Supporting Information ## On the Growth Mechanism of Transition Metal Dichalcogenide Monolayers: The Role of Self-Seeding Fullerene Nuclei Jeffrey D. Cain^{1,2}, Fengyuan Shi^{1,3}, Jinsong Wu^{1,3}, Vinayak P. Dravid^{1,2,3*} ¹Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA ²International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA ³Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, Illinois, 60208, USA v-dravid@northwestern.edu **Figure S1.** Energy dispersive spectroscopy (EDS) maps of the core shell nucleus structure. (a) Secondary electron reference image of core. (b) EDS map of the molybdenum K series. (c) EDS map of the oxygen K series. (d) EDS map of the sulfur K series **Figure S2.** Additional transmission electron microscope images of flakes and nuclei (a) Multilayer MoS₂-MoSe₂ sheet (b) Low-magnification image of nucleus (c) and (d) High-magnification images of nuclei (e) HREM image of nucleus core. **Figure S3.** Nano electron diffraction patterns from each section of the core-shell-monolayer structure. (a) Nucleus center (b) Nucleus Edge (c) Monolayer film **Figure S4.** Fast Fourier Transform of the false colored image shown in Figure 2.