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SUPPLEMENTARY MATERIAL 

 

ANNEX I: 

 

 

Figure A1.1: Information of the cruise data: Profiles of the measured gas and aerosol phase POP 

concentrations and sketch of the sampling routes. 
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ANNEX II:  

Annex 2 aims to obtain the mass fraction of aerosols of size i (wi) from parameters given by 

MODIS: reff and log(σeff). 

 

Pre-assumptions on the general structure of the size distribution are required in the inversion of 

MODIS data. The usual approach is to consider that the size distribution of the aerosol particles 

follows a lognormal distribution (1-3), which is the assumption behind MODIS dataset, 
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where N(D) (µm-1 m-3) is the number distribution function, thus N(D)dD is the number 

concentration of particles having diameters in the range D to D+dD. Ntot is the total aerosol 

number concentration (m-3), Dg (µm) is the median diameter, corresponding to 2 rg,(µm) and 

log(σD,g) (log µm) is the geometric standard deviation of the particle diameter, which 

corresponds to log(2)+log(σr,g). rg and log(σr,g) are derived from reff and log(σeff), through 

equations 4 and 5 described in the paper. The effective radius, reff,  is defined as the area 

weighted mean through the following equation (4): 

 

 

[A.2] 

 

 

Through mathematical relationships, and assuming all particles as spheres, it is seen that the 

volume distribution is also a log-normal with the same geometric standard deviation as the 

number distribution, but with the volume median diameter Dvg (µm) given by (2): 
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The volume of particles lying between an specific range of aerosol diameters (between Dmin 

(µm) and Dmax (µm)) is defined through the following relationship (2): 
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where erf is the error function defined as:  
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Assuming equal density for all the size spectrum of aerosols (ρP= 2 g cm-3), the mass fraction 

between a range of diameters (wi) is equivalent to the volume fraction. Hence, if we account for 

the range of diameters retrieved by the MODIS satellite (0.1-20 µm):   
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ANNEX III:  

This section includes the method used to model dry deposition velocity to natural water surfaces, 

performed through an adaptation from the Williams model (5). This model includes effects of 

spray formation during high wind speed periods, effects of particle growth due to high relative 

humidities, the variation of turbulent transport with wind speed, and surface roughness. 
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It separates the atmosphere below a reference height (10m) into two layers, as suggested by 

Slinn and Slinn (6). The model parameterizes transport through an upper layer to an underlying 

laminar sublayer and provides different paths for smooth water and water broken by whitecaps. 

Gravitational settling is superimposed on transport through both layers. The gravitational settling 

velocity vS (cm s-1) , either referred to dry particle diameter (then vS_dry) or wet particle diameter 

(then vS_wet ), is given by Stokes Law as: 
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where Dp is the particle diameter (µm) either in dry conditions (Ddry) or in humid conditions 

(Dwet), ρp the particle density (g cm-3), assumed constant and equal to 2  g cm-3, g is the 

acceleration due to gravity (9.8 m s-2), CC is the Cunningham correction factor (dimensionless), 

µ the dynamic viscosity of the air (g cm-1 s-1). 

The Cunningham correction factor is (2): 
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where λ is the air mean free path (7.63*10-6 cm  at 298K). 

Conversely, the dynamic viscosity of the air (µ, g cm-1 s-1), for T> 273K is given by (4), 
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The wet particle diameter (Dwet , µm) results from the increase of the dry particle diameter (Ddry , 

µm) due to humidity, and it is estimated according to Fitzgerald’s formulation (7) , assuming a 

relative humidity around 80%:  
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Hygroscopic growth has been found to be an important factor (8); other factors such as waves (9) 

(not only white caps) can affect but they are not taken into account here by means of simplicity 

and restrained by the input and available parameters retrieved from remote sensing. 

The aerodynamic or turbulent transfer coefficient (kax, cm s-1) is used to characterize the 

turbulent transport in the overlying constant flux layer. Assuming neutral atmosphere, it is given 

by (2): 
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where the subscript x is either s (then kas, smooth surface transfer coefficient) or b (then kab, 

broken surface transfer coefficient) , κ is von Karman’s constant=0.4, u* the friction velocity 

(cm s-1), z is the reference height (taken=1000 cm), z0x is the roughness length (assumed equal to 

0.1 cm for broken open sea and 0.01 cm for calm open sea (2)). 

The friction velocity u* is parameterized versus the mean wind speed retrieved by the satellite 

(u10, cm s-1) (6):  

 

DCu*u 10=            [A.13] 

 

where Cd=1.3*10-3  is the drag coefficient in  reference height of 10 m (6)  

 

Transport through the sublayer (kxs, cm s-1) incorporates Brownian diffusion and inertial 

impaction.  When referred to the smooth water surface it is characterized by the transfer 

coefficient kss, (cm s-1):  
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where St (dimensionless) is the Stokes number =(u*)2vs_wet /gν, ν (cm2 s-1) is the kinematic 

viscosity =104(µ/ρair ), ρair  (kg m-3) the density of air and equals (10*28.96*P)/(R*10-3*T), R is 

the gas constant; Sc (dimensionless) is the Schmidt number (Sc =ν / Dc ) and Dc ( cm2 s-1) is the 

diffusivity of the particles ≈ (2.38*10-7/Dwet)(1+0.163/Dwet+0.0548exp(-6.66Dwet)/Dwet));  



 7

On the other hand when referred to the broken surface transfer coefficient (kbs,), it is assumed to 

be 10 cm s-1 (5). 

 

Since wind speeds estimations by remote sensing are monthly averages, it is important to 

account for the short-term variability and nonlinear influence of wind speed on St and kss. It has 

been assumed an oceanic Weibull distribution of wind speed with a shape parameter of 2, 

described in Livingstone and Imboden  (10). Thus,  
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F(u10) corresponds to the probability of a measured wind speed exceeding a given value u10, with 

the scale parameter η 
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Finally, the dry deposition velocity (vD, cm s-1) is obtained through the following equation, 

obtained by applying the resistance method with the transfer coefficients described above (5): 
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where  
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The fraction of area that has a broken surface is represented by α. This value is strongly 

dependent on wind speed (u10, cm s-1) and can be calculated as (5):  

75.32
10

6 )10u(107.1α
−−×=          [A.21] 

 

The lateral transfer coefficient (km, cm s-1) is assumed equal kas (5)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A3.1: Dry deposition velocity versus aerosol diameter for different wind speeds.  

Assumptions for this figure are sea surface temperature of 298K, relative humidity about 80 %, 

and aerosol density of 2 g cm-3. 
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FIGURE  A3.2: Latitudinally averaged profiles of dry deposition velocity and wind speed over 

the Atlantic Ocean.  
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ANNEX IV 

 

 

 

 

Figure A4.1: Comparison of gross absorption and dry aerosol deposition fluxes of PCBs and 

PCDD/Fs. Values correspond to averaged fluxes to the Atlantic Ocean. 
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