Supporting Information

A Novel Triptycene-based Cylindrical Macrotricyclic Host: Synthesis and Complexation with Paraquat Derivatives

Qian-Shou Zong^{a,b} and Chuan-Feng Chen^{a,*}

^aCenter for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080,

China

^bGraduate School, Chinese Academy of Sciences, Beijing 100049, China

Email: cchen@iccas.ac.cn

Contents

I. Synthetic procedures	S2 S3		
II. ¹ H NMR and ¹³ C NMR spectra of compounds 6, 7, 8 and 1 III. ¹ H- ¹ H COSY and ¹ H NMR titration experiments IV. Determination of the association constants V. ESI MS spectra of the complexes 1·2, 1·3 and 1·4	S4 - S7 S8 - S10 S11 - S15 S16 - S17		
		VI. Crystal structures of the host 1 and the complexes 1.2 and 1.4	S18 S19

I. Synthetic procedures

Compound **6.** To a stirred solution of compound **5** (3.26 g, 10 mmol) in CH₂ClCH₂Cl (120 mL) and propylene oxide (8 mL) was added 2-carboxy-benzenediazonium chloride (3.69 g, 20 mmol). The reaction mixture was stirred at reflux for 4h, then filtered and concentrated. The crude product was recrystallized from ethanol to afford compound **6** (3.42 g, 85 %) as a white solid. Mp: 250-251 °C. ¹H NMR (300MHz, CDCl₃): δ 2.38 (s, 6H), 3.84 (s, 12H), 6.94 (s, 4H), 6.97-7.03 (m, 2H), 7.29-7.34 (m, 2H). ¹³C NMR (300 MHz, CDCl₃): δ 13.8, 48.0, 56.4, 106.0, 119.9, 124.6, 141.6, 145.8, 149.0. EI-MS: *m/z* 402 (M⁺). Elemental analysis calcd. for C₂₆H₂₆O₄: C 77.59, H 6.51; found: C 77.71, H 6.58.

Compound **7.** To the solution of **6** (3.0 g, 7.5 mmol) dissolved in dried CH_2Cl_2 (60 mL) at 0 °C was quickly injected BBr₃ (3 mL). After being stirred for 4h, the reaction mixture was quenched with cold water, filtered, washed with water, and then dried to yield **7** (2.44 g, 94 %). Mp: 210 °C (dec.). ¹H NMR (300 MHz, CD₃COCD₃): δ 2.21 (s, 6H), 6.85 (s, 4H), 6.93-6.96 (m, 2H), 7.25-7.28 (m, 2H). ¹³C NMR (300 MHz, CD₃COCD₃): δ 14.2, 48.0, 109.8, 120.4, 124.9, 141.7, 141.8, 150.7. EI MS: *m/z* 346 (M⁺). HRMS (EI) calcd. for C₂₂H₁₈O₄: 346.1205 (M⁺), found: 346.1207.

Compound **8.** To a stirred solution of **7** (1.1 g, 3.2 mmol) and 8-tosyloxy-3,6-dioxaoctanol (4.3 g, 14 mmol) in dried CH₃CN (70 mL) was added K₂CO₃ (3.6 g, 26 mmol). The reaction mixture was stirred at reflux for 28h, cooled to ambient temperature and then filtered. The filtrate was concentrated to give a residue, which was dissolved in dried CH₂Cl₂ (60 mL) and fresh Ag₂O (5.7 g, 25 mmol), TsCl (3.4 g, 18 mmol) and KI (0.53 g, 3.3 mmol) were added. The reaction mixture was stirred at room temperature for 8h, then filtered through a small pad of silica gel, and washed with EtOAc. Evaporation of the solvent, followed by column chromatography (SiO₂: EtOAc/petroleum 3:1) yielded **8** (3.15 g, 66 %) as a pale yellow solid. Mp: 75-76 °C. ¹H NMR (300 MHz, CDCl₃): δ 2.30 (s, 6H), 2.38 (s, 12H), 3.53-3.56 (m, 8H), 3.60-3.65 (m, 16H), 3.72-3.75 (m, 8H), 4.06-4.13 (m, 16H), 6.95 (s, 4H), 6.97-7.00 (m, 2H), 7.27-7.29 (m, 2H), 7.29 (d, *J*=9.0 Hz, 8H), 7.77 (d, *J*=9.0 Hz, 8H). ¹³C NMR (300 MHz, CDCl₃): δ 13.8, 21.6, 47.9, 68.7, 69.3, 69.7, 67.0, 70.3, 70.7, 110.0, 120.0, 124.6, 127.9, 129.8, 133.0, 142.5, 144.8, 145.8, 148.8. MALDI-TOF MS: *m*/z 1490.6 (M⁺). Elemental analysis calcd. for C₇₄H₉₀O₂₄S₄: C 59.58, H 6.08; found: C 59.26, H 6.16.

Compound 1: A solution of **8** (730 mg, 0.49 mmol) and **7** (170 mg, 0.49 mmol) in DMF (70 mL) was added via a funnel into a suspension containing cesium carbonate (1.28 g, 4.0 mmol) in DMF (80 mL) at 110 °C. After being stirred at 110 °C for 4 days, the reaction mixture was cooled down to ambient temperature. Removment of DMF under reduced pressure gave a residue, which was dissolved in chloroform and then filtered. The filtrate was washed with water twice, dried over anhydrous magnesium sulfate and concentrated to afford a crude product, which was purified by flash column chromatography with chloroform and methanol (100:1, v/v) as eluant to afford **1** (114 mg, 20 %) as a white solid. M.p.>300°C. ¹H NMR (300 MHz, CDCl₃): δ 2.24 (s, 12H), 3.68-3.73 (m, 8H), 3.78-3.85 (m, 24H), 3.96-4.00 (m, 8H), 4.05-4.10 (m, 8H), 6.83 (s, 8H), 6.96-7.0 (m, 4H), 7.25-7.27 (m, 4H). ¹³C NMR (300 MHz, CDCl₃): δ 13.7, 47.8, 69.9, 71.0, 109.0, 119.9, 124.5, 142.2, 145.6, 148.8. MALDI-TOF MS: *m/e* 1148.1. Elemental analysis calcd. for C₆₈H₇₆O₁₆: C 71.06, H 6.67; found: C 71.03, H 7.09.

Figure S2. ¹³C NMR spectrum (75 MHz, CDCl₃) of 6.

Figure S3. ¹H NMR spectrum (300 MHz, acetone- d_6) of 7.

Figure S4. ¹³C NMR spectrum (75 MHz, acetone- d_6) of **7.**

Figure S6. ¹³C NMR spectrum (75 MHz, CDCl₃) of 8.

Figure S8. ¹³C NMR spectrum (75 MHz, CDCl₃) of 1.

III. ¹H-¹H COSY and ¹H NMR titration experiments

Figure S9. ¹H-¹H COSY Spectrum (600 MHz, $CD_3CN:CDCl_3=1:1$) of a solution of **1** and 1.5 equiv of **2**. [**1**]₀ = 4 mM.

Figure S10. Partial ¹H NMR spectra (300 MHz, $CD_3CN:CDCl_3=1:1$, 295K) of a) free host **1**, b) **1** and 0.5 equiv of **2**, c) **1** and 1.0 equiv of **2**, d) **1** and 1.5 equiv of **2**, e) free guest **2**. [**1**]₀ = 4 mM.

Figure S11. Partial ¹H NMR spectra (300MHz, CD₃CN:CDCl₃=1:1, 295K) of a) free host **1**, b) host **1** and 1.0 equiv of **3**, c) free guest **3**. $[\mathbf{1}]_0 = 0.8 \text{ mM}$.

Figure S12. Partial ¹H NMR spectra (300MHz, CD₃CN:CDCl₃=1:1, 295K) of a) free host **1**, b) host **1** and 1.0 equiv of **4**, c) free guest **4**, $[\mathbf{1}]_0 = 0.8$ mM.

Figure S13. Partial ¹H NMR spectra (300MHz, 295K) of a) free host **1**, b) host **1** and 1.0 equiv of **2**, c) free guest **2** in DMSO- d_6 . [**1**]₀ = 6 mM.

IV. Determination of the association constants

Figure S14. Mole ratio plot for the complexation between 1 and 3 in CDCl₃/CD₃CN=1:1 at 295K.

Figure S15. Determination of Δ_0 of H₁ for the complexation between **1** and **3** in CDCl₃/CD₃CN=1:1 at 295K.

Figure S16. Scatchard plot for the complexation of host 1 and guest 3 in $CDCl_3/CD_3CN=1:1$ at 295K.

Figure S17. Mole ratio plot for the complexation between 1 and 4 in CDCl₃/CD₃CN=1:1 at 295K.

Figure S18. Determination of Δ_0 of H₁ for the complexation between **1** and **4** in CDCl₃/CD₃CN=1:1 at 295K.

Figure S19. Scatchard plot for the complexation of host **1** and guest **4** in CDCl₃/CD₃CN=1:1 at 295K.

Figure S20. Mole ratio plot for the complexation between 2 and BMP34C10-diol in $CDCl_3/CD_3CN=1:1$ at 295K.

Figure S21. Determination of Δ_0 of H_f for the complexation between 2 and BMP34C10-diol in CDCl₃/CD₃CN =1:1 at 295K.

Figure S22. Scatchard plot for the complexation of host BMP32C10-diol and guest 2 in $CDCl_3/CD_3CN = 1:1$ at 295K.

Figure S23. Calibration curve correlating the observed chemical shift with the concentration of complex present in solution.

V. ESI MS spectra of the complexes 1.2, 1.3 and 1.4

ESI-MS Spectrum, 2qs-16

Figure S24. ESI MS of a solution of 1 and 2 in acetonitrile-chloroform (1:1).

ESI-MS Spectrum, zqs-050413

Figure S25. ESI MS of a solution of 1 and 3 in acetonitrile-chloroform (1:1).

ESI-MS Spectrum, 29s050419

#:1 Ret.Time:Single 3.033(Scan#:183) Mass Peaks:208 Base Peak:765.55(9871711) Polarity:Pos Segment1 - Event1 Intensity

Figure S26. ESI MS of a solution of 1 and 4 in acetonitrile-chloroform (1:1).

VI. Crystal structures of the host 1 and the complexes 1.2 and 1.4

Figure S27. (a) Top view and (b) side view of the crystal structure of the host **1.** Solvent molecules and hydrogen atoms are omitted for clarity.

Figure S28. (a) Top view and (b) side view of the crystal structure of the complex **1-2**. Solvent molecules and hydrogen atoms not involved in the interactions are omitted for clarity.

Figure S29. (a) Top view and (b) side view of the crystal structure of the complex **1-4.** Solvent molecules and hydrogen atoms not involved in the interactions are omitted for clarity.