Supporting Materials to
 Ru-Catalyzed Asymmetric Hydrogenation of α-Ketoesters with $\mathrm{CeCl}_{3} \cdot \mathbf{7} \mathrm{H}_{2} \mathrm{O}$ as Additive

Yanhui Sun, ${ }^{\dagger}$ Xiaobing Wan, ${ }^{\dagger}$ Jianping Wang, ${ }^{\ddagger}$ Qinghua Meng, ${ }^{\dagger}$ Hongwei Zhang, ${ }^{\ddagger}$ Lijuan Jiang ${ }^{\ddagger}$ and Zhaoguo Zhang ${ }^{\dagger \ddagger *}$

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry and School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
Page
General S2
Experiment S2-3
Analytical and spectral data for compounds 2a-2j S4-5
Reference S5
NMR Spectrum of compounds 2a-2j S6-25
HPLC and GC data S26-58

General: All reactions were carried out under inert atmosphere of dry argon or nitrogen. THF and toluene were freshly distilled from sodium/benzophenone ketyl, while $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ under argon atmosphere. EtOH for catalyst preparation or hydrogenation was distilled from magnesium under atmosphere. The preparation of samples and the setup of high-pressure reactor were either carried out in a glovebox or using standard Schlenk-type techniques. ${ }^{1} \mathrm{HNMR}$ (300 MHz), ${ }^{13} \mathrm{CNMR}$ (75.4 MHz) were registered on 300 M spectrometers with CDCl_{3} as solvent and tetramethylsilane (TMS) as internal standard. Chemical shifts are reported in units (ppm) by assigning TMS resonance in the ${ }^{1} \mathrm{H}$ spectrum as 0.00 ppm and CDCl_{3} resonance in the ${ }^{13} \mathrm{C}$ spectrum as 77.0 ppm . All coupling constants (J values) were reported in Hertz (Hz). Column chromatography was performed on silica gel 300-400 mesh.

Experiment: asymmetric hydrogenation of α-ketoesters ${ }^{1,2}$

To a 20 mL Schlenk tube were added $\left[\mathrm{Ru}(\text { benzene }) \mathrm{Cl}_{2}\right]_{2}(10 \mathrm{mg}, 0.02 \mathrm{mmol})$ and (S) $\mathbf{- 3}(30 \mathrm{mg}, 0.045 \mathrm{mmol})$. The tube was purged with Argon three times before addition of freshly distilled and degassed $\mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL} / 3 \mathrm{~mL})$. The resulting mixture was heated at $50^{\circ} \mathrm{C}$ for 1 h . The catalyst was dried under reduced pressure and was taken into a glove box in a dry nitrogen atmosphere and dissolved in degassed ethanol (8 mL) which was then put into 4 vials equally. To these vials α ketoester (1 mmol) was introduced, and then the vials were taken into an autoclave. The autoclave was purged three times with H_{2}, and the pressure of H_{2} was set to 50 atm. before it was placed in an oil bath at designed temperature for 20 h . Cooled to ambient temperature and the hydrogen was released carefully. The solvent was removed and the residue was passed through a silica gel column to give the product. Enantiomeric purity of the product was determined by HPLC.

Asymmetric hydrogenation of benzoylformic acid methyl ester (1a) with S/C:

10000

The preparation of catalyst $\left(\left[\mathrm{Ru}(\text { benzene }) \mathrm{Cl}_{2}\right]_{2}(10 \mathrm{mg}, 0.02 \mathrm{mmol})\right.$ and $(S)-3(30 \mathrm{mg}$, $0.045 \mathrm{mmol})$) was same as above. In a glove box, the catalyst and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(75$ $\mathrm{mg}, 0.2 \mathrm{mmol}$) were dissolved in 80 mL of MeOH in an autoclave, then to this freshly distilled and degassed methyl benzoylformate (1a) ($65.6 \mathrm{~g}, 400 \mathrm{mmol}$) was introduced. The autoclave was purged three times with H_{2}, and the pressure of H_{2} was set to 60 atm . The autoclave was placed to an oil bath at $100^{\circ} \mathrm{C}$ for 10 h . Work up was same as above to give 66.0 g white solid ($2 \mathrm{a}, 99.3 \%$ yield, $92 \% \mathrm{ee}$). The product was hydrolyzed by heating it in a $5 \% \mathrm{NaOH}$ aqueous solution at $40^{\circ} \mathrm{C}$ for 1 h , acidified with diluted HCl solution and then extracted with ethyl acetate to give the mandelic acid 4a. Recrystallization of $\mathbf{4 a}(50 \mathrm{~g})$ in $200 \mathrm{~mL} \mathrm{ClCH} \mathrm{CH}_{2} \mathrm{Cl}$ gave 41.4 g white flakes (4a). After transferring $\mathbf{4 a}$ to $\mathbf{2 a}$ in refluxing MeOH with a drop of concentrated sulfuric acid, the ee value of the recrystallized product (4a) was determined to be higher than 99%.

Methyl-mandelate (2a) ${ }^{\mathbf{3}}{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.47(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ $(\mathrm{s}, 3 \mathrm{H}), 5.18(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.44(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 52.9, 72.9, 126.5, 128.4, 128.5, 138.2,174.0.

Ethyl-4-mandelate (2b) ${ }^{4}{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.51$ (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.26(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.44(\mathrm{~m}, 5 \mathrm{H}) ;$ ${ }^{13} \mathrm{CNMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,62.0,72.8,126.4,128.2,128.4,138.3,173.5$.

Ethyl-4-methylmandelate (2c) ${ }^{5}{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.30(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0$, 21.2, 62.2, 72.7, 126.4, 129.2, 135.5, 138.2, 173.8.

Ethyl-4-methoxylmandelate (2d) ${ }^{61} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 3.43$ (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.17-4.26(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.88-7.35 (m, 4H); ${ }^{13} \mathrm{CNMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,56.3,62.2,72.4,113.9,127.8$, 130.6, 159.6, 173.9.

Ethyl-2-methylmandelate (2e) ${ }^{4}{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.30(\mathrm{~m}, 2 \mathrm{H}), 5.36(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.18-7.31 (m, 4H); ${ }^{13} \mathrm{CNMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,19.3,62.1,70.3,126.2,126.6$, 128.3, 130.7, 136.3, 136.7, 174.1.

Ethyl-4-fluoromandelate (2f) ${ }^{4} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $3.49(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.28(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.08(\mathrm{~m}$, $2 \mathrm{H}), 7.38-7.42(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,62.3,72.1,115.5(\mathrm{~d})$, 128.2(d), 134.1(d), 161.0(d), 173.4.

Ethyl-4-chloromandelate (2g) ${ }^{4}{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 3.54(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.30(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.39$
($\mathrm{m}, 4 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{CNMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,62.5,72.1,127.9,128.7,134.2,136.8$, 173.3.

Ethyl-4-bromomandelate (2h) ${ }^{4}{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 3.53$ (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.30(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.33$ (m, 2H), 7.48-7.51 (m, 2H); ${ }^{13} \mathrm{CNMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,62.5,72.1,122.4$, 128.2, 131.6, 137.3, 173.2.

Ethyl-2-chloromandelate (2i) ${ }^{4} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, 3.59 (d, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.27(\mathrm{~m}, 2 \mathrm{H}), 5.55(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.41(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,62.4,70.3,127.1,128.7,129.7,129.9,133.5$, 136.1, 173.2.

Ethyl- 2-Hydroxy-propionic acid ethyl ester (2j) ${ }^{\mathbf{6}}{ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 4.22(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{CNMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 14.1,20.4,61.7,66.7,175.7$.

Reference

1 Mashima, K.; Kusano, K.; Sate, N.; Matsumura, Y.; Nozaki, K.; Kumobayashi, H.; Sayo, N.; Hori, Y.; Ishizaki, T.; Akutagawa, S.; Takaya, H. J. Org. Chem. 1994, 59, 3064.

2 Sun, Y.; Wan, X.; Guo, M.; Wang, D.; Dong, X.; Pan, Y.; Zhang, Z. Tetrahedron: Asymmetry 2004, 15, 2185.

3 Crosignani, S.; White, P. D.; Steinauer, R.; Linclau, B. Org.Lett. 2003, 5, 853.
4 Tang, L.; Deng, L. J. Am. Chem. Soc. 2002, 124, 2871.
5 Effenberger, F.; Hopf, M.; Ziegler, T.; Hudelmayer, J.; Chem.Ber., 1991, 124, 1651.
6 Amyes, T. L.; Stevens, I. W.; Richard, J. P. J.Org.Chem.; 1993, 58, 6057.
7 Mahindaratne, M. P. D.; Wimalasena, K. J.Org.Chem.1998, 63, 2858.
(

${ }^{4} \mathrm{HNMR} \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{HNMR} \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{HNMR} \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{CNMR} \mathrm{CDCl}_{3}$

$\left.\right|^{\text {耳 }}$

${ }^{13} \mathrm{CNMR} \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{CNMRCDCl}_{3}$

${ }^{1} \mathrm{HNMR} \mathrm{CDCl}_{3}$

2a racemate

	RT (min)	Area $(\mathrm{V}$ *ec $)$	\% Area	Height (V)	\% Height
1	8.681	2064275	49.93	141801	60.23
2	12.657	2070074	50.07	93629	39.77

Table 1 entry 1

	RT (min)	Area $\left(\mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height (V)	\% Height
1	8.629	21188307	92.62	1011092	92.85
2	12.881	1688857	7.38	77911	7.15

2b racemate
GC on a β-DEX 325 capillary column

*** End of Report ***

Table 1 entry 2

Area Percent Report				
Sorted By	:	Signa		
Multiplier	:	1.000		
Dilution	:	1.000		
Sample Amount	:	1.000	[ng/ul]	(not use
Signal 1: FID1 A,				
Peak RetTime Type \# [min]	width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
154.111 BB	0.3015	878.984	34.69747	92.66794
255.866 BB	0.2931	69.546	2.82568	7.33206
Totals :		948.531	37.52315	

Results obtained with enhanced integrator!

** End of Report ***

Table 1 entry 3

Area Percent Report				
Sorted By	:	Signal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Sample Amount	:	1.00000	[$\mathrm{ng} / \mathrm{ul}$]	(not used in calc.)
Signal 1: FID1 $\mathrm{A}_{\text {, }}$				
$\underset{\dagger}{\text { Peak RetTime Type }} \underset{[\mathrm{min}]}{\text { Rictan }}$	$\underset{[\mathrm{min}]}{\text { Width }}$	$\begin{gathered} \text { Area } \\ {\left[p A^{\star s}\right]} \end{gathered}$	Height (pA]	Area
$1 \quad 54.641 \mathrm{BB}$	0.2861	365.06741	15.26147	91.94329
256.208 PV	0.2909	31.98973	1.30084	8.05671
Totals :		397.05714	16.56231	
Results obtained with enhanced integrator!				

*** End of Report ***

Table 1 entry 5

Table 1 entry 6

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	\% Height
1	9.139	4275203	94.76	260468	96.65
2	14.563	236556	5.24	9023	3.35

Table 1 entry 7

Table 1 entry 8

	RT (min)	Area $(\mathrm{V} * \sec)$	\% Area	Height (V)	$\%$ Height
1	9.006	9959719	95.76	599169	96.80
2	13.549	440687	4.24	19780	3.20

Table 1 entry 9

Table 1 entry 10

Table 1 entry 11

	RT (min)	Area $(\mathrm{V}$ *sec $)$	\% Area	Height (V)	\% Height
1	9.462	6017788	96.28	329006	97.46
2	15.237	232659	3.72	8584	2.54

Table 1 entry 12

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	$\%$ Height
1	8.995	5004223	98.16	310965	98.76
2	14.266	93700	1.84	3893	1.24

Table 1 entry 13

	RT (min)	Area $\left(\mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height (V)	\% Height
1	8.975	12745283	97.65	712351	98.28
2	14.323	306233	2.35	12438	1.72

Table 1 entry 14

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	\% Height
1	8.954	21910690	97.77	1114474	98.25
2	14.539	499547	2.23	19832	1.75

Table 1 entry 15

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	$\%$ Height
1	9.019	15655044	97.64	830213	98.22
2	14.584	378585	2.36	15011	1.78

Table 1 entry 16

2b racemate

	Peak Name	RT (min)	Area $(\mathrm{V}$ *sec $)$	\% Area	Height (V)	\% Height
1	Peak1	9.287	4329437	49.93	286644	60.04
2	Peak2	13.712	4341260	50.07	190817	39.96

Table 1 entry 17

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	\% Height
1	9.349	5626248	98.28	339385	98.78
2	15.575	98345	1.72	4197	1.22

Table 1 entry 18

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	\% Height
1	9.191	7962527	98.28	470324	98.77
2	15.147	139104	1.72	5835	1.23

Table 2 entry 1 A same to Table 1 entry 2

Table 2 entry 1 B

Results obtained with enhanced integrator!

*** End of Report ***

Table 2 entry 1 C same to Table 1 entry 17

2c racemate

Table 2 entry 2 A

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	\% Height
1	8.433	3417858	93.60	257154	95.21
2	10.348	233727	6.40	12935	4.79

Table 2 entry 2 B

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	\% Height
1	8.850	8865592	95.03	595994	95.59
2	10.957	463644	4.97	27467	4.41

Table 2 entry 2 C

	RT (min)	Area $(\mathrm{V}$ *sec $)$	\% Area	Height (V)	\% Height
1	12.429	4444519	50.05	189948	65.33
2	20.883	4435081	49.95	100816	34.67

Table 2 entry 3 A

	Peak Name	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	\% Height
1	Peak1	11.266	18931703	94.61	927286	95.49
2	Peak2	14.270	1078313	5.39	43788	4.51

Table 2 entry 3 B

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	\% Height
1	11.766	20562370	94.57	967531	95.24
2	14.953	1180574	5.43	48370	4.76

Table 2 entry 3 C

2e racemate

	RT (min)	Area $\left(\mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height (V)	$\%$ Height
1	10.575	2073555	50.07	122178	55.83
2	12.720	2067581	49.93	96655	44.17

Table 2 entry 4 A

	Peak Name	RT (min)	Area $\left(\mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height (V)	\% Height
1	Peak1	9.152	7276340	69.54	454444	72.26
2	Peak2	10.957	3187270	30.46	174421	27.74

Table 2 entry 4 B

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	$\%$ Height
1	9.506	7360108	64.86	457102	73.28
2	11.406	3987812	35.14	166701	26.72

Table 2 entry 4 C

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	\% Height
1	10.345	12391456	93.66	597278	93.82
2	12.686	838654	6.34	39353	6.18

$2 f$ racemate

	Peak Name	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	$\%$ Height
1	Peak1	9.107	12888183	49.96	845822	55.35
2	Peak2	10.554	12908873	50.04	682367	44.65

Table 2 entry 5 A

	Peak Name	RT (min)	Area $\left(\mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height (V)	\% Height
1	Peak1	8.648	17275823	87.56	1175638	88.27
2	Peak2	9.744	2454594	12.44	156301	11.73

Table 2 entry 5 B

	RT (min)	Area $\left(V^{*} \mathrm{sec}\right)$	\% Area	Height (V)	\% Height
1	8.962	16177274	93.98	1083260	94.07
2	10.102	1036772	6.02	68278	5.93

Table 2 entry 5 C

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	\% Height
1	17.432	52090045	97.54	1720869	97.34
2	20.299	1311643	2.46	46938	2.66

$\mathbf{2 g}$ racemate

	RT (min)	Area $\left(\mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height (V)	$\%$ Height
1	18.125	6164480	50.05	227842	53.28
2	20.034	6151184	49.95	199792	46.72

Table 2 entry 6 A

	Peak Name	RT (min)	Area $\left(\mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height (V)	\% Height
1	Peak1	8.881	13167841	87.41	813937	87.55
2	Peak2	9.761	1897327	12.59	115752	12.45

Table 2 entry 6 B

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	\% Height
1	9.132	5502861	93.50	361300	93.88
2	10.012	382505	6.50	23565	6.12

Table 2 entry 6 C

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	\% Height
1	18.187	17814839	97.07	583264	96.84
2	20.442	538640	2.93	19033	3.16

$2 h$ racemate

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	\% Height
1	18.797	9229315	49.93	325992	53.38
2	20.685	9254949	50.07	284754	46.62

Table 2 entry 7 A

	Peak Name	RT (min)	Area $\left(\mathrm{V}^{*}\right.$ sec $)$	\% Area	Height (V)	\% Height
1	Peak1	9.265	17366725	90.14	957816	90.78
2	Peak2	10.207	1899808	9.86	97277	9.22

Table 2 entry 7 B

Table 2 entry 7 C

2i racemate

Table 2 entry 8 A

	Peak Name	RT (min)	Area $\left(\mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height (V)	\% Height
1	Peak1	9.292	7678215	64.56	455955	70.07
2	Peak2	10.352	4215429	35.44	194787	29.93

Table 2 entry 8 B

	Peak Name	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	\% Height
1	Peak1	9.610	2098508	45.45	134619	48.80
2	Peak2	10.553	2518374	54.55	141247	51.20

Table 2 entry 8 C

	RT (min)	Area $\left(\mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height (V)	$\%$ Height
1	18.631	22405259	88.03	644867	87.55
2	21.159	3047734	11.97	91669	12.45

2j racemate

Signal 1: FID1 A,

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{pA}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [pA]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	8.518	PV	0.0645	249.63239	57.62408	49.91093
2	8.908	VB	0.0750	250.52341	47.92484	50.08907
Total	5 :			500.15579	105.54891	

Results obtained with enhanced integrator!

Table 2 entry 9 A


```
    Area Percent Report
```

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Sample Amount $: \quad 1.00000$ [ng/ul] (not used in calc.)
Signal 1: FID1 A,
Peak RetTime Type Width Area Height Area

2	8.834	PB	0.0971	894.90698	114.55589

Totals : $977.49371 \quad 139.39414$
Results obtained with enhanced integrator!

Table 2 entry 9 B

Area Percent Report

Sorted By	:	Signal		
Multiplier	:	1.0000		
Dilution	:	1.0000		
Sample Amount	:	1.00000	[ng/ul]	(not used in calc.)
Signal 1: FID1 A,				
```Peak RetTime Type # [min]```	width [min]	$\begin{array}{r} \text { Area } \\ {\left[\mathrm{pA}{ }^{*} \mathrm{~s}\right]} \end{array}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{pA}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
18.591 PB	0.0516	12.05946	3.64666	3.85637
28.939 PB	0.0678	300.65540	57.68548	96.14363
Totals :		312.71485	61.33214	

Results obtained with enhanced integrator!

*** End of Report ***

Table 2 entry 9 C


Area Percent Report


Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Signal 1: FID1 A,

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	Area $\left[p A^{*} \mathrm{~s}\right]$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{pA}]} \end{aligned}$	Area of
1	8.409	BB	0.0574	6.88861	1.85360	7.84896
2	8.803		0.0623	80.87600	19.54976	92.15104

Results obtained with enhanced integrator!

*** End of Report ***

After the catalyst in MeOH solution with 5 eq. of catalyst $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ was stirred in air for 10 days, and hydrogenation of $\mathbf{1 a}$ with this solution under the standard condition


	RT   $(\mathrm{min})$	Area   $(\mathrm{V} * \mathrm{sec})$	\% Area	Height   $(\mathrm{V})$	\%   Height
1	9.527	6868367	93.74	356003	95.71
2	15.506	458424	6.26	15964	4.29

(1a)(S/C: $1 / 10,000)$ was hydrogenated


	RT   $(\mathrm{min})$	Area   $(\mathrm{V} * \mathrm{sec})$	\% Area	Height   $(\mathrm{V})$	$\%$   Height
1	9.394	10080834	96.29	506459	96.29
2	13.500	388101	3.71	19502	3.71

Enantiomeric purity of the product after recrystallization


