0.6, 3.2 Hz, 1H), 7.26-7.36 (m, 5H); ¹³C NMR δ 13.5, 24.9, 83.1, 87.7, 94.6, 118.4 (br), 127.5, 127.7, 127.9, 142.5, 157.3, 209.8; HRMS (EI) calcd for C₁₈H₂₃O₂B 282.1791, found 282.1793.

(Z)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-

(trimethylsilyl)-2-(trimethylstannyl)pent-1-en-4-yne (3): According to the procedure analogous to that described for 1, 3 (2.23 g, 52%) Me₃Si was prepared from bis(diethylamido)(trimethylstannyl)borane (3.19 g, 10 mmol) and 1-(trimethylsilyl)penta-1,4-diyne (1.62 g, 12.0 mmol). 3: ¹H NMR δ 0.15 (s, 9H), 0.20 (s, ${}^{2}J_{\text{Sn-H}} = 55.8, 53.4 \text{ Hz}, 9\text{H}$), 1.25 (s, 12H), 3.29 (d, $J = 1.7 \text{ Hz}, {}^{3}J_{\text{Sn-H}} = 34.2 \text{ Hz}, 2\text{H}$), 6.39 (t, J = 1.7 Hz, ${}^{3}J_{\text{Sn-H}} = 149.3$ Hz, 1H); 13 C NMR δ -6.4 (${}^{1}J_{\text{Sn-C}} = 353.7$, 338.6 Hz), 0.1, 24.8, 35.2, 83.3, 88.7, 103.9, 130.9 (br), 169.3; HRMS (EI) calcd for $C_{16}H_{30}BO_2SiSn (M^+ - Me)$ 413.1130, found 413.1129.

 $(Z) \hbox{-} 2 \hbox{-} Phenyl \hbox{-} 1 \hbox{-} (4,4,5,5 \hbox{-} tetramethyl \hbox{-} 1,3,2 \hbox{-} dioxaborolan \hbox{-} 2 \hbox{-} yl) \hbox{-} 5 \hbox{-} 5$ (trimethylsilyl)pent-1-en-4-yne (3'): To a DMF solution (2.0 mL) of

PhCH₂PdCl(PPh₃)₂ (37 mg, 0.050 mmol) and CuI (19 mg, 0.10 Me₃Si mmol) were added iodobenzene (244 mg, 1.2 mmol) and 3 (4.27 g, 1.0 mmol), and the mixture was stirred for 1 h at room temperature and then for 3 h at 90 °C. The reaction mixture was passed through a plug of Florisil[®] and concentrated. The residue was subjected to column chromatography on silica gel (hexane:AcOEt = 9:1) to afford 3' (82 mg, 24%). **3':** ¹H NMR δ 0.16 (s, 9H), 1.12 (s, 12H), 3.38 (d, J = 1.7 Hz, 2H), 5.91 (t, J = 1.7 Hz, 1H), 7.22-7.31 (m, 5H); ¹³C NMR δ0.1, 24.6, 31.2, 83.1, 88.7, 103.1, 117.6 (br), 127.5, 127.6, 127.7, 141.9, 154.5; HRMS (EI) calcd for C₂₀H₂₉BO₂Si 340.2030, found 340.2030.

(Z)-4-Phenyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)penta-**1,2,4-triene (4):** To a MeOH solution (1.0 mL) of **3**' (47.4 mg, 0.14 mmol)

was added MeOH solution (1.0 mL) of NaOH (40 mg, 1.0 mmol), and the mixture was stirred for 24 h at room temperature. To the mixture were added saturated NH₄Cl aqueous solution and brine, and the mixture was extracted with ether, dried over Na₂SO₄, and concentrated. The residue was subjected to flash chromatography on silica gel (hexane:AcOEt = 9:1) followed by HPLC purification (hexane:AcOEt = 20:1) to afford 4 (6 mg, 16%). 4: ¹H NMR δ 1.10 (s, 12H), 4.81 (dd, J = 6.5, 1.4 Hz, 2H), 5.58 (d, J = 0.6 Hz, 1H), 6.11 (dt, J = 0.6, 6.5 Hz, 1H), 7.21-7.30 (m, 5H); ¹³C NMR δ 24.6, 78.0, 99.2, 127.1,

127.4, 128.9, 139.8, 154.3, 211.8; ¹¹B NMR δ 29.4.

3-Methylene-1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)cyclobutene (5a). A xylene solution (5.0 mL) of 2a (156 mg, 0.58 mol) was heated for 3 h at 140 °C. After evaporating the solvent, the residue was subjected to flash chromatography on silica gel (hexane:AcOEt = 9:1) to afford 5a (150 mg, 96%). 5a: ¹H NMR δ 1.22 (s, 6H), 1.24 (s, 6H), 3.19 (s, 1H), 4.58 (s, 1H), 4.84 (d, J = 1.5 Hz, 1H), 6.61 (s, 1H), 7.22-7.38 (m, 3H), 7.41-7.46 (m, 2H), ¹³C NMR δ 24.5, 24.7, 35.7 (br), 83.5, 99.3, 125.6, 126.5, 128.2, 128.3, 133.7, 144.8, 151.6; HRMS (EI) calcd for C₁₇H₂₁O₂B 268.1635, found 268.1636.

minor), 1.79 (d, J = 6.9 Hz, 1H, major), 3.13 (s, 1H, major), 3.18 (s, 1H, minor), 4.96 (q, J = 6.9 Hz, 1H, major), 5.30 (dq, J = 1.5, 6.9 Hz, 1H, minor), 6.60 (d, J = 1.5 Hz, 1H, minor), 6.79 (d, J = 1.2 Hz, 1H, major), 7.19-7.45 (m, 5H); ¹³C NMR δ 13.8, 14.4, 24.48, 24.54, 24.65, 24.71, 33.8 (br), 83.4, 83.5, 109.9, 110.2, 124.5, 125.2, 125.3, 126.4, 127.8, 127.9, 128.2, 134.2, 136.9, 138.1, 147.7, 149.7 [some signals are overlapping]; HRMS (EI) calcd for C₁₈H₂₃O₂B 282.1791, found 282.1794.

Stereochemical Assignment of 5b. The two isomers, (*Z*)- and (*E*)-5b, were subjected to NOE experiments. No NOE between the cyclobutene vinyl proton (δ 6.79) and the ethylidene vinyl proton (δ 4.96) was observed for (*Z*)-5b, whereas NOE between the cyclobutene vinyl proton and the ethylidene methyl proton (δ 1.79) was observed. On the other hand, an NOE between the cyclobutene vinyl proton (δ 6.60) and the ethylidene vinyl proton (δ 5.30) was observed for (*E*)-5b.

(4-Methylene-2-phenylcyclobut-2-enyl)phenylmethanol (13). A xylene ph $\stackrel{\text{Ph}}{\longrightarrow}$ solution (2.0 mL) of vinylallene 2a (132 mg, 0.49 mmol) was heated for 5 h at 140 °C to afford 5a. To the solution was added benzaldehyde (72 mg, 0.68 mmol) at room temperature, and the mixture was heated for 48 h at 80 °C. The reaction mixture was acidified with 0.1 N HCl (5 mL), extracted with ether, dried over MgSO₄, and concentrated. The residue was subjected to column chromatography on silica gel (hexane:ether = 3:1) to give 13 as a diastereomeric mixture (87 mg, 71%, 17:1 by ¹H NMR). 13: ¹H NMR δ 2.10 (d, *J* = 4.8 Hz, 1H), 4.07 (dt, *J* = 4.5, 1.2 Hz, 1H), 4.40 (s, 1H), 4.76 (d, *J* = 1.5 Hz, 1H), 5.15 (t, *J* = 4.7 Hz, 1H), 6.63 (d, *J* = 0.6 Hz, 1H), 7.25-7.42 (m, 10H); ¹³C NMR δ 55.5, 73.1, 99.9, 126.0, 126.1, 127.3, 128.0, 128.4, 128.6, 130.7, 133.0, 142.7, 145.0, 152.2; HRMS (EI) calcd for C₁₈H₁₆O 248.1201, found 248.1200. For the minor diastereomer: ¹H NMR δ 4.02 (d, *J* = 6.9 Hz, 1H), 4.18 (s, 1H), 4.68 (d, *J* = 1.2 Hz, 1H), 4.95 (d, *J* = 7.2 Hz, 1H), 6.60 (s, 1H), the remaining signals were not resolved.

Kinetic Studies on Ring-Closing Reactions of Boryl-Substituted Vinylallenes 2a, 2b, and 4

Rate Measurements: The ring-closing reactions of **2a**, **2b**, and **4** were monitored using ¹H NMR spectroscopy. The boryl-substituted vinylallene was dissolved in benzene- d_6 or o-xylene- d_{10} . The solution in an NMR tube was heated in a temperature-controlled oil bath at the specified temperature. The reaction was intercepted at intervals, and the ¹H NMR spectrum was recorded. The conversion was determined on the basis of the ¹H NMR integrations of the allenic (vinylic) protons of the reactants and products. The %conversion versus time data were subjected to least-squares analysis.

T	•	\mathbf{n}	•	D	. •	•	•
ĸ	ing_	114	ncina	K 0.0	otion	A t	19
17	<u>лпх-</u> ,		JSIII Z	inca	CHUH	υı	<u>4</u> a

90 °C		100) °C	110 °C		120 °C	
time/h	conv./%	time/h	conv./%	time/h	conv./%	time/h	conv./%
0	0.0	0	0.0	0	0.0	0	0.0
1	5.5	1	15.8	1	39.9	1	67.9
4	21.4	2	28.1	2	62.0	2	86.5
16	62.2	3	35.9	3	75.0	3	94.2
21	72.2	5	53.6				
		7	65.5				

2

time/h

З

0.4

0.2 0.0

¥ 0

1

4

$T(^{\circ}\mathrm{C})$	$k (s^{-1})$	$1000/T (K^{-1})$	lnk
90	1.69×10^{-5}	2.75	-11.0
100	4.25×10^{-5}	2.68	-10.1
110	1.31×10^{-4}	2.61	-8.94
120	2.72×10 ⁻⁴	2.54	-8.21

Arrhenius Plot -7 2.50 2.55 2.60 2.65 2.70 2.75 2.80 -8 y = -13.506x + 26.195 $R^2 = 0.9954$ -9 ЧЧ -10 -11 -12 1000/*T*

 $\ln A = 26.2; A = 10^{11.4} \text{ s}^{-1}$

 $E_{\rm a} = 1000R \times 13.5 = 26.8 \text{ kcal/mol}$

Ring-Closing Reaction of 2b

11	0 °C	12	0 °C	130 °C	
time/h	conv./%	time/h conv./%		time/h	conv./%
0	0.0	0	0.0	0	0.0
1	7.2	1	18.6	1	42.9
2	13.6	2	33.6	2	62.0
3	19.2	3	41.2	3	75.5
4	24.4	4	49.5	4	84.2
5	28.9	5	56.9		

Ring-Closing Reaction of 4

10	0 °C	11	110 °C 1		20 °C		
time/h	conv./%	time/h	conv./%	time/h	conv./%		
0	0.0	0	0.0	0	0.0		
5	2.2	5	7.4	1	3.9		
10	4.5	10	14.4	2	8.6		
15	6.9	20	28.4	3	13.0		
20	9.4	35	47.3	4	17.5		
		60	63.7	5	22.1		

5

1000/*T*

S21