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1 Genetic neural network method

For a database of physical variables and commifigl alues, neural networks are used to determine the
functional dependence pfz on combinations of coordinates, and a genetic algorithecsethe combina-
tion that yields the best fit. Each of the components in thechemethod is discussed, followed by details
concerning construction of the database.

1.1 Neural network

Artificial neural networks are widely used for model-freendmear fitting. An example of the specific form
employed in the present stuldy is shown in the Fig. 1 of the main text. There are three layansinput
layer, a hidden layer, and an output layer. The values oftldesiin the input layer are those of the physical
variables of interest. The values of the nodes in the remaitwo layers are those of the sigmoid function
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wherep; are the values of the elements in the previous layer, the suimmruns over those elements, and
thew; are corresponding weights (represented by lines in Figl'ig.output is a predictegs. Training the
neural networks consists of using a scaled conjugate gradirethod to vary the; to minimize the root
mean square (RMS) error in committor values:

RMS error= \/ Z (PEYN - pBa)?. 2)

Here, the summation runs over thé samples in the databasgﬁg,fiw is the predicted committor value of
configurationi, andpg is the actual one. As detailed in the main text, in each agipdio, the weights were
optimized with a training set and the quality of the fit waslested with an independent test set.



1.2 Genetic algorithm

As illustrated in the main text, it is important to be able t@leate combinations of a large number of
physical variables. For example, in the present studyethegss12Cs = 32,704,036, 820 possible three-
descriptor models in the explicit solvent case. Consedyesthaustive enumeration is not feasible, and
we use a genetic algorithm to search the space of coordipatbinations. In this procedure, individuals
in a generation of siz& consist of combinations of descriptors, and their fithesketermined by the RMS
error of the correpsonding trained neural network (Eq. 2)edch cycle of the genetic algorithm, the best
I individuals are kept, the remainder are discarded, And [ new individuals (children) are created by
duplicating existing combinations (asexual reproducbgmarents) and changing (mutating) one descriptor
in the set. In the present study, optimization was perforfioe@0 to 30 generations &00 < L < 2000,
depending on the number of physical variables used as itptie neural networks. The genetic algorithm
was terminated when the best model persisted for severatgons. The results were not very sensitive to
L.

1.3 Sampling pp with uniform distribution

To ensure that the fitting procedure does not reproduce ogerafpp at the expense of others, it is nec-
essary to construct the database in such a way that thebdigiri of committor values is approximately
uniform. To this end, the following procedure was employ&gch trajectory ofV saved structures har-
vested by transition path sampling (see below) was dividéalintervals of roughly/N (structures were
saved either every 10 or 20 fs, such that < N < 331 depending on the path length). Then, intervals
were searched sequentially to obtaignin each bin of width 0.1.

For example, fo) < pp < 0.1, pp for the v/ N-th structure was evaluated with a small number of
trials (10 or 20), and, if thgtz was greater than the lower bound of the target rapgex 0), structures in
that interval were tested one by one with the same numbeiats.t=or the structures with < pp < 0.1,
pp was re-evaluated with a large number of trials (typical§Q,las detailed in the main text) until one that
maintainedpp in the target range was found. Then, the target range wasdsed to correspond to the next
bin (0.1 < pp < 0.2 in the example), and the procedure described immediatelyeatvas repeated for
the same interval. If the initially tested endpoint hasglless than the lower bound of the target range or no
structure withp s in the target range was found, the interval considered waeased (to structures indexed
VN +1to2v/N in the example). The search terminated when ejthevalues in all the bins were obtained
or the end of the trajectory was reached.

1.4 Physical variablesto characterize solvent

Here, additional details are provided for the calculatibsedected coordinates described in the main text.

1.4.1 Grid-based water densities

Angularly-restricted radial solvent distribution furantis were calculated around solute atoms. To this end,
three bonded atoms (denotdd B, andC'; see Table 1) were used to construct local right-handed:§lart
coordinate systems. Specifically, the origin was placed,ahe z axis was placed along the line joining



A and B, and thexz plane was defined to contain the three points. Data were tiredially into three
spherical shellsr < 3.4 A, 34 < r < 58 A, and5.8 < r < 8.0 A. These regions were divided into
four even intervals iros 6 and eight even intervals ip, yielding 96 grid cells around each solute atom
A. Intervals of alternative sizes did not increase the Iiiadid of selecting these descriptors in the GNN
procedure. For each grid cell, numbers of solvent atomsgexynd hydrogen, separately or together) and
total charge (with—-0.834¢~ for oxygen and).417e¢~ for hydrogen) were evaluated.

14.2 Torquecalculations

Torques exerted by the solvent around selected bonds wegerdeed. The bonds considered were the
four corresponding to non-trivial dihedral rotations of feptide backbone: 1C-2N, 2N-22C,-2C, and
2C-3N. For each bond between atormiand B, we computed the solvent-associated force on solute atom
C (F¢) and then the torque

NA_B = (FSC X I‘Bc) . f‘AB-

In each case, in addition to the total non-bonded force,ragp&oulomb electrostatic and van der Waals
terms were considered. Also, the forces were computedreititle all solvent molecules or only those in
spherical shells aroun@ of » < 3.4 A, » < 45 A, r < 6.0 A, or r < 8.0 A. Finally, because torques
around a given bond are additive, they were grouped and sdrammdicated in Table 2.

2 Dynamic simulation details

2.1 Modd

We represented the alanine dipeptide with the CHARMM poiairbgen topology and parameter $éts
and the explicit water molecules with a modified form of TF3In the gas phase simulations, no cutoffs
were introduced. In the explicit solvent simulations, augrdoased switching function was used to truncate
the interactions by scaling the potential betweenf6ahd 8.0A, consistent with the short-range spherical
cutoffs employed in the initial parameterization of the @ahodel In the implicit solvent simulations, the
cutoffs employed were those designated for the ACE2 energy.t1°

2.2 Transition path sampling

The dynamics of the alanine dipeptide isomerizations wienelated with the leap frog Verlet algorithrh
with a time step of 1 fs. The lengths of bonds to hydrogen atamse constrained with SHAKE13
Due to the relative simplicity of the system, we were abledneagate initial paths for the reactions studied
by guessing approximations to the transition states anjfailarge numberi()OO) of random trajectories
from those configurations until paths with endpoints in teéreed basins were found by chance. Subsequent
paths were generated by making shooting mt/&swith momentum perturbations of 20% in the vacuum
and implicit solvent cases and 4% in the explicit solventecaBaths were saved every 100 steps of the
transition path sampling procedure.



2.3 Umbrela sampling

To harvest putative transition states with"¥ ~ 0.5, we used the Monte Carlo modtfén CHARMM.*
The allowed moves for the peptide were single atom displacésnof up to 0.073 and torsion rotations
of up to 30. Water molecules were simultaneously translated up toA.26d rotated around random axes
up to 25. These three types of moves were chosen with relative freges of 12:4:125, respectively. One
MC step corresponds to a single application of one of the@boaves. In the vacuum and implicit solvent
simulations, the system was equilibrated fof MC steps and then sampled evéf} MC steps fort x 107
MC steps at 300 K. The explicit solvent simulations were mmeputationally costly; the system was
equilibrated forl0° MC steps and then sampled evéf? MC steps forl0” MC steps.
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Table 1: Atoms used to define local coordinate systems fanlarg-restricted solvation shells

Index | A B C
1 2N 2C, | 2C
2 20 2C | 2C,
3 3N 2C | 2C,
4 1CH; | 1C | 2N
5 10 1C | 2N
6

7

8

9

2H | 2N | 2C,
2C, | 2C | 3N
2C; | 2C, | 2C
2C | 2C, | 2N
10 |1C [2N |2C,
11 [3H |3N |2C
12 [3C, |3N [2C
13 |2C, |2C |20
14 [2C, |2C; | 2N
15 | 2C, |2C |2C;
16 | 2C, |2C [2N
17 |2C [2C, |20
18 |[2C | 2N |2C;
19 [2C, |1C [3N
20 |2C |2N | 3N
21 | 2C |2N | 3H
22 |2C |2N |10
23 |2C |10 | 3H
24 |3N |10 | 3H
25 |2C |20 |2N
26 | 2N |2C |20
27 |3N  |2N |2C,
28 |3N | 2N | 2C




Table 2: Groupings employed in torque calculations. Folmgween the solvent and the indicated atoms
were calculated. The total torque arising from each grouptafns around each specified bond was then
calculated.

Groups of Atoms Bonds
1C, 10 2N-2G,, 2C,-2C, 2C-3N
2N, 2H 2C,-2C, 2C-3N
2C, 20 1C-2N, 2N-2G,
3N, 3H 1C-2N, 2N-2G,, 2C,-2C
3N, 3H, 3C, 1C-2N, 2N-2G,, 2C,-2C
1C, 10, 2N, 2H 2C,-2C, 2C-3N




Table 3: Linear regression statistics for models identifirethe main text.

Reaction n Inputs Input RMS | Model RMS
Train | Test | Train | Test
Creq — Craz 1| 1C-2N-2G,-2C(¢) | 0.138| 0.138| 0.138| 0.138
(100 trials forpg) | 2 | 1C-2N-2G,-2C(¢) | 0.138| 0.138| 0.136| 0.137
10-1C-2N-2C, (¢) | 0.293| 0.295
3| 1C-2N-2G,-2C(¢) | 0.138| 0.138| 0.136| 0.138
10-1C-2N-2C, (¢) | 0.293| 0.295
2N-2C,-2C-3N(v) | 0.213] 0.272
Creq — Cran 1| 1C-2N-2G,-2C(¢) | 0.160| 0.160| 0.160| 0.160
(400 trials forpg) | 2 | 1C-2N-2G,-2C(¢) | 0.160| 0.160| 0.160| 0.132
10-1C-2N-2C, (¢) | 0.267| 0.205
3| 1C-2N-2G,-2C(¢) | 0.160| 0.160| 0.160| 0.132
10-1C-2N-2C, (¢) | 0.267| 0.205
2C3-2C-2G,-2N () | 0.276| 0.209
Creq — QR 1| 2N-2C,-2C-3N(v) | 0.125]| 0.125| 0.125| 0.125
(vacuum) 2 | 2N-2C,-2C-3N(%) | 0.125| 0.125]| 0.114| 0.112
20-2C-3N-3G, (¢’) | 0.290| 0.283
Creq — QR 1| 2C3-2C,-2C-20(%’) | 0.177| 0.156| 0.177| 0.156
(explict solvent and| 2 | 2C3-2C,-2C-20(¢’) | 0.177| 0.156| 0.174| 0.149
instant coordinates NfCH-ZN 0.225| 0.210
3| 2C5-2C,-2C-20(¢) | 0.177| 0.156| 0.172] 0.141
F2H-2C, 0.256 | 0.252
N3E 0.225| 0.210
Creq — QR 1| 2C3-2C,-2C-20(¢’) | 0.177| 0.156| 0.177 | 0.156
(explict solvent and| 2 <r2é-|—3H>squte 0.196| 0.182| 0.169| 0.139
average coordinates <N1(C::f“2N>squte 0.179| 0.160
3 (roH-3H)solute 0.196| 0.182| 0.166 | 0.135
(N “>N'solute | 0:179 0.160
(NIC-oNsolvent | 0-201| 0.178
4 (roH-3H)solute 0.196| 0.182| 0.165| 0.132
(N ﬁf2N>squte 0.176| 0.160
<N1C-2N>solvent 0.201| 0.178
{r10-2H solute 0.256| 0.251
Creq — QR 1| 2N-2G,-2C-20(¢") | 0.191| 0.184| 0.191| 0.184
(implicit solvent) | 2 | 2N-2C,-2C-3N(v) | 0.190| 0.184| 0.130| 0.123
20-2C-3N-3G, (¢') | 0.287| 0.289
3| 2N-2G,-2C-3N(7)) | 0.191| 0.184| 0.093| 0.100
20-2C-3N-3G, (¢') | 0.287| 0.289
2C3-2C-2G,-2N () | 0.287| 0.289




