If we denote as $\mathrm{N}_{1}(\mathrm{t})$ and $\mathrm{N}_{0}(\mathrm{t})$ the population numbers of the ${ }^{5} \mathrm{D}_{1}$ and ${ }^{5} \mathrm{D}_{0}$ respectively, the rate equations governing the level population of the two states are:

$$
\begin{gather*}
\frac{d N_{1}(t)}{d t}=-W_{10} N_{1}(t)-R_{1} N_{0}(t) \tag{2}\\
\frac{d N_{0}(t)}{d t}=W_{10} N_{1}(t)-R_{0} N_{0}(t) \tag{3}
\end{gather*}
$$

Where W_{10} is the nanradiation transition rate of ${ }^{5} \mathrm{D}_{1}{ }^{7} \mathrm{~F}_{2}, \mathrm{R}_{1}$ and R_{0} is the radiation rate of ${ }^{5} \mathrm{D}_{1}-{ }^{7} \mathrm{~F}_{2}$ and ${ }^{5} \mathrm{D}_{0}-{ }^{7} \mathrm{~F}_{2}$ respectively. According to eqs 2-3, the time dependence of $\mathrm{N}_{1}(\mathrm{t})$ and $\mathrm{N}_{0}(\mathrm{t})$ can be expressed as:

$$
\begin{align*}
& N_{1}(t)=N_{1}(0) e^{-\left(W_{10}+R_{1}\right) t} \tag{4}\\
& N_{0}(t)=N_{0}(0) e^{-R_{0} t}+N_{1}(0) \frac{W_{10}}{R_{1}+W_{10}-R_{0}}\left(e^{-R_{0} t}-e^{-\left(R_{1}+W_{10}\right) t}\right) \tag{5}
\end{align*}
$$

Where $\mathrm{N}_{1}(0)$ and $\mathrm{N}_{0}(0)$ is the population at $\mathrm{t}=0$. In eq $4-5$, it is assumed that $\tau_{0}=\frac{1}{R_{0}}, \tau_{1}=\frac{1}{R_{1}+W_{10}}$ is the lifetime of ${ }^{5} \mathrm{D}_{0}$ and ${ }^{5} \mathrm{D}_{1}$ respectively.

