A Short and Efficient Route to the

Fully Functionalized Polar Core of Scyphostatin

Emmanuel N. Pitsinos,* and Ana Cruz

SUPPORTING INFORMATION

General: All reactions were carried out under a dry argon atmosphere with anhydrous, freshly distilled solvents under anhydrous conditions unless otherwise noted. All reactions were magnetically stirred with Teflon stir bars, and temperatures were measured externally. Reactions requiring anhydrous conditions were carried out in oven dried $\left(120^{\circ} \mathrm{C}, 24 \mathrm{~h}\right)$ or flame dried (vacuum < 0.5 Torr) glassware. Yields refer to chromatographically and spectroscopically (${ }^{1} \mathrm{H}$ NMR) homogeneous materials. All reagents were obtained from Aldrich Chemical Co. Inc. and used without further purification. All reactions were monitored by thin layer chromatography (TLC) carried out on $0.25-\mathrm{mm}$ E.Merck silica gel plates ($60 \mathrm{~F}-254$). E.Merck silica gel (60 , particle size $0.040-0.063 \mathrm{~mm}$) was used for flash column chromatography. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AM250 or a Bruker Advance DRX-500 instrument as noted individually. Chemical shifts are measured in parts per million (δ) relative to the deuterated solvent used in the experiment. Multiplicities are designated as singlet (s), doublet (d), triplet (t), or multiplet (m). Broad or obscured peaks are indicated as "br" or "obs" respectively.

7-Benzyloxy-3-hexadecanoylamino-3,4-dihydro-2H-1-benzopyran (18).

8a

To a stirred solution of 7-benzyloxy-3-amino-3,4-dihydro-2H-1-benzopyran ($8 \mathbf{a}$) ($0.51 \mathrm{~g}, 2.0 \mathrm{mmol}$) and palmitic acid ($0.54 \mathrm{~g}, 2.1 \mathrm{mmol}$) in a mixture of dichloromethane (10 mL) and DMF (1.5 mL) were added at $0^{\circ} \mathrm{C}$ HOBT ($17 \mathrm{mg}, 0.13 \mathrm{mmol}$), N, N-diisopropylethylamine $(0.37 \mathrm{~mL}, 2.1 \mathrm{mmol})$ and EDC $(0.40 \mathrm{~g}, 2.1 \mathrm{mmol})$. The mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ and then for 20 h at ambient temperature. Upon reaction completion, the mixture was poured in a saturated aqueous solution of ammonium chloride (30 mL) and extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed sequentially with water $(3 \times 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue thus obtained was purified by flash column chromatography (8:2 hexane-ethyl acetate) to produce 7-benzyloxy-3-hexadecanoylamino-3,4-dihydro-2H-1benzopyran (18) ($0.84 \mathrm{~g}, 85 \%$) as amorphous white solid: $R_{f} 0.34$ (8:2 hexane-ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{PhH})$, 6.94 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.58 (dd, $J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.48 (d, J $=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 5.75 (brd, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCO})$, $5.02(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{Ph}$), 4.54-4.43 (m, 1 H, CHNHCO), 4.10 (ddd, $J=10.8,2.9,2.2 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{CHHO}$), 4.06 (dd, $J=10.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHO}$), 3.05 (dd, $J=16.5,5.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHHCH}$), 2.66 (brd $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H C H$), $2.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, COCH_{2}), 1.67-1.53 (m, $2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2}$), $1.25\left(\mathrm{brs}, 24 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{12}\right), 0.88(\mathrm{t}, \mathrm{J}$ $\left.=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.0,158.5,154.5$, $136.9,130.9,128.6,127.9,127.4,111.5,108.9,102.7,70.0,68.2,42.1,36.7$, 31.9, 29.6, 29.4, 29.3, 25.6, 22.7, 14.1; HR-ESI: $m / z: 494.3636,\left[M+\mathrm{H}^{+}\right]$for the compound $\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{NO}_{3}$ requires 494.3629.

7-Hydroxy-3-hexadecanoylamino-3,4-dihydro-2H-1-benzopyran (5).

A solution of 7-benzyloxy-3-hexadecanoylamino-3,4-dihydro-2H-1-benzopyran (18) $(1.2 \mathrm{~g}, 2.4 \mathrm{mmol})$ in a mixture of ethanol (100 mL) and THF (200 mL) was subjected to hydrogenolysis over $10 \% \mathrm{Pd} / \mathrm{C}$ at ambient temperature. After 12 h , filtration of the reaction mixture through Celite ${ }^{\circledR}$ and removal of the solvent under reduced pressure provided phenol 5 ($0.96 \mathrm{mg}, 98 \%$) as an amorphous white solid: $R_{\mathrm{f}} 0.14$ (3:97 methanol-dichloromethane); ${ }^{1} \mathrm{H}$ NMR (250 MHz, 1:1 CDCl CDMSO_{3} DMS $\mathrm{d}_{6} \delta 8.85$ (brs, $1 \mathrm{H}, \mathrm{ArOH}$), 7.46 (d, J = 7.3 Hz , $1 \mathrm{H}, \mathrm{NHCO}$), 6.73 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 6.27 (dd, $J=8.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 6.17 (d, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 4.20-4.09 (m, $1 \mathrm{H}, \mathrm{CH} \mathrm{NHCO}$), 4.00 (dd, $J=10.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHO}$), 3.76 (dd, $J=10.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHO}$), 2.82 (dd, $J=15.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHCH}$), 2.55 ($\mathrm{dd} J=15.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H C H$), 2.07 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}$), 1.54-1.44 (m, $2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2}$), 1.18 (brs, $\left.24 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{12}\right), 0.81\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(62.5 \mathrm{MHz}, 1: 1$ $\left.\mathrm{CDCl}_{3}: \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 172.5,156.2,153.9,129.7,109.9,108.1,102.4,67.1$, 41.8, 35.3, 31.1, 29.4, 28.8, 28.7, 28.6, 28.5, 25.0, 21.8, 13.5; HR-ESI: m/z: 426.2973, $\left[M+\mathrm{Na}^{+}\right]$for the compound $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{NO}_{3}$ requires 426.2979.

Preparation of para-quinols 9a and 9b.

To a vigorously stirred fine suspension of phenol 5 ($100 \mathrm{mg}, 0.25 \mathrm{mmol})$ in a mixture of acetonitrile (20 mL) and water (1 mL) was added at $0^{\circ} \mathrm{C}$, [bis(trifluoroacetoxy)iodo]benzene ($200 \mathrm{mg}, 0.47 \mathrm{mmol}$). The mixture was
stirred for 1 h at $0^{\circ} \mathrm{C}$ and then at ambient temperature for 6 h . The reaction mixture was then poured in water (40 mL) and extracted with dichloromethane $(4 \times 15 \mathrm{~mL})$. The combined organic phases were washed sequentially with water $(3 \times 10 \mathrm{~mL})$ and brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue thus obtained was purified by flash column chromatography (3:97 methanol-dichloromethane) to produce, in order of elution,
compound 9b as light yellow foam ($25.7 \mathrm{mg}, 25 \%$): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.02(\mathrm{brd}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCO}), 6.61(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=)$, 6.12 ($\mathrm{d}, \mathrm{J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=$), 5.77 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}=$), 4.46-4.39 (m, 2 H , $\mathrm{CHNH}+\mathrm{CHHO}$), 4.05 (dd, $J=11.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHO}$), 3.61 (brs, $1 \mathrm{H}, \mathrm{OH}$), $2.22\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right.$), 2.17 (dd, $J=12.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHCHNH}$), 2.05 (dd, $J=12.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H C H N H), 1.67-1.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right)$, 1.35-1.21 (m, $\left.24 \mathrm{H},\left(\mathrm{CH}_{2}\right){ }_{12} \mathrm{CH}_{3}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.8,172.9,172.2,145.4,127.9,109.7,73.1,65.6$, 42.4, 36.9, 35.9, 31.9, 29.6, 29.5, 29.3, 29.2, 25.6, 22.7, 14.1; HR-MALDIFTMS: m/z: 420.3112, $\left[M+\mathrm{H}^{+}\right]$for the compound $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{NO}_{4}$ requires 420.3108.
and compound 9a as light yellow foam ($18.7 \mathrm{mg}, 18 \%$): ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.60(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=), 6.04(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=), 5.90$ (brd, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCO}$), 5.66 (s, $1 \mathrm{H}, \mathrm{CH}=$), 4.91 (dd, $J=10.9,2.5 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{CHHO}$), 4.62-4.56 (m, 1 H, CHNH), 4.01 (dd, $J=10.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}$, CHHO), 3.06 (brs, $1 \mathrm{H}, \mathrm{OH}$), 2.67 (dd, $J=14.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHCHNH}$), $2.15\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 1.70-1.55(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{COCH}_{2} \mathrm{CH}_{2}+\mathrm{CH} H C H N H$), 1.24 (brs, $\left.24 \mathrm{H},\left(\mathrm{CH}_{2}\right){ }_{12} \mathrm{CH}_{3}\right), 0.87(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3$ $\mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$) ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.6,173.1,171.7,145.3,127.2$, 106.4, 69.9, 65.2, 41.4, 37.8, 36.6, 31.9, 29.6, 29.4, 29.3, 25.5, 22.7, 14.1; HR-ESI: m/z: 420.3111, $\left[M+\mathrm{H}^{+}\right]$for the compound $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{NO}_{4}$ requires 420.3114.

Diastereoselective preparation of para-quinol 9b.

To a vigorously stirred fine suspension of phenol 5 ($144.6 \mathrm{mg}, 0.36 \mathrm{mmol})$ in 2,2,2-trifluoroethanol (10 mL) was added at ambient temperature [bis(trifluoroacetoxy)iodo]benzene ($240 \mathrm{mg}, 0.56 \mathrm{mmol}$). The reaction mixture was stirred for 4 h and then it was concentrated under reduced pressure. The residue thus obtained was dissolved in ethyl acetate (20 mL), washed sequentially with a saturated aqueous solution of sodium bicarbonate (10 mL), water ($2 \times$ 10 mL) and brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue thus obtained used without further purification in the next step. A small sample of it was subjected to flash column chromatography (3:97 methanol-dichloromethane) to produce compound 10 as light yellow oil: $R_{f} 0.21$ ($3: 97$ methanol-dichloromethane); ${ }^{1} \mathrm{H}$ NMR (250 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.48(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=), 6.24(\mathrm{dd}, J=9.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}=), 5.78(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=$), 4.38 (brd, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{HO}$), 4.00 (dd, $J=10.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHO}$), 3.88-3.82 (m, $1 \mathrm{H}, \mathrm{CH}$), $2.27(\mathrm{t}, \mathrm{J}=$ 7.6 Hz, 2 H, CH2C(O)N), 2.11-1.98 (m, 2 H, CH2CHN), 1.65-1.54 (m, 2 H , $\mathrm{N}(\mathrm{O}) \mathrm{CCH}_{2} \mathrm{CH}_{2}$), 1.25 (brs, $\left.24 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}\right), 0.88(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.8,141.6,130.3,110.0,74.4$, 47.0, 34.7, 31.9, 29.7, 29.5, 29.3, 29.2, 28.9, 26.2, 22.7, 14.1; HR-ESI-TOF: m / z : 402.3008, $\left[\mathrm{M}+\mathrm{H}^{+}\right]$for the compound $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{3}$ requires 402.3003.

The above residue was dissolved in THF (5 mL) and water (0.5 mL) and PPTS (46 mg) were added to the solution. The mixture was stirred at ambient temperature for 18 h . Solid potassium carbonate (260 mg) was added and stirring was continued for 24 h . The reaction mixture was then poured in water (10 mL) and extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$. The combined organic phases were washed sequentially with 0.01 N aqueous HCl
solution (10 mL), water (10 mL) and brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue thus obtained was purified by flash column chromatography (3:97 methanol-dichloromethane) to produce compound 9b as light yellow foam ($55.5 \mathrm{mg}, 37 \%$).

Preparation of diol 11.

To a stirred solution of quinol $9 \mathbf{b}(166 \mathrm{mg}, 0.40 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(295$ $\mathrm{mg}, 0.80 \mathrm{mmol}$) in methanol (10 mL) was added, at $0^{\circ} \mathrm{C}$ and in small portions, sodium borohydride ($23 \mathrm{mg}, 0.6 \mathrm{mmol}$). Upon reaction completion, excess reagent was quenched by addition of acetone $(2 \mathrm{~mL})$. The mixture was stirred at ambient temperature for 30 min and was then poured in water $(20 \mathrm{~mL})$ and extracted with ethyl acetate $(4 \times 15 \mathrm{~mL})$. The combined organic phases were washed sequentially with water ($2 \times 10 \mathrm{~mL}$) and brine (2 $\times 10 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to produce diol 11 ($163 \mathrm{mg}, 98 \%$) as a 1:2 mixture of diastereomers. Further purification of this sensitive intermediate is neither necessary nor advisable. Light yellow oil; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69,7.53$ (two brd in a ration 1:2, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCO}), 6.02-5.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=), 5.82-5.68(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}=$), 5.57-5.44 (m, $1 \mathrm{H}, \mathrm{CH}=$), 4.69, 4.60 (two brs in a ratio $2: 1,1 \mathrm{H}$, $\mathrm{CHOH}), 4.34-3.95(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} \mathrm{NH}+\mathrm{CHHO}), 3.75-3.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H O)$, 2.29-1.83 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHNH}+\mathrm{COCH}_{2}$), 1.73-1.51 (m, $2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2}$), 1.48-1.11 (m, 24 H, (CH2) $\left.{ }_{2} \mathrm{CH}_{3}\right), 0.87\left(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.8,132.3,131.6,130.4,111.3,109.6,73.7,64.2$, 43.7, 43.4, 37.4, 37.0, 31.9, 29.6, 29.5, 29.3, 25.6, 22.6, 14.1; HR-ESI-TOF: m / z : 422.3258, $\left[\mathrm{M}+\mathrm{H}^{+}\right]$for the compound $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{NO}_{4}$ requires 422.3265 .

Preparation of ketal 12a.

To a stirred solution of diol $11(55 \mathrm{mg}, 0.13 \mathrm{mmol})$ in methanol $(15 \mathrm{~mL})$ was added at ambient temperature, PPTS ($16 \mathrm{mg}, 0.07 \mathrm{mmol}$). The reaction mixture was stirred for 4 h . It was then poured in aqueous solution of sodium bicarbonate $(20 \mathrm{~mL})$ and extracted with ethyl acetate $(4 \times 15 \mathrm{~mL})$. The combined organic phases were washed sequentially with water $(2 \times 10 \mathrm{~mL})$ and brine $(2 \times 10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue thus obtained was purified by flash column chromatography (4:6 ethyl acetate-hexane) to produce ketal 12a (44 mg, 79%) as colorless oil: $R_{\mathrm{f}} 0.25$ (1:1 ethyl acetate-hexane); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{brd}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCO}), 6.18(\mathrm{ddd}, J=9.9,4.7,1.2 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{CH}=), 5.89(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=), 5.85-5.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=), 4.07-4.02$ (m, 1 H, CHNH), 3.90 (brd, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHO}$), 3.72 (dd, $J=12.1,1.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHHO}$), 3.37 (brs, $1 \mathrm{H}, \mathrm{OH}$), $3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.16(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{COCH}_{2}$), 1.92 (dt, $\left.J=14.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H C H N H\right), 1.83$ (dd, $J=14.7$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHCHNH}$), 1.64-1.56 (m, 2 H, COCH CH_{2}), 1.33-1.19 (m, 24 $\left.\mathrm{H},\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}\right), 0.87\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (62.5 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.7,139.0,129.7,127.4,121.2,98.2,72.8,66.8,50.1,41.3,36.9$, 35.3, 31.9, 29.6, 29.5, 29.3, 25.6, 22.6, 14.1; HR-ESI-TOF: m/z: 458.3241, $\left[M+\mathrm{Na}^{+}\right]$for the compound $\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{NO}_{4}$ requires 458.3241 .

Preparation of ketal 12b.

To a stirred solution of diol 11 ($163 \mathrm{mg}, 0.39 \mathrm{mmol}$) in THF (7 mL) were added powdered molecular sieves $4 \AA$ (160 mg), 4-methoxybenzyl alcohol
($280 \mathrm{mg}, 2.0 \mathrm{mmol}$) and PPTS ($60 \mathrm{mg}, 0.2 \mathrm{mmol}$). The mixture was stirred at ambient temperature for 24 h . The reaction was quenched by addition of solid sodium bicarbonate (100 mg). The mixture was diluted with ethyl acetate (20 mL) and filtered with the aid of Celite $®$. The filtrate was poured in saturated aqueous solution of sodium bicarbonate (10 mL) and the mixture was extracted with ethyl acetate $(2 \times 15 \mathrm{~mL})$. The combined organic phases were washed sequentially with water $(2 \times 10 \mathrm{~mL})$ and brine $(2 \times 10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue thus obtained was purified by flash column chromatography (3:7 ethyl acetatehexane) to produce ketal 12b (126 mg, 60\%) as colorless oil: $R_{\mathrm{f}} 0.36$ (1:1 ethyl acetate-hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 7.21 (obs $1 \mathrm{H}, \mathrm{NHCO}$), 6.86 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.20 (ddd, $J=$ 9.9, 4.4, 1.4 Hz, 1H, CH=), 6.01 ($\mathrm{d}, \mathrm{J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=$), 5.87-5.82 (m, 2 $\mathrm{H}, \mathrm{CH}=), 4.60\left(\mathrm{AB}_{\mathrm{q}}, J=10.8 \mathrm{~Hz}, \Delta v=82.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 4.12-4.06(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHNH}$), 3.95 (brd, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHO}$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.79$ (obs dd, $J=12.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{O}$), 3.47 (brs, $1 \mathrm{H}, \mathrm{OH}$), $2.19(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}$), 1.95 (brd, $\left.J=14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H C H N H\right), 1.87$ (dd, $J=14.6$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHCHNH}$), 1.66-1.61 (m, 2 H, COCH CH_{2}), 1.36-1.22 (m, 24 $\left.\mathrm{H},\left(\mathrm{CH}_{2}\right){ }_{12} \mathrm{CH}_{3}\right), 0.89\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(62.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 172.6,159.1,139.1,130.2,129.5,129.3,127.7,121.2,113.6,98.2$, 72.7, 66.7, 64.1, 55.1, 41.3, 36.9, 35.2, 31.6, 29.6, 29.5, 29.3, 29.2, 25.6, 22.6, 14.1; HR-ESI-TOF: m / z : 542.3829, $\left[M+\mathrm{H}^{+}\right]$for the compound $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{NO}_{5}$ requires 542.3840.

Preparation of epoxides 13a and 14a.

To a stirred solution of ketal 12a ($20 \mathrm{mg}, 46 \mu \mathrm{~mol}$) in benzene (3 mL) were added 0.02 M solution of $\mathrm{VO}(\mathrm{acac})_{2}$ in benzene ($0.3 \mathrm{~mL}, 6 \mu \mathrm{~mol}$) and powdered molecular sieves $4 \AA(30 \mathrm{mg})$. The mixture was cooled at $0^{\circ} \mathrm{C}$ and then 5.5 M solution of TBHP in decane ($20 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) was added. The
reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for one hour and then at ambient temperature for 24 h . Upon reaction completion, the molecular sieves were removed by filtration with the aid of Celite ${ }^{\circledR}$ and the filtrate was concentrated under reduced pressure. The residue thus obtained was purified by flash column chromatography ($1: 9 \rightarrow 1: 1$ ethyl acetate-hexane) to produce, in order of elution:
compound 13a as white wax: 7.1 mg (34\%): $R_{\mathrm{f}} 0.13$ (1:1 ethyl acetatehexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.13$ (dd, $J=9.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CHCH}=\mathrm{CH}$), 6.00 (dd, $J=9.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}=\mathrm{CH}$), 5.22 (brd, $J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NHCO}$), 4.05-3.92 (m, $1 \mathrm{H}, \mathrm{CHNH}$), 3.79-3.75 (m, $2 \mathrm{H}, \mathrm{CHHO}+$ $\mathrm{CH}(\mathrm{O}) \mathrm{CHCH}=\mathrm{CH}), 3.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.47(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}=\mathrm{CH})$, $3.18(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHO}), 2.81$ (brs, $1 \mathrm{H}, \mathrm{OH}$), $2.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, COCH_{2}), 1.92-1.84 (m, 2 H, CH2CHNH), 1.63-1.58 (m, $2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2}$), 1.32-1.20 (m, $\left.24 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; HR-ESITOF: m / z : 474.3184, $\left[M+\mathrm{Na}^{+}\right]$for the compound $\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{NO}_{5}$ requires 474.3190. and
compound 14a as white wax: 7.1 mg (34\%): $R_{\mathrm{f}} 0.07$ (1:1 ethyl acetatehexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.05$ (brd, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCO}$), 6.37 (dd, $J=10.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}=\mathrm{CH}$), $5.94(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CHCH}=\mathrm{CH}$), 4.17-4.12 (m, 1 H, CHNH), 3.84 (dt, $J=12.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, CHHO), $3.74(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), $3.55(\mathrm{dd}, J=12.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}$, CHHO), 3.41-3.38 (m, 1 H, CHCH=CH), $3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.28(\mathrm{~d}, \mathrm{~J}=4.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{O}) \mathrm{CHCH}=\mathrm{CH}$), $2.18\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 1.96(\mathrm{dt}, J=$ 14.6, $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{HCHNH}$), $1.66-1.59\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH} H C H N H+\mathrm{COCH}_{2} \mathrm{CH}_{2}\right)$, 1.32-1.24 (m, $\left.24 \mathrm{H},\left(\mathrm{CH}_{2}\right){ }_{12} \mathrm{CH}_{3}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,133.2,131.2,96.2,70.8,66.5,58.3,50.9,48.2$, 41.4, 36.9, 33.2, 31.9, 29.6, 29.5, 29.3, 25.6, 22.7, 14.1; HR-ESI-TOF: m/z: 474.3186, $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$for the compound $\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{NO}_{5}$ requires 474.3190.

Preparation of epoxides 13b and 14b.

Oxidation of ketal 12b ($120 \mathrm{mg}, 0.22 \mathrm{mmol}$), using the protocol described above, produces:
Compound 13b as amorphous white solid: 52.8 mg (43\%); $R_{\mathrm{f}} 0.26$ (1:1 ethyl acetate-hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.90 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.12 (dd, $J=9.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}=\mathrm{CH}$), 6.00 (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}=\mathrm{CH}$), 5.29 (brd, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCO}$), 4.82 $\left(\mathrm{AB}_{q}, J=11.5 \mathrm{~Hz}, \Delta v=67.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 4.03-3.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \mathrm{NH})$, $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.81-3.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHHO}+\mathrm{CH}(\mathrm{O}) \mathrm{CHCH}=\mathrm{CH}), 3.50$ (brs, $1 \mathrm{H}, \mathrm{CHCH}=\mathrm{CH}$), 3.24 (dd, $J=10.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{O}$), 2.88 (brs, 1 H, OH), $2.11\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 1.92(\mathrm{dd}, J=12.2,11.9 \mathrm{~Hz}, 1 \mathrm{H}$, CHHCHNH), 1.85 (brd, $J=11.9 \mathrm{hz}, 1 \mathrm{H}, \mathrm{CHHCHNH}$), $1.62-1.54(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{COCH}_{2} \mathrm{CH}_{2}$), $1.33-1.19\left(\mathrm{~m}, 24 \mathrm{H},\left(\mathrm{CH}_{2}\right){ }_{12} \mathrm{CH}_{3}\right), 0.87(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,159.3,140.2,130.1,129.5$, 128.7, 125.4, 113.7, 96.3, 69.6, 63.5, 62.4, 55.3, 54.4, 50.2, 43.5, 37.6, 36.7, 31.9, 29.7, 29.5, 29.3, 29.2, 25.6, 22.7, 14.1; HR-ESI-TOF: m/z: 558.3785, [$\mathrm{M}+\mathrm{H}^{+}$] for the compound $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{NO}_{6}$ requires 558.3789, and Compound 14b as amorphous white solid: 52.8 mg (43\%); $R_{\mathrm{f}} 0.11$ (1:1 ethyl acetate-hexane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.06 (brd, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCO}), 6.86$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.34 (dd, J $=10.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}=\mathrm{CH}), 5.99(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}=\mathrm{CH}), 4.58$ $\left(\mathrm{AB}_{\mathrm{q}}, J=10.4 \mathrm{~Hz}, \Delta v=63.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 4.19-4.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} \mathrm{NH})$, 3.85 (dt, $J=12.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHO}$), $3.80(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), 3.79 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.58 (dd, $J=12.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHO}$), 3.41-3.38(m, 1 H , $\mathrm{CHCH}=\mathrm{CH}), 3.28(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{O}) \mathrm{CHCH}=\mathrm{CH}), 2.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2$ $\mathrm{H}, \mathrm{COCH}_{2}$), 1.95 (brd, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHCHNH}$), $1.68-1.57$ (m, 3 H , $\left.\mathrm{CHHCHNH}+\mathrm{COCH}_{2} \mathrm{CH}_{2}\right), 1.34-1.21\left(\mathrm{~m}, 24 \mathrm{H},\left(\mathrm{CH}_{2}\right){ }_{12} \mathrm{CH}_{3}\right), 0.87(\mathrm{t}, \mathrm{J}=6.8$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.5,159.2,133.6,130.9$, 130.0, 129.5, 113.6, 96.3, 70.8, 66.3, 65.1, 58.3, 55.2, 48.2, 41.5, 36.9, 33.1,
31.7, 29.7, 29.5, 29.3, 25.6, 22.7, 14.1; HR-ESI-TOF: $m / z: 558.3780,\left[M+\mathrm{H}^{+}\right]$ for the compound $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{NO}_{6}$ requires 558.3789 .

Preparation of acetal 15.

To a stirred solution of compound 14b ($35.5 \mathrm{mg}, 64 \mu \mathrm{~mol}$) in dichloromethane (5 mL) was added, under an atmosphere of argon, DDQ ($20 \mathrm{mg}, 88 \mu \mathrm{~mol}$). The mixture was stirred at ambient temperature for 24 h and it was then poured in aqueous saturated solution of sodium bicarbonate (10 mL). The mixture was extracted with ethyl acetate $(2 \times 15 \mathrm{~mL})$. The combined organic phases were washed sequentially with water ($2 \times 10 \mathrm{~mL}$) and brine (2 $\times 10 \mathrm{~mL}$) and were then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation under reduced pressure and further chromatographic purification (1:1 ethyl acetate-hexane) of the residue produced compound 15 as amorphous white solid (25.2 mg , 71%): $R_{\mathrm{f}} 0.57$ (4:1 ethyl acetate-acetone); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.92 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.60 (brd, $J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CHNHCO}$), 6.54 (dd, $J=10.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}=\mathrm{CH}$), 6.27 (s, 1 H , OCHO), 6.04 (dd, $J=10.0,1.1 \mathrm{~Hz}, \mathrm{CHCH}=\mathrm{CH}$), 4.10-4.05 (m, $1 \mathrm{H}, \mathrm{CHNH}$), 4.04 (dd, $J=15.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHO}$), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.57-3.53(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{CHCH}=\mathrm{CH}$), 3.47 (d, J = $15.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHO}$), 3.46 (s, $1 \mathrm{H}, \mathrm{CH}(\mathrm{O}) \mathrm{CH}$), 2.37 (brd, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHCHNH}), 2.23\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCOCH}_{2}\right)$, 1.75 (dd, $J=15.1,4.9 \mathrm{~Hz}, \mathrm{CHHCHNH}$), $1.68-1.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCOCH}_{2} \mathrm{CH}_{2}\right)$, 1.38-1.21 (m, $\left.24 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{12} \mathrm{CH}_{3}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.7,160.8,132.8,131.4,129.5,129.0,113.9,101.8$, 99.4, 66.0, 57.6, 55.3, 49.1, 41.8, 36.9, 31.9, 31.7, 29.7, 29.4, 25.7, 22.7, 14.1; HR-ESI-TOF: m/z: 578.3448, $\left[M+\mathrm{Na}^{+}\right]$for compound $\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{NO}_{6}$ requires 578.3452.

Preparation of palmitoyl analogue of scyphostatin 16.

To a solution of $23 \mathrm{mg}(41 \mu \mathrm{~mol})$ of compound 15 in dichloromethane (3 mL) was added montmorillonite $\mathrm{K} 10(150 \mathrm{mg})$. The mixture was stirred at ambient temperature for 1 h and was then filtered. The clay was washed on the filter with acetone $(3 \times 10 \mathrm{~mL})$ and the combined filtrates were evaporated under reduced pressure. The residue thus obtained was purified by flash column chromatography (4:1 ethyl acetate-acetone) to produce, in order of elution, unreacted starting material (8.8 mg) and the palmitoyl analogue of scyphostatin 16 ($6.1 \mathrm{mg}, 55 \%$) as amorphous white solid: $R_{\mathrm{f}} 0.32$ (4:1 ethyl acetate-acetone); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.17$ (dd, $J=9.9,3.9 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{CHCH}=\mathrm{CH}$), 6.10 (dd, $J=9.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}=\mathrm{CH}$), 3.99-4.04 (m, 1 $\mathrm{H}, \mathrm{CHNH}$), 3.66 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{O}) \mathrm{CHCH}=\mathrm{CH}$), 3.61 (dt, $J=4.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{O}) \mathrm{CHCH}=\mathrm{CH}$), 3.48 (dd, $J=10.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHOH}), 3.41$ (dd, $J=10.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHOH}), 2.11(\mathrm{dt}, J=7.6,2.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{COCH}_{2} \mathrm{CH}_{2}$), 2.05 (dd, $J=14.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{CHNH}$), 1.81 (dd, $J=14.7$, $9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{CHNH}$), $1.55-1.61$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2}$), 1.25-1.31 (m, 24 $\mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right){ }_{12} \mathrm{CH}_{3}$), $0.90\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (62.5 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 199.5,175.9,145.8,132.0,77.5,65.5,58.2,47.7,39.5,37.1,33.1$, 30.8, 30.7, 30.5, 30.4, 26.7, 23.8, 14.5; HR-ESI-TOF: m/z: 438.3219, $\left[\mathrm{M}+\mathrm{H}^{+}\right]$ for the compound $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{NO}_{5}$ requires 438.3214 .

Preparation of acetate derivative 17.

A mixture of compound $16(2.4 \mathrm{mg}, 5.5 \mu \mathrm{~mol})$, acetic anhydride ($50 \mu \mathrm{~L}, 0.53$ mmol) and pyridine ($50 \mu \mathrm{~L}, 0.63 \mathrm{mmol}$) in dichloromethane (0.5 mL) was stirred at ambient temperature and under an atmosphere of argon for 12 h. Upon reaction completion, a saturated aqueous solution of sodium bicarbonate (0.5 mL) was added to the mixture and stirring was continued for 1 h . The mixture was diluted with ethyl acetate (5 mL) and washed sequentially with water (5 ml), saturated aqueous solution of $\mathrm{CuSO}_{4}(5 \mathrm{~mL})$ and brine (5 mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The residue thus obtained was purified by flash column chromatography (6:4 ethyl acetate-hexane) to produce acetate derivative 17 ($2.0 \mathrm{mg}, 78 \%$) as white wax: $R_{\mathrm{f}} 0.07$ (1:1 ethyl acetate-hexane); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{dd}, J=9.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}=\mathrm{CH}), 6.23$ (dd, $J=9.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}=\mathrm{CH}$), 5.83 (brd, $J=7.0 \mathrm{~Hz}, \mathrm{NHCO}$), 4.194.27 (m, 2 H, CHHOAc + CHNH), 4.10 (dd, $J=10.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHOAc})$, 3.98 (s, $1 \mathrm{H}, \mathrm{COH}$), 3.72 (d, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{O}) \mathrm{CHCH}=\mathrm{CH}$), 3.58 (dt, J = $3.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{O}) \mathrm{CHCH}=\mathrm{CH}), 2.08-2.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right)$, 2.07 (s, $3 \mathrm{H}, \mathrm{OCOCH}_{3}$), 1.94 (dd, $J=14.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHHCHNH}$), 1.87 (dd, $J=$ 14.7, $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{CHNH}$), $1.56-1.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CH}_{2}\right.$), 1.22-1.30 $\left(\mathrm{m}, 24 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right){ }_{12} \mathrm{CH}_{3}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $(62.5$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.4,172.9,171.0,144.6,130.0,76.5,65.8,55.7,47.9,44.9$, 37.4, 36.5, 31.4, 29.5, 25.4, 22.6, 20.9, 14.2; HR-ESI-TOF: m/z: 480.3326, [$\mathrm{M}+\mathrm{H}^{+}$] for the compound $\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{NO}_{6}$ requires 480.3319.

Z＇99 6．69
t＇901

でしてし
ε E＇t

L＇LLL －＇ELL

L'tL
$L^{\prime} Z Z$
$9 \cdot G Z$
$\varepsilon^{\prime} 6 Z$
$t^{\prime} 6 Z$
$G^{\prime} 6 Z$
$L^{\prime} 6 Z$
$6^{\prime} L \varepsilon$
$6^{\prime} G \varepsilon$
$6^{\prime} 9 \varepsilon$
$t^{\prime} Z t$

$\varepsilon ' Z \angle L$ 0'ELL
\qquad

$$
\begin{aligned}
& L \prime \nvdash L \\
& L \prime Z Z
\end{aligned}
$$

?
s＇tL

$\varepsilon ' \not \subset 9$ \qquad
*'عL

L＇tL L＇zて
9＇GZ
ガ6Z
G＇6Z
L＇6Z
6．LE
$\varepsilon \cdot G \varepsilon$
0＇LE
ع＇レt
L＇0S

6．99
6＇ZL
ع＇LZL
s＇LZL
く＂6て1
$0.6 \varepsilon 1$

9°＇ $1 L$
$Z^{\prime} \angle Z L$
$L^{\circ} \angle Z L$
$\varepsilon^{\prime} 6 Z L$
$S^{\prime} 6 Z L$
$Z^{\prime} 0 \varepsilon L$
$L^{\circ} 6 \varepsilon L$
じもし 9＇ZZ 9＇GZ
$\varepsilon^{\prime} 6 z$
$9^{\prime} 6 z$
$8^{\prime} \angle \varepsilon$
$z^{\prime}-\varepsilon \varepsilon$
$6^{\prime} 9 \varepsilon$
$\varepsilon^{\prime}\llcorner$
L＇SS
L＇t9
＜＇99
L＇ZL

> Z'86

L＂6SL

NOESY spectrum of compound 14a

じカレ
L＇乙Z
L＇GZ
ガ6Z
G＇6Z
L＇6て
6＇LE
て＇ع®
0＇LE
G＇Lt
て＇8t
6．09
$\varepsilon \cdot 89$
c＇99
8＇0L

NOESY spectrum of compound 14b

