Self assembly of hollow cones in a bola-amphiphile/hexadiamine salt solution JP Douliez

Supporting information

Sample preparation :

A 1M stock solution of water-soluble α, ω hexadiamine (Sigma, France, 98% purity) was prepared in ultrapure water. Then, the desired volume to produce the fatty acid salt (1 mol fatty acid $/ 1 \mathrm{~mol}$ hexadiamine) was incorporated to the non-water-soluble ω-hydroxy-palmitic acid (Sigma, France, 98% purity) and 1 mL of ultrapure water was added. Samples were homogenized by vigorous vortexing and heating at $70^{\circ} \mathrm{C}$ for at least 30 min , plus freezing (-20 ${ }^{\circ} \mathrm{C}, 1 \mathrm{H}$) and re-heating (freeze-thawing).

DSC:

Differential scanning calorimetry for the 1% sample. Experiments were performed on a microDSC III from Setaram (Caluire, France). The amount of 0.85 mL of the lipid solution was accurately weighed in a Hastelloy C276 vessel. The sample was scanned between 1 and $80^{\circ} \mathrm{C}$ upon two successive heating an cooling cycles at $1^{\circ} \mathrm{C} / \mathrm{min}$. The DSC trace from the second heating step is shown. The shoulder at around $50^{\circ} \mathrm{C}$ is indicative of the rotator phase as shown in ref 21.

n-pentagonal defects:

The theoretical details for the formation of disclinations are well documented in ref 12 and 26. There is two routes for forming a cone starting from an hexagonal lattice. The first is described in the manuscript as the formation of n-gonal defects, the second is briefly
commented here-after as the formation of n-pentagonal defects. A cone can be obtained by introducing n-pentagonal defects at some distance from each over (Here, 2 pentagonal defects).

As for the n-gonal defects, the disclination is created by cutting-off one sector (and only one) of 60° in the n juxtaposed hexagons. Then, the cone forms by joining the two cut-edges of each hexagons leaving n pentagons (here, two pentagons).
Those two routes yield to the formation of cones having a similar structure (ref 26 for visualizing the comparison) and apex angles.

