If we denote as $N_1(t)$ and $N_0(t)$ the population numbers of the 5D_1 and 5D_0 respectively, the rate equations governing the level population of the two states are:

$$\frac{dN_1(t)}{dt} = -W_{10}N_1(t) - R_1N_0(t)$$
⁽²⁾

$$\frac{dN_0(t)}{dt} = W_{10}N_1(t) - R_0N_0(t)$$
(3)

Where W_{10} is the nanradiation transition rate of ${}^{5}D_{1}$ - ${}^{7}F_{2}$, R_{1} and R_{0} is the radiation rate of ${}^{5}D_{1}$ - ${}^{7}F_{2}$ and ${}^{5}D_{0}$ - ${}^{7}F_{2}$ respectively. According to eqs 2-3, the time dependence of $N_{1}(t)$ and $N_{0}(t)$ can be expressed as:

$$N_1(t) = N_1(0)e^{-(W_{10} + R_1)t}$$
(4)

$$N_{0}(t) = N_{0}(0)e^{-R_{0}t} + N_{1}(0)\frac{W_{10}}{R_{1} + W_{10} - R_{0}}(e^{-R_{0}t} - e^{-(R_{1} + W_{10})t})$$
(5)

Where N₁(0) and N₀(0) is the population at t = 0. In eq 4-5, it is assumed that $\tau_0 = \frac{1}{R_0}, \tau_1 = \frac{1}{R_1 + W_{10}}$ is the lifetime of ⁵D₀ and ⁵D₁ respectively.