Supporting Information

W(CO) $)_{5}(\mathrm{~L})$-Catalyzed Formal Cope Rearrangement of Allenyl Silyl Enol Ethers

Tomoya Miura, Koichi Kiyota, Hiroyuki Kusama, and Nobuharu Iwasawa
Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan

General. All operations were performed under an argon atmosphere. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker DRX500, a JEOL AL-400, or a JEOL Lambda-400 spectrometer using $\mathrm{CHCl}_{3}\left({ }^{1} \mathrm{H}, \delta=7.24\right), \mathrm{C}_{6} \mathrm{H}_{6}\left({ }^{1} \mathrm{H}, \delta=7.15\right)$ and $\mathrm{CDCl}_{3}\left({ }^{13} \mathrm{C}, \delta=77.0\right)$ as internal standards. IR spectra were recorded on a JASCO FT/IR-460 plus spectrometer. Photochemical reactions were performed with an USHIO INC. super high-pressure mercury lamp. Flash column chromatography was conducted on silica gel (Kanto 60N) and preparative thin-layer chromatography (PTLC) was carried out on silica gel (Wakogel B-5F). Tetrahydrofuran was freshly distilled from sodium benzophenone ketyl, and all other solvents were distilled according to the standard procedures and stored over molecular sieves or $\mathrm{KOH} . \mathrm{W}(\mathrm{CO})_{6}$ was purchased from Soekawa Chemical Co., Ltd and used without further purification.

Synthesis of acyclic 5-siloxyhexa-1,2,5-triene (1a-1e)

3,3-Dimethyl-4-phenylhexa-4,5-dien-2-ol (IIa)

To a THF (10 mL) solution of 2,2-dimethyl-3-phenylpenta-3,4-dienal $\mathbf{I}(\mathbf{a}, \mathbf{b})^{1}(2.0 \mathrm{~g}, 11 \mathrm{mmol})$ was added a 0.93 M THF solution of methylmagnesium bromide ($13.7 \mathrm{~mL}, 13 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After 10 minutes, the reaction was quenched with pH 7 phosphate buffer. The aqueous layer was extracted with ether three times, and the combined extracts were washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by silica-gel column chromatography (hexane:ethyl acetate=10:1) to give IIa ($1.9 \mathrm{~g}, 9.5 \mathrm{mmol}$) in 89%
(1) Jean, C.; Pierre, C. C. R. Acad. Sci., Ser. C 1970, 270, 2077.
yield as colorless oil.
IR (neat): $3428,3054,2973,1948,1069 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=1.03(3 \mathrm{H}, \mathrm{s}), 1.11$ $(3 \mathrm{H}, \mathrm{s}), 1.16(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}), 1.86(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.79(1 \mathrm{H}, \mathrm{q}, J=6.5 \mathrm{~Hz}), 4.82(2 \mathrm{H}, \mathrm{s}), 7.20-7.32$ $(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=17.1,21.6,23.7,42.0,71.9,75.8,112.0,127.0,128.0$, 129.4, 136.7, 207.2; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}: \mathrm{C} 83.12$, H 8.97. Found: C 82.84, H 8.97.

4,4-Dimethyl-5-phenylhepta-5,6-dien-3-ol (IIb)

Alkylation of 2,2-dimethyl-3-phenylpenta-3,4-dienal $\mathbf{I}(\mathbf{a}, \mathbf{b})^{1}$ using a THF solution of EtMgBr was carried out according to the same procedure as described above to give IIb in 57% yield as colorless oil.
IR (neat): 3434, 3054, 2970, 1948, $1465 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=0.99(3 \mathrm{H}, \mathrm{t}, J=7.5$ $\mathrm{Hz}), 1.04(3 \mathrm{H}, \mathrm{s}), 1.11(3 \mathrm{H}, \mathrm{s}), 1.26-1.40(1 \mathrm{H}, \mathrm{m}), 1.58-1.70(1 \mathrm{H}, \mathrm{m}), 1.79(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.41(1 \mathrm{H}, \mathrm{dd}$, $J=10.4,1.7 \mathrm{~Hz}), 4.81(2 \mathrm{H}, \mathrm{s}), 7.15-7.35(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=11.6,22.6$, 23.3, 24.2, 42.1, 75.7, 77.9, 112.1, 126.9, 128.0, 129.4, 136.7, 207.3; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}$ 83.28, H 9.32. Found: C 83.14, H 9.53.

3,3-Dimethyl-4-phenylhepta-4,5-dien-2-ol (IId)

Alkylation of 2,2-dimethyl-3-phenylhexa-3,4-dienal $\mathbf{I}(\mathbf{d}, \mathbf{e})^{1}$, which was prepared from 4-phenylbut-3-yn-2-ol and isobutyraldehyde, using a THF solution of MeMgBr was carried out according to the same procedure as described above to give IId in 42% yield. This compound was obtained as a diastereomeric mixture in a ratio of 1:1. The stereochemistry was not determined.
IR (neat): $3434,3056,2973,1953,1071 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz})$:(diastereomer mixture) $\delta=1.02(3.0 \mathrm{H}, \mathrm{s}), 1.08(1.5 \mathrm{H}, \mathrm{s}), 1.09(1.5 \mathrm{H}, \mathrm{s}), 1.17(3.0 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 1.70(3.0 \mathrm{H}, \mathrm{d}, J=6.8$ $\mathrm{Hz}), 1.82(0.5 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 1.85(0.5 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 3.77-3.83(1.0 \mathrm{H}, \mathrm{m}), 5.20-5.26(1.0 \mathrm{H}$, m), 7.16-7.31 (5.0H, m); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz})$:(diastereomer mixture) $\delta=14.8,14.9,17.0$, $17.1,21.6,21.7,23.98,24.01,42.6,42.7,71.9,72.0,86.65,86.70,112.05,112.10,125.2,126.7$, 129.3, 137.48, 137.49, 203.7, 203.8; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}: \mathrm{C} 83.28, \mathrm{H} 9.32$. Found: C 83.00, H 9.48 .

4,4-Dimethyl-5-phenylocta-5,6-dien-3-ol (IIe)

Alkylation of 2,2-dimethyl-3-phenylhexa-3,4-dienal $\mathbf{I}(\mathbf{d}, \mathbf{e})^{1}$ using a THF solution of EtMgBr was carried out according to the same procedure as described above to give IIe in 20% yield. This compound was obtained as a diastereomeric mixture in a ratio of $1: 1$. The stereochemistry was not determined.
IR (neat): $3434,3056,2970,1953,1465 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}):($ diastereomer mixture) $\delta=0.99-1.03(3.0 \mathrm{H}, \mathrm{m}), 1.028(1.5 \mathrm{H}, \mathrm{s}), 1.031(1.5 \mathrm{H}, \mathrm{s}), 1.095(1.5 \mathrm{H}, \mathrm{s}), 1.101(1.5 \mathrm{H}, \mathrm{s})$, $1.29-1.40(1.0 H, m), 1.62-1.68(1.0 \mathrm{H}, \mathrm{m}), 1.699(1.5 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.700(1.5 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz})$,
$1.73-1.74(0.5 \mathrm{H}, \mathrm{m}), 1.76-1.77(0.5 \mathrm{H}, \mathrm{m}), 3.40-3.44(1.0 \mathrm{H}, \mathrm{m}), 5.19-5.25(1.0 \mathrm{H}, \mathrm{m}), 7.21-7.32$ $(5.0 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz})$:(diastereomer mixture) $\delta=11.8,14.7,14.9,22.8,22.9$, 23.5, 23.6, 24.22, 24.25, 42.6, 42.7, 77.97, 78.02, 86.55, 86.61, 112.2, 112.3, 126.7, 127.9, 129.3, 137.55, 137.57, 203.8, 203.9; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}: \mathrm{C} 83.43$, H 9.63. Found: C 83.46, H 9.63.

3,3-Dimethyl-4-phenylhepta-4,5-dien-2-one (IIIa)

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ solution of IIa ($1.9 \mathrm{~g}, 9.5 \mathrm{mmol}$) were added TPAP ($125 \mathrm{mg}, 0.35 \mathrm{mmol}$), NMO ($1.75 \mathrm{~g}, 15 \mathrm{mmol}$), and MS $4 \mathrm{~A}(48 \mathrm{~g})$ at room temperature. After 1 hour, the reaction mixture was filtered through Celite ${ }^{\circledR}$, and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (hexane:ethyl acetate=10:1) to give IIIa (1.8 g, 9.0 mmol) in 95% yield as yellowish oil.
IR (neat): 3056, 2978, 1939, 1708, $1120 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=1.32(6 \mathrm{H}, \mathrm{s}), 2.16$ $(3 \mathrm{H}, \mathrm{s}), 5.17(2 \mathrm{H}, \mathrm{s}), 7.11-7.30(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=25.0,25.2,49.8,78.9$, 111.0, 126.9, 127.2, 128.4, 134.9, 209.0, 212.8; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}: \mathrm{C} 83.96$, H 8.05. Found: C 83.70, H 8.24.

4,4-Dimethyl-5-phenylhexa-5,6-dien-3-one (IIIb)

Oxidation of IIb was carried out according to the same procedure as that of the synthesis of IIIa to give IIIb in 95% yield as colorless oil.
IR (neat): $3056,2978,1939,1709 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=0.98(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$, $1.32(6 \mathrm{H}, \mathrm{s}), 2.54(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 5.16(2 \mathrm{H}, \mathrm{s}), 7.15-7.19(3 \mathrm{H}, \mathrm{m}), 7.23-7.27(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) (100 MHz): $\delta=8.4,25.3,30.1,49.5,78.9,111.1,126.9,127.2,128.4,135.0$, 209.2, 215.5; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}$: C 84.07, H 8.47. Found: C 83.77, H 8.57.

3,3-Dimethyl-4-phenylhepta-4,5-dien-2-one (IIId)

Oxidation of IId was carried out according to the same procedure as that of the synthesis of IIIa to give IIId in 93% yield.
IR (neat): 3058, 2977, 1946, 1708, $1120 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=1.29(3 \mathrm{H}, \mathrm{s}), 1.30$ $(3 \mathrm{H}, \mathrm{s}), 1.80(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.17(3 \mathrm{H}, \mathrm{s}), 5.57(1 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}), 7.15-7.18(3 \mathrm{H}, \mathrm{m})$, $7.22-7.27(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=14.2,25.0,25.2,25.3,50.6,89.7,111.1$, 126.6, 127.2, 128.3, 135.9, 205.4, 213.0; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}: \mathrm{C} 84.07$, H 8.47. Found: C 83.77, H 8.35.

4,4-Dimethyl-5-phenylocta-5,6-dien-3-one (IIIe)

Oxidation of IIe was carried out according to the same procedure as that of the synthesis of IIIa to give IIIe in 91% yield.
IR (neat): 3057, 2977, 1946, 1709, $1461 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=1.07(3 \mathrm{H}, \mathrm{t}, J=7.6$
$\mathrm{Hz}), 1.38(3 \mathrm{H}, \mathrm{s}), 1.39(3 \mathrm{H}, \mathrm{s}), 1.89(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 2.64(2 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}), 5.65(1 \mathrm{H}, \mathrm{q}, J=$ $7.2 \mathrm{~Hz}), 7.22-7.26(3 \mathrm{H}, \mathrm{m}), 7.31-7.34(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=8.6,14.2,25.3$, $25.6,30.1,50.2,89.7,111.1,126.6,127.2,128.2,135.9,205.5,215.6$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}$ 84.16, H 8.83. Found: C 83.90, H 8.81.

4,4-Dimethyl-3-phenyl-5-(triethylsiloxy)hexa-1,2,5-triene (1a)

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ solution of IIIa $(49.1 \mathrm{mg}, 0.25 \mathrm{mmol})$ were added $\mathrm{Et}_{3} \mathrm{~N}(59.8 \mathrm{~mL}, 0.43$ mmol) and TESOTf ($83.2 \mathrm{~mL}, 0.37 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature. After 20 hours, the reaction was quenched with pH 7 phosphate buffer. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times, and the combined extracts were washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by silica-gel column chromatography (hexane only) to give $\mathbf{1 a}$ in 90% yield as colorless oil.
IR (neat): 3056, 2956, 1945, $1612 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=0.69(6 \mathrm{H}, \mathrm{q}, J=8.1 \mathrm{~Hz})$, $0.97(9 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 1.27(6 \mathrm{H}, \mathrm{s}), 4.06-4.08(1 \mathrm{H}, \mathrm{m}), 4.17-4.19(1 \mathrm{H}, \mathrm{m}), 4.90(2 \mathrm{H}, \mathrm{s})$, $7.14-7.28(3 \mathrm{H}, \mathrm{m}), 7.38-7.42(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=5.0,6.7,27.3,42.6,76.5$, 87.3, 112.0, 126.4, 127.6, 128.6, 137.1, 164.0, 209.0; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{OSi}$: C 76.37, H 9.61. Found: C 76.26, H 9.80.

4,4-Dimethyl-3-phenyl-5-(triethylsiloxy)hepta-1,2,5-triene (1b)

Silylation of IIIb by the use of TESOTf was carried out according to the same procedure as that of the synthesis of $\mathbf{1 a}$ to give $\mathbf{1 b}$ in 84% yield as colorless oil. This compound $\mathbf{1 b}$ was obtained as a $4: 96$ mixture of E and Z isomers.
IR (neat): $3057,2957,1661,1320 \mathrm{~cm}^{-1} ; Z$ isomer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=0.70(6 \mathrm{H}, \mathrm{q}, J$ $=8.0 \mathrm{~Hz}), 0.97(9 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 1.20(6 \mathrm{H}, \mathrm{s}), 1.52(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz})$, $4.90(2 \mathrm{H}, \mathrm{s}), 7.13-7.24(3 \mathrm{H}, \mathrm{m}), 7.32-7.38(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=6.2,7.0$, 11.5, 27.5, 42.5, 76.6, 99.8, 112.8, 126.4, 127.6, 128.8, 136.9, 155.8, 208.6; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{OSi}$ C 76.77, H 9.82. Found: C 76.48, H 9.78.

(Z)-5-Triethylsiloxy-3,4,4-trimethylhepta-1,2,5-triene (1c)

Silylation of IIIc ${ }^{2}$ by the use of TESOTf was carried out according to the same procedure as that of the synthesis of $\mathbf{1 a}$ to give $\mathbf{1 c}$ in 17% yield. The geometry was assigned to be Z.
IR (neat): $3047,2955,1956,1661 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=0.68(6 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz})$, $0.97(9 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.13(6 \mathrm{H}, \mathrm{s}), 1.51(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.59(3 \mathrm{H}, \mathrm{t}, J=3.2 \mathrm{~Hz}), 4.55-4.61$ $(3 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=6.1,7.0,11.5,15.4,26.3,42.4,74.8,99.4,105.2,155.7$,

[^0]
5,5-dimethyl-4-phenyl-6-(triethylsiloxy)hepta-2,3,6-triene (1d)

Silylation of IIId by the use of TESOTf was carried out according to the same procedure as that of the synthesis of $\mathbf{1 a}$ to give $\mathbf{1 d}$ in 76% yield as colorless oil.
IR (neat): $3057,2958,1951,1611 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=0.67(6 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz})$, $0.95(9 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.24(6 \mathrm{H}, \mathrm{s}), 1.72(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 4.04(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 4.17(1 \mathrm{H}, \mathrm{d}$, $J=1.6 \mathrm{~Hz}), 5.29(1 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}), 7.12-7.16(1 \mathrm{H}, \mathrm{m}), 7.18-7.23(2 \mathrm{H}, \mathrm{m}), 7.36-7.39(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=5.0,6.8,14.6,27.5,27.6,43.2,87.1,87.3,112.2,126.1,127.4,128.5$, 137.9, 164.2, 205.2; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{OSi}: \mathrm{C} 76.77$, H 9.82. Found: C 76.49, H 9.79.

5,5-Dimethyl-4-phenyl-6-(triethylsiloxy)octa-2,3,6-triene (1e)

Silylation of IIIe by the use of TESOTf was carried out according to the same procedure as that of the synthesis of $\mathbf{1 a}$ to give $\mathbf{1 e}$ in 91% yield as colorless oil. This compound $\mathbf{1 e}$ was obtained as a 5:95 mixture of E and Z isomers.

IR (neat): 3057, 2958, 1661, $1319 \mathrm{~cm}^{-1} ; Z$ isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=0.74(6 \mathrm{H}, \mathrm{q}, J$ $=8.0 \mathrm{~Hz}), 1.01(9 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 1.23(3 \mathrm{H}, \mathrm{s}), 1.25(3 \mathrm{H}, \mathrm{s}), 1.56(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.77(3 \mathrm{H}, \mathrm{d}$, $J=7.2 \mathrm{~Hz}), 4.68(1 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}), 5.33(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 7.16-7.28(3 \mathrm{H}, \mathrm{m}), 7.36-7.39(2 \mathrm{H}$, $\mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=6.2,7.1,11.6,14.6,27.5,28.0,43.2,87.3,99.7,113.1,126.1$, 127.4, 128.7, 137.8, 155.9, 204.9; Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{OSi}$: C 77.13, H 10.00. Found: C 77.02, H 10.15 .

Synthesis of cyclic 5-siloxyhexa-1,2,5-triene (4)

2-(Hydroxymethylene)cyclooctanone (V)

NaOMe was prepared from $\mathrm{Na}(8.6 \mathrm{~g}, 374 \mathrm{mmol})$ in 100 mL of MeOH . Excess MeOH was removed under reduced pressure. To an ether suspension of the prepared NaOMe was added methyl formate ($21.0 \mathrm{~mL}, 340 \mathrm{mmol}$) followed by the dropwise addition of cyclooctanone $\mathbf{I V}$ (22.4 $\mathrm{mL}, 170 \mathrm{mmol}$). The slurry was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 hour and then warmed to room temperature over 15 hours. The yellowish mixture was quenched with water, and the organic layer was extracted with cold, dilute NaOH three times. The combined aqueous layer was washed twice with $\mathrm{Et}_{2} \mathrm{O}$ (to remove any starting material) and was then acidified with conc. HCl . The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layer was washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by silica-gel column chromatography (hexane:ethyl acetate=6:1) to give \mathbf{V} in 67% yield. IR (neat): 2926, 2856, 1635, $1595 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=1.43-1.56(6 \mathrm{H}, \mathrm{m})$, $1.70-1.76(2 \mathrm{H}, \mathrm{m}), 2.28-2.36(2 \mathrm{H}, \mathrm{m}), 2.43-2.49(2 \mathrm{H}, \mathrm{m}), 8.14(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 15.1(1 \mathrm{H}, \mathrm{d}, J=$ $5.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=25.8,25.9,26.2,28.3,32.5,35.4,112.7,180.1,195.8$.

2-(t-Butoxymethylene)cyclooctanone (VI)

t-Butyl alcohol ($11.0 \mathrm{~mL}, 114.82 \mathrm{mmol}$) and p-toluenesulfonic acid monohydrate (86.4 mg , $0.454 \mathrm{mmol})$ were added to a cyclohexane solution $(36 \mathrm{~mL})$ of $\mathbf{V}(2.4 \mathrm{~g}, 15.6 \mathrm{mmol})$. The flask was equipped with a Dean-Stark trap and a reflux condenser. The solution was stirred at $85^{\circ} \mathrm{C}$ for 3 hours. The solution was then cooled to room temperature, extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times, and the combined extracts were washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by silica-gel column chromatography (hexane:ethyl acetate=9:1) to give VI in 86% yield.
IR (neat): 2978, 2927, 2855, 1672, 1585, $1154 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=1.30(9 \mathrm{H}, \mathrm{s})$, $1.39-1.53(6 \mathrm{H}, \mathrm{m}), 1.69(2 \mathrm{H}$, quint, $J=6.4 \mathrm{~Hz}), 2.46(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 2.54(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz})$,
$7.57(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=22.9,26.2,26.3,28.3,29.2,29.5,39.2,79.2,118.9$, 151.3, 205.2; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}$: C 74.24, H 10.54. Found: C 74.13, H 10.71.

2-(2-Trimethylsilylethynyl)cyclooct-1-enecarbaldehyde (VII)

n-Butyllithium ($41.3 \mathrm{~mL}, 1.6 \mathrm{M}, 65.2 \mathrm{mmol}$) was added dropwise to a solution of (trimethylsilyl)acetylene ($9.2 \mathrm{~mL}, 65.2 \mathrm{mmol}$) in THF (100 mL) at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.5 hours and then a solution of VI $(6.86 \mathrm{~g}, 32.6 \mathrm{mmol})$ in THF (50 mL) was added slowly at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 4 hours. The reaction was quenched with sat. NaHCO_{3} solution and brine. The separated aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers were washed with brine and concentrated to a cloudy yellow oil. To the oil was added 1:1 EtOH/0.1 M CH3 $\mathrm{CO}_{2} \mathrm{H}(500 \mathrm{~mL})$, and the mixture was stirred at room temperature for 1 hour and then quenched with sat. NaHCO_{3} and brine. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was washed with brine, dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by silica-gel column chromatography (hexane:ethyl acetate $=20: 1$) to give VII in 66% yield.
IR (neat): 2927, 2854, 2140, 1675, 1251, $844 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=0.20(9 \mathrm{H}, \mathrm{s})$, $1.39-1.51(6 \mathrm{H}, \mathrm{m}), 1.73(2 \mathrm{H}$, quint, $J=6.8 \mathrm{~Hz}), 2.41(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 2.53(2 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz})$, $10.2(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=-0.1,23.5,26.0,26.5,28.9,29.8,34.0,101.8$, 105.1, 142.8, 146.8, 192.6; HRMS ($\mathrm{FAB}^{+} / \mathrm{NBA}$): Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{OSi}^{2} \mathrm{M}^{+}$234.1440. Found m/z 234.1415 .

1-[2-(2-Trimethylsilylethynyl)cyclooct-1-enyl]ethanol (VIII)

To a THF (30 mL) solution of VII $(4.8 \mathrm{~g}, 20.5 \mathrm{mmol})$ was added a $3.0 \mathrm{M} \mathrm{Et}_{2} \mathrm{O}$ solution of methylmagnesium bromide ($8.47 \mathrm{~mL}, 25.4 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After 30 minutes, the reaction was quenched with pH 7 phosphate buffer. The aqueous layer was extracted with ether three times, and the combined extracts were washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by silica-gel column chromatography (hexane:ethyl acetate=10:1) to give VIII in 96% yield.
IR (neat): 3347, 2926, 2139, $1249 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=0.15(9 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{d}$, $J=6.4 \mathrm{~Hz}), 1.39-1.60(8 \mathrm{H}, \mathrm{m}), 2.01(1 \mathrm{H}, \mathrm{s}), 2.19-2.34(4 \mathrm{H}, \mathrm{m}), 5.01(1 \mathrm{H}, \mathrm{q}, J=6.4 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=0.16,21.3,26.0,26.1,26.5,28.4,31.2,31.5,70.4,97.8,105.1$, 118.2, 151.8; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{OSi}$: C 71.93, H 10.46. Found: C 71.94, H 10.71.

1-[2-(2-Trimethylsilylethynyl)cyclooct-1-enyl]ethyl acetate (IX)

A pyridine solution (39 mL) of VIII ($4.92 \mathrm{~g}, 19.6 \mathrm{mmol}$) and DMAP ($239.5 \mathrm{mg}, 1.96 \mathrm{mmol}$) was treated with acetic anhydride ($2.4 \mathrm{~mL}, 25.5 \mathrm{mmol}$) at room temperature. After 6 hours, the mixture was treated with saturated NaHCO_{3}. The aqueous layer was extracted with ethyl acetate,
and the combined extracts were washed with 1 N HCl , sat. CuSO_{4}, sat. $\mathrm{NH}_{4} \mathrm{Cl}$, water and brine, dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by silica-gel column chromatography (hexane:ethyl acetate=10:1) to give IX in 94% yield.
IR (neat): 2928, 2142, 1745, 1239, $843 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=0.17(9 \mathrm{H}, \mathrm{s}), 1.30$ $(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 1.40-1.63(8 \mathrm{H}, \mathrm{m}), 2.01(3 \mathrm{H}, \mathrm{s}), 2.27(4 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}), 6.06(1 \mathrm{H}, \mathrm{q}, J=6.4$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=0.16,19.0,21.4,26.0,26.1,26.4,28.4,30.9,31.3,73.1$, 98.3, 104.6, 120.0, 147.2, 169.9; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C} 69.81, \mathrm{H} 9.65$. Found: C 69.55, H 9.42 .

1-(2-Ethynycyclooct-1-enyl)ethyl acetate (X)

A solution of $\mathbf{I X}(5.34 \mathrm{~g}, 18.3 \mathrm{mmol})$ in 55 mL of THF at room temperature was treated with TBAF (1.0 M solution in THF, $36.5 \mathrm{~mL}, 36.5 \mathrm{mmol}$). After 2.5 hours, the mixture was treated with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and then extracted with ethyl acetate three times and dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by silica-gel column chromatography (hexane:ethyl acetate=20:1) to give \mathbf{X} in 87% yield.
IR (neat): 2928, 1737, 1370, 1240, $1052 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=1.30(3 \mathrm{H}, \mathrm{d}, J=$ $6.4 \mathrm{~Hz}), 1.40-1.65(8 \mathrm{H}, \mathrm{m}), 2.00(3 \mathrm{H}, \mathrm{s}), 2.26-2.31(4 \mathrm{H}, \mathrm{m}), 3.14(1 \mathrm{H}, \mathrm{s}), 6.06(1 \mathrm{H}, \mathrm{q}, J=6.4 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=19.2,21.3,25.9,26.0,26.5,28.2,30.9,31.3,73.1,81.4,82.9$, 119.0, 147.5, 170.0; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$: C 76.33, H 9.15. Found: C 76.12, H 8.92.

1-(2-Vinylidenecyclooctyl)ethanol (XI)

To a solution of $\mathbf{X}(3.47 \mathrm{~g}, 15.8 \mathrm{mmol})$ in 23 mL of THF at room temperature was slowly added a solution of $\mathrm{LiAlH}_{4}\left(1.07 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 23.1 \mathrm{~mL}, 24.7 \mathrm{mmol}\right)$. The reaction mixture was heated under reflux, then cooled in an ice-bath and quenched with a sequential slow addition of water and 1 N HCl . The organic layer was extracted with ethyl acetate three times and dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by silica-gel column chromatography (pentane:ether=10:1) to give XI in 38% yield.
IR (neat): $3410,2925,1948,1444,842 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=1.18(3 \mathrm{H}, \mathrm{d}, J=6.0$ $\mathrm{Hz}), 1.28-1.64(10 \mathrm{H}, \mathrm{m}), 1.92-1.97(1 \mathrm{H}, \mathrm{m}), 2.06-2.19(3 \mathrm{H}, \mathrm{m}), 3.52-3.59(1 \mathrm{H}, \mathrm{m}), 4.64(1 \mathrm{H}, \mathrm{s})$, $4.65(1 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=20.5,25.8,26.5,26.8,27.0,29.4,32.0,49.8,70.9$, 74.8, 103.9, 206.1; $\mathrm{HRMS}\left(\mathrm{EI}^{+}\right)$: Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}$, M 180.1514. Found m/z 180.1521.

1-[1-(Triethylsiloxy)ethenyl]-2-vinylidenecyclooctane (4)

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.1 \mathrm{~mL})$ solution of $\mathbf{X I}(364.0 \mathrm{mg}, 2.0 \mathrm{mmol})$ were added TPAP ($70.3 \mathrm{mg}, 0.20$ $\mathrm{mmol})$, $\mathrm{NMO}(355.0 \mathrm{mg}, 3.0 \mathrm{mmol})$, and MS $4 \mathrm{~A}(1.5 \mathrm{~g})$ at room temperature. After 28 hours, the reaction mixture was filtered through a short pad of neutral alumina, and the filtrate was concentrated under reduced pressure. The residue was purified by silica-gel column
chromatography (hexane:ethyl acetate $=20: 1$) to give a mixture of the desired ketone and its regioisomer. Then to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.8 \mathrm{~mL})$ solution of the obtained mixture ($222.0 \mathrm{mg}, 1.3 \mathrm{mmol}$) were added $i-\mathrm{Pr}_{2} \mathrm{NEt}(0.44 \mathrm{~mL}, 2.54 \mathrm{mmol})$ and TESOTf $(0.43 \mathrm{~mL}, 1.88 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was further stirred at room temperature. After 24 hours, the reaction was quenched with pH 7 phosphate buffer. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times and the combined extracts were dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by deactivated alumina column chromatography at $-78{ }^{\circ} \mathrm{C}$ (hexane) to give $\mathbf{4}$ in 23% yield.
IR (neat): 2925, 1953, 1615, $1017 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=0.66(6 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz})$, $0.95(9 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 1.34-1.74(10 \mathrm{H}, \mathrm{m}), 2.02(1 \mathrm{H}, \mathrm{dt}, J=11.6,3.2 \mathrm{~Hz}), 2.23-2.26(1 \mathrm{H}, \mathrm{m})$, $2.69(1 \mathrm{H}, \mathrm{dd}, J=10.8,5.2 \mathrm{~Hz}), 3.96(1 \mathrm{H}, \mathrm{s}), 4.01(1 \mathrm{H}, \mathrm{s}), 4.55(1 \mathrm{H}, \mathrm{s}), 4.56(1 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=5.0,6.8,26.0,26.4,27.0,28.3,28.7,29.2,48.7,73.5,87.5,104.2$, 162.1, 207.7; HRMS ($\mathrm{FAB}^{+} /$Nitrophenyloctylether): Calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{OSi}, \mathrm{M}$ 292.2222. Found m/z 292.2220.

General procedure for the formal Cope rearrangement of 5-siloxyhexa-1,2,5-triene (3a-3e, 5)

To a degassed toluene (2.0 mL) solution of 5 -siloxy-hexa-1,2,5-trienes $(0.2 \mathrm{mmol})$ was added $\mathrm{W}(\mathrm{CO})_{6}(14.1 \mathrm{mg}, 0.04 \mathrm{mmol})$ and $\mathrm{DABCO}(2.2 \mathrm{mg}, 0.02 \mathrm{mmol})$ at room temperature. The mixture was irradiated using high-pressure 250 W mercury lamp at ambient temperature ($\mathrm{rt} \sim 40^{\circ} \mathrm{C}$) until the starting material disappeared, and then the resulting mixture was concentrated under reduced pressure. The residue was purified by preparative thin-layer chromatography (hexane) to give the formal Cope rearrangement products, 2-siloxyhex-1-en-5-ynes as colorless oil.

1-Phenyl-6-methyl-5-triethylsiloxyhept-5-en-1-yne (3a)

90% yield ($\left.20 \mathrm{~mol} \% \mathrm{~W}(\mathrm{CO})_{6}\right)$.
IR (neat): 2955, 2914, 1680, 1258, $1198 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=0.67(6 \mathrm{H}, \mathrm{q}, J=$ $8.0 \mathrm{~Hz}), 0.98(9 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 1.62(3 \mathrm{H}, \mathrm{s}), 1.65(3 \mathrm{H}, \mathrm{s}), 2.41-2.44(2 \mathrm{H}, \mathrm{m}), 2.52-2.56(2 \mathrm{H}, \mathrm{m})$, $7.23-7.28(3 \mathrm{H}, \mathrm{m}), 7.35-7.39(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=5.6,6.9,17.9,18.0,18.9$, $32.1,80.6,90.0,110.8,124.0,127.4,128.1,131.4,142.7$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{OSi}$ C $76.37, \mathrm{H}$ 9.61. Found: C 76.17, H 9.87.

4,6-Dimethyl-1-Phenyl-5-triethylsiloxy-hept-5-en-1-yne (3b)

68% yield ($20 \mathrm{~mol} \% \mathrm{~W}(\mathrm{CO})_{6}$).
IR (neat): 2957, 1672, 1262, $1189 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=0.72(6 \mathrm{H}, \mathrm{q}, J=8.0 \mathrm{~Hz})$, $0.99(9 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 1.12(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.60(3 \mathrm{H}, \mathrm{s}), 1.66(3 \mathrm{H}, \mathrm{s}), 2.36(1 \mathrm{H}, \mathrm{dd}, J=8.0$ $\mathrm{Hz}, 16.8 \mathrm{~Hz}), 2.46(1 \mathrm{H}, \mathrm{dd}, J=6.8 \mathrm{~Hz}, 16.8 \mathrm{~Hz}), 2.98(1 \mathrm{H}$, sext, $J=6.8 \mathrm{~Hz}), 7.22-7.27(3 \mathrm{H}, \mathrm{m})$,
7.35-7.37 (2H, m); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=6.1,7.1,17.8,18.9,19.0,24.8,35.0,81.2$, 89.7, 108.4, 124.1, 127.3, 128.1, 131.4, 146.6; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{OSi}: \mathrm{C} 76.77, \mathrm{H} 9.82$. Found: C 76.57, H 10.09.

2,4-Dimethyl-3-triethylsiloxyoct-2-en-6-yne (3c)

61% yield ($20 \mathrm{~mol} \% \mathrm{~W}(\mathrm{CO})_{6}$).
IR (neat): 2957, 2917, 2877, 1671, 1261, $1190 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=0.68(6 \mathrm{H}, \mathrm{q}$, $J=8.0 \mathrm{~Hz}), 0.96(9 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 1.04(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.56(3 \mathrm{H}, \mathrm{s}), 1.60(3 \mathrm{H}, \mathrm{s}), 1.75-1.77$ $(3 \mathrm{H}, \mathrm{m}), 2.02-2.11(1 \mathrm{H}, \mathrm{m}), 2.14-2.20(1 \mathrm{H}, \mathrm{m}), 2.80(1 \mathrm{H}$, sext, $J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100$ $\mathrm{MHz}): \delta=3.6,6.0,7.1,17.6,18.87,18.89,24.1,35.1,76.1,78.6,108.0,147.0$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{OSi}$: C 72.11, H 11.35. Found: C 71.84, H 11.13.

3,6-Dimethyl-1-phenyl-5-triethylsiloxyhept-5-en-1-yne (3d)

86% yield ($20 \mathrm{~mol} \% \mathrm{~W}(\mathrm{CO})_{6}$).
IR (neat): 2958, $1680,1250,1174 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=0.67(6 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz})$, $0.98(9 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 1.22(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 1.64(3 \mathrm{H}, \mathrm{s}), 1.66(3 \mathrm{H}, \mathrm{s}), 2.26(1 \mathrm{H}, \mathrm{dd}, J=8.0$ $\mathrm{Hz}, 14.0 \mathrm{~Hz}), 2.47(1 \mathrm{H}, \mathrm{dd}, J=6.4 \mathrm{~Hz}, 14.0 \mathrm{~Hz}), 2.92(1 \mathrm{H}$, sext, $J=7.2 \mathrm{~Hz}), 7.21-7.28(3 \mathrm{H}, \mathrm{m})$, $7.33-7.37(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=5.6,6.9,18.0,19.3,20.4,25.0,39.7,80.4$, 94.7, 111.7, 124.1, 127.3, 128.0, 131.5, 141.9; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{OSi}: \mathrm{C} 76.77$, H 9.82. Found: C 76.50, H 9.59.

1-Phenyl-5-triethylsiloxy-3,4,6-trimethylhept-5-en-1-yne (3e)

This compound was obtained as a 1:1 mixture of syn and anti isomers.
47% yield ($\left.20 \mathrm{~mol} \% \mathrm{~W}(\mathrm{CO})_{6}\right)$.
IR (neat): 2957, 1672, 1261, $1197 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}):($ syn, anti mixture $) \delta=$ $0.61-0.70(6.0 \mathrm{H}, \mathrm{m}), 0.90-0.95(9.0 \mathrm{H}, \mathrm{m}), 0.97(1.5 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.10(1.5 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz})$, $1.15(1.5 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 1.19(1.5 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.53(1.5 \mathrm{H}, \mathrm{s}), 1.55(1.5 \mathrm{H}, \mathrm{s}), 1.56(1.5 \mathrm{H}, \mathrm{s})$, $1.62(1.5 \mathrm{H}, \mathrm{s}), 2.52-2.61(1.5 \mathrm{H}, \mathrm{m}), 2.66-2.73(0.5 \mathrm{H}, \mathrm{m}), 7.16-7.26(4 \mathrm{H}, \mathrm{m}), 7.33-7.35(1 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}):($ syn, anti mixture $) \delta=6.1,6.2,7.1,7.2,15.4,17.7,18.7,18.8,19.0$, $19.1,19.4,19.5,30.2,30.3,40.4,40.9,80.8,81.3,94.7,94.8,108.4,109.0,124.1,124.4,127.1$, 127.3, 128.0, 128.1, 131.3, 131.4, 145.6, 147.0; Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{OSi}$ C 77.13 , H 10.00 . Found: C 77.22, H 9.82.

2-Triethylsiloxycyclododec-1-en-5-yne (5)

This compound was obtained as a $86: 14$ mixture of geometrical isomers. The geometry was not determined. NMR data were described for the major product.
53% yield ($\left.100 \mathrm{~mol} \% \mathrm{~W}(\mathrm{CO})_{6}\right)$.

IR (neat): 2917, $1672,1148,1005,729 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)(400 \mathrm{MHz}): \delta=0.60(6 \mathrm{H}, \mathrm{q}, J=8.0$ $\mathrm{Hz}), 0.98(9 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 1.37(2 \mathrm{H}$, quint, $J=6.4 \mathrm{~Hz}), 1.44-1.63(6 \mathrm{H}, \mathrm{m}), 2.03(2 \mathrm{H}, \mathrm{t}, J=6.0$ $\mathrm{Hz}), 2.11-2.14(2 \mathrm{H}, \mathrm{m}), 2.25(2 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}), 2.32-2.36(2 \mathrm{H}, \mathrm{m}), 4.51(1 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=5.5,6.9,16.8,17.4,23.5,24.5,25.2,26.1,26.3,36.3,80.1,81.8$, 110.9, 148.0; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{OSi}$ C 73.90, H 11.03. Found: C 73.80, H 10.77.

Typical procedure for the 6-endo cyclization in the presence of $\mathrm{H}_{2} \underline{\mathrm{O}}$

To a degassed THF (0.21 mL) solution of a silyl enol ether $\mathbf{1 a}(64.5 \mathrm{mg}, 0.21 \mathrm{mmol})$ was added $\mathrm{W}(\mathrm{CO})_{6}(14.4 \mathrm{mg}, 0.041 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(11.1 \mu \mathrm{~L}, 0.62 \mathrm{mmol})$ at room temperature. The mixture was irradiated using high-pressure 250 W mercury lamp at ambient temperature ($\mathrm{rt} \sim 40{ }^{\circ} \mathrm{C}$) until the starting material disappeared, and then the resulting mixture was concentrated under reduced pressure. The residue was purified by preparative thin-layer chromatography (hexane: ethyl acetate $=10: 1$) to give 2,2-dimethyl-3-phenylcyclohex-3-en-1-one $\mathbf{2 a}(28.1 \mathrm{mg}, 0.14 \mathrm{mmol})$ in 68% yield as colorless oil.

2,2-Dimethyl-3-phenylcyclohex-3-en-1-one (2a)

IR (neat): 3022, 2971, 1713, $1463 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=1.17(6 \mathrm{H}, \mathrm{s}), 2.48-2.55(2 \mathrm{H}, \mathrm{m}), 2.62-2.67(2 \mathrm{H}, \mathrm{m}), 5.64(1 \mathrm{H}, \mathrm{t}$, $J=4.1 \mathrm{~Hz}), 7.11-7.16(2 \mathrm{H}, \mathrm{m}), 7.25-7.31(3 \mathrm{H}, \mathrm{m})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=24.8,25.3,35.6,47.9,125.1,126.8,127.6,129.2,140.9,146.8$, 214.6;

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}$: C 83.96, H 8.05. Found: C 83.70, H 8.10.

2,2,5,6-Tetramethyl-3-phenylcyclohex-3-en-1-one(2e)

71% yield ($20 \mathrm{~mol} \% \mathrm{~W}(\mathrm{CO})_{6}$)
The relative stereochemistry of the two methyl groups at C_{5} and C_{6} was assigned as syn on the basis of the measurement of differential NOE spectra and the coupling constant between Ha and Hb (6.8 Hz).
observation of NOE

IR (neat): 2970, 2931, 1713, $1460 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)(400 \mathrm{MHz}): \delta=0.86(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 1.08(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.08(3 \mathrm{H}, \mathrm{s})$, $1.20(3 \mathrm{H}, \mathrm{s}), 2.63(1 \mathrm{H}$, sext, $J=6.8 \mathrm{~Hz}), 3.20(1 \mathrm{H}$, quint, $J=6.8 \mathrm{~Hz}), 5.70(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz})$, $7.13-7.15(2 \mathrm{H}, \mathrm{m}), 7.26-7.31(3 \mathrm{H}, \mathrm{m})$;
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}): \delta=11.6,15.8,23.0,27.2,37.2,43.3,48.4,126.7,127.5,129.4$,
131.8, 140.7, 145.3, 215.8;

HRMS (EI^{+}): Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}$, M 228.1514. Found m/z 228.1493.

[^0]: (2) Bly, R. S.; Koock, S. U. J. Am. Chem. Soc. 1969, 91, 3292.

