Supporting Information

Generation of an abasic site in oligonucleotide by using acid-labile 1-deaza-2'-deoxyguanosine and its application to post-synthetic modification

Naoshi Kojima, Maiko Sugino, Akiko Mikami, Eiko Ohtsuka and Yasuo Komatsu*
Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science \& Technology (AIST Hokkaido), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan

MATERIALS AND METHODS

General information.

Physical data were measured as follows: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL FTNMR spectrometer in DMSO- d_{6} as the solvent with tetramethylsilane as an internal standard. Chemical shifts are reported in parts per million (δ), and signals are expressed as s (singlet), d (doublet), t (triplet), m (multiplet), or br (broad). All exchangeable protons were detected by disappearance on the addition of $\mathrm{D}_{2} \mathrm{O}$. Mass spectra were recorded on JEOL JMS-FABmate (FAB-MS) at Center for Instrumental Analysis, Hokkaido University. TLC was done on Merck silica gel $60 \mathrm{~F}_{254}$ precoated plates (Merck, Germany). Silica gels used for column chromatography was ICN Silica $60 \AA$ (particle size 63-200 $\mu \mathrm{m}$) (ICN Biomedicals, Belgium).

3-[2'-Deoxy-5'- O-(4,4'-dimethoxytrityl)- β-D-ribofuranosyl]-5-(N, N-di-tert-butyl-formamidino)amino-7-(N, N-diphenylcarbamoyl)oxyimidazo[4,5- b]pyridine (4).

A mixture of 3-(2'-deoxy- β-D-ribofuranosyl)-5-(N, N-di-tert-butylformamidino)-amino-7-(N, N -diphenylcarbamoyl)oxyimidazo[4,5-b]pyridine (3) (490 mg, 0.82 mmol) and dimethoxytrityl chloride ($560 \mathrm{mg}, 1.64 \mathrm{mmol}$) in pyridine (15 ml) was stirred at room temperature for 1 h . After $\mathrm{EtOH}(3.0 \mathrm{ml})$ was added to the mixture, the solvent was removed in vacuo. The residue was dissolved in $\mathrm{AcOEt}(120 \mathrm{ml})$, which was washed with aqueous NaHCO_{3} (saturated, 40 ml), $\mathrm{H}_{2} \mathrm{O}$ $(40 \mathrm{ml} \times 2)$, brine $(40 \mathrm{ml})$, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($3.0 \times 12 \mathrm{~cm}, 70 \% \mathrm{AcOEt}$ in hexane) to give 4 ($606 \mathrm{mg}, 82 \%$) as a pale yellow foam.
FAB-LRMS m/z $903\left(\mathrm{MH}^{+}\right)$.
FAB-HRMS Calcd. for $\mathrm{C}_{54} \mathrm{H}_{59} \mathrm{~N}_{6} \mathrm{O}_{7}\left(\mathrm{MH}^{+}\right) 903.4445$, found 903.4445.
${ }^{1} \mathrm{H}$ NMR (270 MHz, DMSO- d_{6}) $\delta: 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 8 \mathrm{H})$, $7.33-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 7 \mathrm{H}), 6.80-6.72(\mathrm{~m}, 4 \mathrm{H}), 6.45(\mathrm{t}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 5.35(\mathrm{~d}, 1$ $\mathrm{H}, J=4.6 \mathrm{~Hz}), 4.43(\mathrm{ddt}, 1 \mathrm{H}, J=4.34 .6,6.6 \mathrm{~Hz}), 3.95(\mathrm{ddd}, 1 \mathrm{H}, J=3.3,4.3,6.6 \mathrm{~Hz}), 3.67$ (s, 3 H), $3.65(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 3.25(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.22(\mathrm{dd}, 1 \mathrm{H}, J=6.6,9.9$ $\mathrm{Hz}), 3.11(\mathrm{dd}, 1 \mathrm{H}, J=3.3,9.9 \mathrm{~Hz}), 2.85(\mathrm{dt}, 1 \mathrm{H}, J=6.6,13.2 \mathrm{~Hz}), 2.35(\mathrm{ddd}, 1 \mathrm{H}, J=4.6,6.6$, $13.2 \mathrm{~Hz}), 1.62-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.17(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}), 0.85(\mathrm{t}, 3 \mathrm{H}, J=7.2$ Hz).
${ }^{13} \mathrm{C}$ NMR (67.8 MHz, DMSO- d_{6}) $\delta: 159.52$ (C), 157.59 (C), 157.54 (C), 154.42 (CH), 151.05 (C),
149.42 (C), 146.77 (C), 144.54 (C), 141.79 (C), 140.69 (CH), 135.20 (C), 135.14 (C), 129.31 $(\mathrm{CH}), 129.21(\mathrm{CH}), 128.88(\mathrm{CH}), 127.38(\mathrm{CH}), 127.27(\mathrm{CH}), 126.72(\mathrm{CH}), 126.48(\mathrm{CH}), 126.23$ $(\mathrm{CH}), 123.68(\mathrm{C}), 112.76(\mathrm{CH}), 105.90(\mathrm{CH}), 85.37(\mathrm{CH}), 85.12(\mathrm{C}), 82.53(\mathrm{CH}), 70.54(\mathrm{CH})$, $64.13\left(\mathrm{CH}_{2}\right), 54.73\left(\mathrm{CH}_{3}\right), 54.68\left(\mathrm{CH}_{3}\right), 50.43\left(\mathrm{CH}_{2}\right), 44.13\left(\mathrm{CH}_{2}\right), 38.79\left(\mathrm{CH}_{2}\right), 30.51\left(\mathrm{CH}_{2}\right)$, $28.57\left(\mathrm{CH}_{2}\right), 19.57\left(\mathrm{CH}_{2}\right), 19.05\left(\mathrm{CH}_{2}\right), 13.67\left(\mathrm{CH}_{3}\right), 13.46\left(\mathrm{CH}_{3}\right)$.

3-[2'-Deoxy-5'-O-(4,4'-dimethoxytrityl)-3'- O-succinyl- β-D-ribofuranosyl]-5-(N, N-di-tert-butylformamidino)amino-7-(\mathbf{N}, N-diphenylcarbamoyl)oxyimidazo[4,5-b]pyridine (5).

A mixture of $4(220 \mathrm{mg}, 0.24 \mathrm{mmol})$, succinic anhydride ($72 \mathrm{mg}, 0.72 \mathrm{mmol}$), and DMAP (29 $\mathrm{mg}, 0.24 \mathrm{mmol})$ in pyridine $(4.0 \mathrm{ml})$ was stirred at room temperature for 2 days. After $\mathrm{H}_{2} \mathrm{O}(0.5$ $\mathrm{ml})$ was added, the mixture was concentrated in vacuo. The residue was dissolved in $\mathrm{CHCl}_{3}(70$ ml), which was washed with aqueous $\mathrm{KH}_{2} \mathrm{PO}_{4}$ (saturated, $25 \mathrm{ml} \times 2$), brine (25 ml), then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by silica gel column chromatography ($2.5 \times 10 \mathrm{~cm}, 5 \% \mathrm{EtOH}$ in CHCl_{3}) to give $5(219 \mathrm{mg}, 92 \%)$ as a pale yellow foam.
FAB-LRMS m/z $1003\left(\mathrm{MH}^{+}\right)$.
FAB-HRMS Calcd. for $\mathrm{C}_{58} \mathrm{H}_{63} \mathrm{~N}_{6} \mathrm{O}_{10}\left(\mathrm{MH}^{+}\right)$1003.4606, found 1003.4605.
${ }^{1} \mathrm{H}$ NMR (270 MHz , DMSO- d_{6}) $\delta: 8.44$ (s, 1 H), 8.31 ($\mathrm{s}, 1 \mathrm{H}$), $8.30(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 8 \mathrm{H})$, $7.31-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 7 \mathrm{H}), 6.78-6.72(\mathrm{~m}, 4 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{t}, 1 \mathrm{H}, J=6.5$ $\mathrm{Hz}), 5.57(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{ddd}, 1 \mathrm{H}, J=3.6,4.0,6.3 \mathrm{~Hz}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{t}, 2 \mathrm{H}$, $J=7.3 \mathrm{~Hz}), 3.24(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.31(\mathrm{dd}, 1 \mathrm{H}, J=6.3,10.2 \mathrm{~Hz}), 3.16(\mathrm{dd}, 1 \mathrm{H}, J=3.6,10.2$ $\mathrm{Hz}), 2.55-2.47(\mathrm{~m}, 6 \mathrm{H}), 1.59-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, J=7.3$ $\mathrm{Hz}), 0.82(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR (67.8 MHz, DMSO- d_{6}) $\delta: 172.92$ (C), 171.48 (C), 159.51 (C), 157.61 (CH), 157.57 (C), 154.37 (C), 151.03 (C), 149.50 (C), 146.48 (C), 144.35 (C), 141.79 (C), 141.42 (CH), 135.10 (C), $135.02(\mathrm{C}), 129.22(\mathrm{CH}), 129.12(\mathrm{CH}), 128.88(\mathrm{CH}), 127.37(\mathrm{CH}), 127.20(\mathrm{CH}), 126.74(\mathrm{CH})$, $126.48(\mathrm{CH}), 126.25(\mathrm{CH}), 123.93(\mathrm{C}), 112.75(\mathrm{CH}), 106.24(\mathrm{CH}), 85.25(\mathrm{C}), 83.07(\mathrm{CH}), 82.46$ $(\mathrm{CH}), 78.94(\mathrm{CH}), 73.97(\mathrm{CH}), 63.41\left(\mathrm{CH}_{2}\right), 54.71\left(\mathrm{CH}_{3}\right), 54.68\left(\mathrm{CH}_{3}\right), 50.35\left(\mathrm{CH}_{2}\right), 44.10\left(\mathrm{CH}_{2}\right)$, $35.32\left(\mathrm{CH}_{2}\right), 30.51\left(\mathrm{CH}_{2}\right), 28.67\left(\mathrm{CH}_{2}\right), 28.56\left(\mathrm{CH}_{2}\right), 28.54\left(\mathrm{CH}_{2}\right), 19.57\left(\mathrm{CH}_{2}\right), 19.01\left(\mathrm{CH}_{2}\right)$, $13.65\left(\mathrm{CH}_{3}\right)$, $13.43\left(\mathrm{CH}_{3}\right)$.

3-[2'-Deoxy-5'-O-(4,4'-dimethoxytrityl)- β-D-ribofuranosyl]-5-(N, N-di-tert-butylform-amidino)amino-7-(N, N-diphenylcarbamoyl)oxyimidazo[4,5-b]pyridine 3 '-CPG units (6).

To a solution of $5(140 \mathrm{mg}, 0.14 \mathrm{mmol})$ and 1-[(3-dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (WSC, $27 \mathrm{mg}, 0.14 \mathrm{mmol}$) in DMF (5 ml) was added CPG (CPG Inc., 400 mg) and the mixture was agitated at room temperature for 5 days. The resin was washed with DMF (5 $\mathrm{ml} \times 3$), pyridine ($5 \mathrm{ml} \times 3$), $\mathrm{EtOH}(5 \mathrm{ml} \times 3)$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml} \times 3)$, and then dried under vacuum. To the resin was added capping solution (0.1 M DMAP in pyridine/acetic anhydride $9: 1$, 5 ml) and the mixture was agitated at room temperature for 2 h . The resin was washed with pyridine $(5 \mathrm{ml} \times 2)$, $\mathrm{EtOH}(5 \mathrm{ml} \times 3)$, and acetone $(5 \mathrm{ml} \times 3)$ to give $\mathbf{6}(32.5 \mu \mathrm{~mol} / \mathrm{g})$.

