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Supporting Information 

Derivation and application of equations (1; here equal to 4) and (2; here 7) 

 

In order to extract an approximate time constant from the quenching curves given in Figure 1, we 

applied the Stern-Volmer equation:  
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where F/F0 is the relative fluorescence as a function of the quencher concentration cq and a Stern-

Volmer constant Kq. cq is the time-dependent concentration of the quencher at the nanowell’s bottom in 

a parallel position to the bottom porphyrin. The differential equation, which would describe the 

restricted movement to reach this position is Fick’s second law using an average diffusion constant for 

a one-dimensional diffusion into a membrane. Its solution is deduced from the equation for a one-

dimensional diffusion of a solute out of a membrane9 and is represented by a damped Fourier series: 
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co corresponds to the concentration of the solute in the bulk solution and l is the height of the 

nanowell. The time-dependent concentration cq of equation 1 is the concentration c(l/2,t) at x = l/2: 
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There is a conceptional difficulty with this formula in our case. According to Fick’s law, diffusion 

follows a concentration gradient, but in our experiments the porphyrin concentration in bulk solution 

is 10-6 M, whereas one porphyrin in one nanowell means 0.2 M. In order to keep the “diffusion” going 

we assume irreversible trapping at the bottom and an average concentration of the not-yet trapped 

porphyrins over all the wells. Trapped porphyrins are not counted. In this manner, the concentration 

within the nanowells never exceeds the bulk concentration and combination of the Fourier series with 
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the Stern-Volmer equation leads to equations (4) for the time-dependent fluorescence decay in 

nanowells with the height l. 
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or more generally:            
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Many of the experimental quenching curves in Figure 1 can indeed be described by this formula (see 

Fig. 2a,b). An are the amplitudes of the exponential functions with the time constants tn, which are 

correlated by n2(6). Thus one decay function is characterized by one time constant t1 only (7): 
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Equation (7) corresponds to the law of Einstein-Smoluchowsky and can be used to calculate the 

diffusion constant D. Applying equation (5) we have taken into account three terms of the Fourier 

series for all the curves of Figure 1. We have also tried an additional exponential term with tm = t1/2, 

which corresponds to the term cq

2, appropriate for irreversible trapping. Fitting of the curves did, 

however, not improve. We therefore skipped this complication and applied the simpler function as 

given by (5). This equation with one independent time constant t1 only gave excellent fits for the 

water-soluble porphyrins 3a and 3b; especially the sigmoid decay in case of the 15 Å-deep wells was 

reproduced perfectly. The curve of Figure 2a for porphyrin 3a was calculated with a time constant of 

21000 s and a diffusion constant of D = 10-23 m2s-1 was determined. In the cases where the fitting with 

one time constant only was less perfect, the calculated curves were always reasonably close and we got 

time constants between 1300 and 37000 (Figure 2a). It also turned out that the Einstein-

Smoluchowsky law for unrestricted diffusion (eq. 6) is not strictly valid. We nevertheless used (6) to 



Sorting in Nanowells, JACS,21.6.04 

Sorting in Nanowells, JACS,21.6.04 

3

calculate diffusion constants D between 6x10-24 m2s-1 and 3x10-23 m2s-1. D thus varied only by a factor of 

5 using different quencher molecules, solvents and depths of nanowells. The order of magnitude is 

clearly 10-24 – 10-23 m2s-1. It was found that relative values of D clearly responded to minor changes of 

the diameter of the quencher molecules. D for the meta-methylpyridinium isomer 3b, for example, was 

larger by a factor of two as compared to the larger para-isomer 3a. The viscosity of the solvent also 

played a role6 (DCHCl3 > DEtOH > DH2O; compare Figure 1), but different sizes and solubilities of the 

applied porphyrins in different solvents did not allow for meaningful comparisons. A hint comes from 

the temperature dependence of the time constant (Fig. 2c). A higher temperature accelerates the 

quenching process and decreases the amplitude of the slow phase. Since the latter effect is not 

included in formula (6), we determined only the half time of the fast phase. Its temperature 

dependence followed an Arrhenius function with an activation energy of 2.7 kcal/Mol.  

 

 

 

 


