SUPPORTING INFORMATION

Synthetic Studies and Mechanistic Insight in Nickel-Catalyzed [4+2+1] Cycloadditions

Yike Ni and John Montgomery*
Department of Chemistry, Wayne State University, Detroit, MI 48202-3489 and Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055
jmontg@umich.edu

Unless otherwise noted, reagents were commercially available and were used without purification. Tetrahydrofuran (THF) was treated under nitrogen using a solvent purification system (Innovative Technology, Inc., Model \# SPS-400-3). Ni(COD) $)_{2}$ (Strem Chemicals, Inc., used as received) was stored and weighed in an inert atmosphere glovebox. All reactions were conducted in flame-dried glassware under a nitrogen or argon atmosphere. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were obtained in CDCl_{3} at rt , unless otherwise noted, on a Varian Mercury 400 or Varian Unity 500 MHz instrument. Chemical shifts of ${ }^{1} \mathrm{H}$ NMR spectra were recorded in parts per million (ppm) on the δ scale from an internal standard of residual chloroform (7.27 ppm). Chemical shifts of ${ }^{13} \mathrm{C}$ NMR spectra were recorded in ppm from the central peak of $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ on the δ scale. High resolution mass spectra (HRMS) were obtained on a Kratos MS 80 mass spectrometer by
the Central Instrumentation Facility, Department of Chemistry, Wayne State University, Detroit, Michigan.

General procedure for the $\mathrm{Ni}(\mathrm{COD})_{2}$ catalyzed cycloadditions:

To a premixed THF solution of enyne or dienyne (1 equiv, 0.1 M) and TMSCHN_{2} (2 equiv) was added a THF solution of $\mathrm{Ni}(\mathrm{COD})_{2}(10 \mathrm{~mol} \%)$ at $60^{\circ} \mathrm{C}$. The resulting brown solution was stirred at $60^{\circ} \mathrm{C}$ for $10-30$ minutes and allowed to cool to rt . The solvent was removed by rotary evaporation and the residue was absorbed onto silica gel. Flash column chromatography provided the bicyclic products.

2-(Toluene-4-sulfonyl)-7-trimethylsilanyl-1,2,3,3a,6,7-hexahydro-cyclohepta[c]-

pyrrole (2a). General procedure was followed using $138 \mathrm{mg}(0.5 \mathrm{mmol})$ of dienyne 1a, $0.5 \mathrm{~mL}\left(1.0 \mathrm{mmol}, 2.0 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ of $\mathrm{TMSCHN}_{2}, 15 \mathrm{mg}(0.05 \mathrm{mmol})$ of $\mathrm{Ni}(\mathrm{COD})_{2}$ to afford $124 \mathrm{mg}(68 \%,>95: 5$ as judged by GC analysis on the crude reaction mixture) of product 2a. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 5.75(\mathrm{dtd}, J=11.0,6.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.97(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H})$, $2.66(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{dt}, J=15.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}),-0.06(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.8,134.7,132.9,131.9,129.9,129.8,128.1,124.4$,
54.6, 53.9, 40.5, 28.0, 27.4, 21.8, -1.8; IR (film) 2952, 2844, 1598, 1456, 1348, 1248, $1164 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{SiS} 360.1454$, found $360.1459(\mathrm{M}-\mathrm{H})^{+}$.

2b

7-Trimethylsilanyl-3,3a,6,7-tetrahydro-1H-azulene-2,2-dicarboxylic acid dimethyl

ester (2b). General procedure was followed using $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of dienyne $\mathbf{1 b}, 0.2$ $\mathrm{mL}\left(0.4 \mathrm{mmol}, 2.0 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ of $\mathrm{TMSCHN}_{2}, 6 \mathrm{mg}(0.02 \mathrm{mmol})$ of $\mathrm{Ni}(\mathrm{COD})_{2}$ to afford $49 \mathrm{mg}(76 \%, 13: 1$ as judged by GC analysis on the crude reaction mixture) of product 2b. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.70(\mathrm{dtd}, J=10.5,6.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dt}, J=$ $10.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.91(\mathrm{dq}, J=16.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{ddd}, J=12.5,8.5,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.05(\mathrm{dd}, J=12.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}),-0.01(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 172.5,172.2,138.7,134.0,130.6,123.7,58.6,53.0,52.9$, 42.1, 41.6, 39.7, 27.7, 27.3, -1.9; IR (film) 2952, 2844, 1736, 1434, $1249 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Si} 322.1600$, found $322.1599\left(\mathrm{M}^{+}\right)$.

Trimethyl-(3,5,6,8a-tetrahydro-1H-cyclohepta[c]furan-5-yl)-silane (2c). General procedure was followed using $62 \mathrm{mg}(0.5 \mathrm{mmol})$ of dienyne $\mathbf{1 c}, 0.5 \mathrm{~mL}(1.0 \mathrm{mmol}, 2.0 \mathrm{M}$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ of $\mathrm{TMSCHN}_{2}, 15 \mathrm{mg}(0.05 \mathrm{mmol})$ of $\mathrm{Ni}(\mathrm{COD})_{2}$ to afford $75 \mathrm{mg}(65 \%, 10: 1$ as judged by NMR analysis on the purified sample) of inseparable isomers of product $\mathbf{2 c}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.82(\mathrm{dtd}, J=10.5,6.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dt}, J=10.5,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.51(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{dq}, J=12.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dq}, J=12.2,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.20(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 2.12$ $(\mathrm{dt}, J=14.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 138.7, 131.8, 129.9, 120.7, 74.7, 73.1, 41.4, 27.7, 27.6, -1.8; IR (film) 2952, 2843, 1652, 1449, $1248 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{OSi} 208.1283$, found $208.1288\left(\mathrm{M}^{+}\right)$.

8-Methyl-7-trimethylsilanyl-3,3a,6,7-tetrahydro-1H-azulene-2,2-dicarboxylic acid dimethyl ester (2d). General procedure was followed using $125 \mathrm{mg}(0.5 \mathrm{mmol})$ of dienyne $\mathbf{1 d}, 0.5 \mathrm{~mL}\left(1.0 \mathrm{mmol}, 2.0 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ of $\mathrm{TMSCHN}_{2}, 15 \mathrm{mg}(0.05 \mathrm{mmol})$ of $\mathrm{Ni}(\mathrm{COD})_{2}$ to afford $131 \mathrm{mg}(78 \%,>95: 5$ as judged by NMR analysis on the purified sample) of 2d. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.77(\mathrm{dtd}, J=9.5,6.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.58$
$(\mathrm{dt}, J=10.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=17.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.84(\mathrm{dd}, J=16.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{ddd}, J=13.0,8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.05(\mathrm{dt}, J=15.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{t}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 0.02$ (s, 9H) ; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 172.6,172.5,134.1,131.0,130.9,130.2,58.1$, 52.9, 52.8, 41.8, 40.5, 40.1, 34.1, 28.4, 22.9, 0.04; IR (film) 2952, 2845, 1735, 1434, $1249 \mathrm{~cm}^{-1} ;$ HRMS (EI) m/e calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si} 336.1757$, found $336.1754\left(\mathrm{M}^{+}\right)$.

Trimethyl-(4-methyl-3,5,6,8a-tetrahydro-1H-cyclohepta[c]furan-5-yl)-silane (2e).
General procedure was followed using $136 \mathrm{mg}(1.0 \mathrm{mmol})$ of dienyne $\mathbf{1 e}, 1.0 \mathrm{~mL}(2.0$ $\mathrm{mmol}, 2.0 \mathrm{M}^{2}$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ of $\mathrm{TMSCHN}_{2}, 28 \mathrm{mg}(0.1 \mathrm{mmol})$ of $\mathrm{Ni}(\mathrm{COD})_{2}$ to afford 135 mg ($62 \%, 16: 1$ as judged by NMR analysis on the purified sample) of inseparable isomers of product 2e. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.89(\mathrm{dtd}, J=10.0,6.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.56$ $(\mathrm{dt}, J=10.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=10.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{dt}, J=$ $13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.0,130.3,130.1,128.7,74.8,72.2,41.7,33.7,28.7,22.4,0.1$; IR (film) 2951, 2839, 1653, $1247 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{OSi} 222.1440$, found $222.1443\left(\mathrm{M}^{+}\right)$.

Trimethyl-(6-methyl-3,5,6,8a-tetrahydro-1H-cyclohepta[c]furan-5-yl)-silane (2f).
General procedure was followed using $70 \mathrm{mg}(0.5 \mathrm{mmol})$ of dienyne $\mathbf{1 f}, 0.5 \mathrm{~mL}(1.0$ $\mathrm{mmol}, 2.0 \mathrm{M}$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ of $\mathrm{TMSCHN}_{2}, 15 \mathrm{mg}(0.05 \mathrm{mmol})$ of $\mathrm{Ni}(\mathrm{COD})_{2}$ to afford 50 mg $(45 \%, 4: 1$ as judged by GC analysis on the crude reaction mixture) of inseparable isomers of product $\mathbf{2 f}$ (note: Two conformers of the major isomer of $\mathbf{2 f}$ interconvert slowly on the NMR time scale. Signals for the major isomer begin to sharpen at $55^{\circ} \mathrm{C}$ in $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{VT}=55{ }^{\circ} \mathrm{C}\right) \delta 5.45(\mathrm{ddd}, J=10.0,6.0,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.36(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=12.5,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=10.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 1.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, $55^{\circ} \mathrm{C}$, complete listing for both isomers) $\delta 138.8,136.1,126.7,120.1,74.8,74.3,73.0$, 72.6, 44.6, 41.9, 35.8, 34.7, 34.1, 29.9, 24.2, 20.6, -0.3, -1.4;
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right) \delta 5.60(\mathrm{ddd}, J=10.0,6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~m}$, $1 \mathrm{H}), 5.39(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=12.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=10.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 1.83(\mathrm{br} \mathrm{m}$, $1 \mathrm{H}), 1.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$, complete listing for both isomers) $\delta 139.4,138.6,136.8,126.4,125.4,121.1,119.9,75.0,74.6$, 73.2, 73.0, 44.0, 41.7, 36.0, 34.8, 33.8, 29.9, 24.3, 21.1, 0.1, -1.0; IR (film) 2953, 2844,

1653, 1457, $1248 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{12} \mathrm{H}_{19}$ OSi 207.1205, found 207. 1201 $\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}$.

(4,6-Dimethyl-3,5,6,8a-tetrahydro-1H-cyclohepta[c]furan-5-yl)-trimethyl-silane (2g).
General procedure was followed using $150 \mathrm{mg}(1.0 \mathrm{mmol})$ of dienyne $\mathbf{1 g}, 1.0 \mathrm{~mL}(2.0$ $\left.\mathrm{mmol}, 2.0 \mathrm{M} \mathrm{in}_{\mathrm{Et}}^{2} \mathrm{O}\right)$ of $\mathrm{TMSCHN}_{2}, 28 \mathrm{mg}(0.1 \mathrm{mmol})$ of $\mathrm{Ni}(\mathrm{COD})_{2}$ to afford 115 mg ($49 \%,>95: 5$ as judged by NMR analysis on the purified sample) of product $\mathbf{2 g}$ (note: Two conformers of $\mathbf{2 g}$ interconvert very slowly on the NMR time scale, and sharp signals in the ${ }^{1} \mathrm{H}$ NMR for both conformers are noted at $25^{\circ} \mathrm{C}$ in CDCl_{3}. The signals broaden and approach coalescence at $75^{\circ} \mathrm{C}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$). Major conformer: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25{ }^{\circ} \mathrm{C}\right) \delta 5.74(\mathrm{ddd}, J=9.5,7.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=$ $12.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.06$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$) $\delta 139.4,129.8,128.1,125.9,74.2,72.2$, $42.8,42.6,36.1,23.4,21.6,2.0$; Minor conformer: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.54$ $(\mathrm{m}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~s}$, $3 \mathrm{H}), 1.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 141.4,138.8$, 127.1, 125.6, 75.9, 70.7, 41.9, 38.1, 33.2, 21.9, 18.6, 0.0; IR (film) 2955, 2836, 1652, 1457, $1248 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{OSi} 236.1596$, found $236.1592\left(\mathrm{M}^{+}\right)$.

2h
(4,7-Dimethyl-1-phenyl-3,5,6,8a-tetrahydro-1H-cyclohepta[c]furan-5-yl)-trimethylsilane (2h). General procedure was followed using $140 \mathrm{mg}(0.6 \mathrm{mmol})$ of dienyne $\mathbf{1 h}, 0.6$ $\mathrm{mL}\left(1.2 \mathrm{mmol}, 2.0 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ of $\mathrm{TMSCHN}_{2}, 18 \mathrm{mg}(0.06 \mathrm{mmol})$ of $\mathrm{Ni}(\mathrm{COD})_{2}$ to afford $138 \mathrm{mg}(74 \%,>95: 5$ as judged by NMR analysis on the purified sample) of product $\mathbf{2 h}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.24(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=$ $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dd}, J=12.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{dd}, J=15.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}$, $3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.6,139.3,133.6$, $128.6,128.3,128.2,127.2,122.8,88.0,71.6,49.8,33.8,33.6,26.3,21.6,-0.2$; IR (film) 2950, 2846, 1683, 1454, $1248 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{OSi} 297.1675$, found 297. $1679\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}$.

3

3,3a,6,7-Tetrahydro-1H-azulene-2,2-dicarboxylic acid dimethyl ester (3). To a 3 mL THF solution of $\mathbf{2 b}(46 \mathrm{mg}, 0.14 \mathrm{mmol})$ was added TBAF $(0.3 \mathrm{ml}, 1.0 \mathrm{M}$ in THF) at rt . The resulting brown solution was warmed to $60{ }^{\circ} \mathrm{C}$ and stirred for 30 minutes. The solvent was removed by rotary evaporation and the residue was absorbed onto silica gel.

Flash column chromatography on silica gel (Hexane : Ethyl ether $=10: 1)$ afforded $\mathbf{3}(29$ $\mathrm{mg}, 82 \%$) as a light oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.68(\mathrm{~m}, 1 \mathrm{H}), 5.63(\mathrm{~m}, 1 \mathrm{H}), 5.49$ $(\mathrm{d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.65$ $(\mathrm{ddd}, J=13.0,8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{dd}, J=$ $12.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,172.1,142.6,132.2,130.4$, $122.5,58.8,53.0,52.9,41.7,41.5,39.8,26.4,25.9$; IR (film) 2955, 2843, 1734, 1653, 1435, $1250 \mathrm{~cm}^{-1} ;$ HRMS (EI) m/e calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} 250.1205$, found $250.1205\left(\mathrm{M}^{+}\right)$.

3,3a,6,8a-Tetrahydro-1 \boldsymbol{H}-azulene-2,2-dicarboxylic acid dimethyl ester (4). To a 3 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{2 b}(26 \mathrm{mg}, 0.08 \mathrm{mmol})$ was added $\mathrm{BF}_{3} 2 \mathrm{HOAc}$ complex ($35 \mu \mathrm{~L}, 0.24$ $\mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The resulting orange solution was allowed to warm to rt and stirred for 20 minutes. The reaction mixture was diluted with 5 mL ethyl ether and quenched with saturated NaHCO_{3}. Extraction with ethyl ether (3 x 10 mL) and chromatographic purification on silica gel (Hexane : Ethyl ether $=10: 1)$ afforded $4(16 \mathrm{mg}, 80 \%)$ as a light oil (d.r. $=3: 1$, cis : trans). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.71-5.65\left(\mathrm{~m}, 2 \mathrm{H}_{\text {maj }}+\right.$ $\left.2 \mathrm{H}_{\text {min }}\right), 5.57-5.53\left(\mathrm{dt}, J=11.0,4.5 \mathrm{~Hz}, 2 \mathrm{H}_{\text {min }}\right), 5.47\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}_{\text {maj }}\right), 3.72\left(\mathrm{~s}, 6 \mathrm{H}_{\text {maj }}\right.$ $\left.+6 \mathrm{H}_{\text {min }}\right), 2.99-2.88\left(\mathrm{~m}, 3 \mathrm{H}_{\text {maj }}+2 \mathrm{H}_{\text {min }}\right), 2.70\left(\mathrm{dd}, J=13.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}_{\text {min }}\right), 2.61-2.53$ $\left(\mathrm{m}, 1 \mathrm{H}_{\text {maj }}+2 \mathrm{H}_{\text {min }}\right), 2.37\left(\mathrm{dd}, J=13.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}_{\text {maj }}\right), 2.31\left(\mathrm{dd}, J=13.0,6.5 \mathrm{~Hz}, 2 \mathrm{H}_{\text {maj }}\right)$, 1.93 ($\mathrm{t}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}_{\text {min }}$) ; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.7,173.3,173.1,132.0$, 131.7, 129.5, 127.3, 58.0, 53.1, 53.0, 52.9, 44.2, 42.7, 41.4, 40.8, 29.9, 27.9; IR (film)

2953, 1733, 1652, 1435, $1249 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} 250.1205$, found $250.1202\left(\mathrm{M}^{+}\right)$.

(E)-dimethyl 1-(2-(trimethylsilyl)vinyl)bicyclo[3.1.0]hexane-3,3-dicarboxylate (14a).

General procedure was followed using $106 \mathrm{mg}(0.5 \mathrm{mmol})$ of enyne $\mathbf{1 3 a}, 0.5 \mathrm{~mL}(1.0$ mmol, 2.0 M in diethyl ether) of $\mathrm{TMSCHN}_{2}, 15 \mathrm{mg}(0.05 \mathrm{mmol})$ of $\mathrm{Ni}(\mathrm{COD})_{2}$ to afford $108 \mathrm{mg}(72 \%)$ of product $\mathbf{1 4 a}$ exclusively as the E isomer. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $5.72(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~d}, J=19.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.65-$ $2.55(\mathrm{~m}, 3 \mathrm{H}), 2.48(\mathrm{dd}, J=14.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{dt}, J=8.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.72(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.54(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.4$, $172.5,149.7,125.6,59.3,53.2,53.1,37.3,35.9,33.5,26.8,17.8,-0.9$; IR (film) 2954, 1736, 1610, 1435, $1248 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{4}$ Si 296.1444, found $296.1444\left(\mathrm{M}^{+}\right)$.

3-Tosyl-1-(2-(trimethylsilyl)vinyl)-3-aza-bicyclo[3.1.0]hexane (14b). General procedure was followed using $50 \mathrm{mg}(0.2 \mathrm{mmol})$ of enyne $\mathbf{1 3 b}, 0.2 \mathrm{~mL}(0.4 \mathrm{mmol}, 2.0 \mathrm{M}$ in Hexane) of $\mathrm{TMSCHN}_{2}, 6 \mathrm{mg}(0.02 \mathrm{mmol})$ of $\mathrm{Ni}(\mathrm{COD})_{2}$ to afford $40 \mathrm{mg}(60 \%)$ of product $\mathbf{1 4 b}$ as a mixture of $E / Z=10: 1$ isomers. ${ }^{1}$ For E-isomer: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.52(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=9.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.46(q u i n t, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $0.93(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{~m}, 1 \mathrm{H}), 0.01(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.9$, 143.7, 133.7, 129.9, 127.8, 127.6, 51.0, 49.9, 32.1, 25.1, 21.8, 16.1, -1.1; IR (film) 2953, 1614, 1348, $1166 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{SSi} 335.1375$, found $335.1377\left(\mathrm{M}^{+}\right)$.

$((E)$-2-((1R, 5S, 6S)-6-ethyl-3-oxa-bicyclo[3.1.0]hexan-1-yl)vinyl)trimethylsilane (14c). General procedure was followed using $50 \mathrm{mg}(0.4 \mathrm{mmol})$ of enyne $\mathbf{1 3 c}, 0.4 \mathrm{~mL}$ $\left(0.8 \mathrm{mmol}, 2.0 \mathrm{M}\right.$ in diethyl ether) of $\mathrm{TMSCHN}_{2}, 12 \mathrm{mg}(0.04 \mathrm{mmol})$ of $\mathrm{Ni}(\mathrm{COD})_{2}$ to afford $30 \mathrm{mg}(36 \%)$ of product $\mathbf{1 4 c}$ as an exclusive E isomer (d.r. $>95: 5$ as judged by NMR analysis on the purified sample). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.06(\mathrm{~d}, J=19.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.36(\mathrm{~m}, 3 \mathrm{H}), 1.03(\mathrm{~m}$, $1 \mathrm{H}), 0.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 143.4,129.5$, $71.5,70.0,37.2,32.0,29.4,21.3,14.0,-0.9$, IR (film) $2958,1605,1456,1248 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{OSi} 210.1440$, found $210.1441\left(\mathrm{M}^{+}\right)$.

$E / Z=9: 1$
14d
((E)-2-((1R, $5 S, \quad 6 R)$-6-ethyl-3-oxa-bicyclo[3.1.0]hexan-1-yl)vinyl)trimethylsilane (14d). General procedure was followed using $100 \mathrm{mg}(0.8 \mathrm{mmol})$ of enyne $\mathbf{1 3 d}, 2.0 \mathrm{~mL}$ ($4.0 \mathrm{mmol}, 2.0 \mathrm{M}$ in diethyl ether) of $\mathrm{TMSCHN}_{2}, 22 \mathrm{mg}(0.08 \mathrm{mmol})$ of $\mathrm{Ni}(\mathrm{COD})_{2}$ to afford $42 \mathrm{mg}(25 \%)$ of product $\mathbf{1 4 d}$ as a mixture of $E / Z=9: 1$ isomers (d.r. $>95: 5$ as judged by NMR analysis on the purified sample). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.90(\mathrm{~d}$, $J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=8.4$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 147.6,126.4,69.4,68.2,37.9,31.2,30.6,15.1,14.7,-0.9$; IR (film) 2957, 1608, 1456, $1248 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{OSi} 210.1440$, found $210.1440\left(\mathrm{M}^{+}\right)$.

Trimethyl((E)-2-((1R, 5S, 6S)-5-methyl-6-vinyl-3-oxa-bicyclo[3.1.0]hexan-1-yl)prop-
1-enyl)silane (17). General procedure was followed using $170 \mathrm{mg}(1.1 \mathrm{mmol})$ of dienyne 16, $1.2 \mathrm{~mL}\left(2.4 \mathrm{mmol}, 2.0 \mathrm{M}\right.$ in diethyl ether) of $\mathrm{TMSCHN}_{2}, 35 \mathrm{mg}(0.12 \mathrm{mmol})$ of
$\mathrm{Ni}(\mathrm{COD})_{2}$ to afford $120 \mathrm{mg}(48 \%)$ of product $\mathbf{1 7}$ as an exclusive E isomer $($ d.r. $=9: 1$ as judged by NMR analysis on the purified sample). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 5.52$ $5.53(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{dd}, J=17.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=10.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.81(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 148.8,135.4,131.3,114.6,76.2,75.2,46.5,34.4,31.7,21.4,10.6,-0.0$; IR (film) 2954, 1636, 1614, $1248 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{OSi} 236.1596$, found $236.1601\left(\mathrm{M}^{+}\right)$.

((3aE, 5R, 7Z, 8aS)-4,8a-dimethyl-3,5,6,8a-tetrahydro-1H-cyclohepta[c]furan-5yl)trimethylsilane (19). General procedure was followed using $75 \mathrm{mg}(0.5 \mathrm{mmol})$ of dienyne $\mathbf{1 6}, 1.25 \mathrm{~mL}\left(2.5 \mathrm{mmol}, 2.0 \mathrm{M}\right.$ in diethyl ether) of $\mathrm{TMSCHN}_{2}, 15 \mathrm{mg}(0.05$ $\mathrm{mmol})$ of $\mathrm{Ni}(\mathrm{COD})_{2}$ to afford $62 \mathrm{mg}(52 \%)$ of product 19 (d.r. $>95: 5$ as judged by NMR analysis on the purified sample). From thermolysis of divinylcyclopropane: A 1 mL toluene solution of $\mathbf{1 7}(18 \mathrm{mg}, 0.07 \mathrm{mmol})$ was stirred at $105^{\circ} \mathrm{C}$ for 12 hrs to afford $11 \mathrm{mg}(60 \%)$ of product $\mathbf{1 9}$ (d.r. $>95: 5$ as judged by NMR analysis on the purified sample). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.80(\mathrm{ddd}, J=11.0,7.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{dd}, J$ $=10.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{ddd}, J=14.5,7.5,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.81(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$134.5,133.6,130.1,128.6,80.9,72.6,46.3,35.3,28.2,26.4,22.8,0.1$; IR (film) 2960, 1669, 1456, 1248, $1054 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{14} \mathrm{H}_{24}$ OSi 236.1596, found $236.1597\left(\mathrm{M}^{+}\right)$.

Trimethyl((E)-2-((1R , 5S , 6S)-6-((Z)-prop-1-enyl)-3-oxa-bicyclo[3.1.0]hexan-1-yl)prop-1-enyl)silane (21). General procedure was followed using $40 \mathrm{mg}(0.26 \mathrm{mmol})$ of dienyne $20,0.3 \mathrm{~mL}\left(0.52 \mathrm{mmol}, 2.0 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ of $\mathrm{TMSCHN}_{2}, 8 \mathrm{mg}(0.026 \mathrm{mmol})$ of $\mathrm{Ni}(\mathrm{COD})_{2}$ to afford $42 \mathrm{mg}(69 \%)$ of $\mathbf{2 1}$ (d.r. $>95: 5$ as judged by NMR analysis on the purified sample). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.43(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{t}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=8.0,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{dd}, J=$ $6.4,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 149.2, 127.9, 127.3, 124.0, 73.8, 70.6, 45.4, 30.8, 24.4, 22.1, 13.5, 0.2; IR (film) 2956, 1616, $1248 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{OSi} 236.1596$, found $236.1594\left(\mathrm{M}^{+}\right)$.

23
((3aE, 5R, 6S, 7Z, 8aS)-4,6-dimethyl-3,5,6,8a-tetrahydro-1H-cyclohepta[c]furan-5yl)trimethylsilane (23). General procedure was followed using $60 \mathrm{mg}(0.4 \mathrm{mmol})$ of dienyne 20, 0.4 mL ($0.8 \mathrm{mmol}, 2.0 \mathrm{M}$ in diethyl ether) of $\mathrm{TMSCHN}_{2}, 12 \mathrm{mg}(0.04 \mathrm{mmol})$ of $\mathrm{Ni}(\mathrm{COD})_{2}$ to afford $56 \mathrm{mg}(60 \%)$ of product 23 (d.r. $>95: 5$ as judged by NMR analysis on the purified sample). From thermolysis of divinylcyclopropane: A 1 mL toluene solution of $\mathbf{2 1}(16 \mathrm{mg}, 0.06 \mathrm{mmol})$ was stirred at $105^{\circ} \mathrm{C}$ for 11 hrs to afford 12 $\mathrm{mg}(75 \%)$ of product 23 (d.r. $>95: 5$ as judged by NMR analysis on the purified sample). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.92$ (ddd, $J=10.5,8.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.44 (dd, J $=10.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dq}, J=12.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=12.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H})$, $1.56(\mathrm{~m}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $135.5,127.1,126.8,126.2,74.2,72.2,43.7,42.4,34.6,23.8,19.3,0.0$; IR (film) 2954, 1653, 1456, 1246, $1055 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{OSi} 236.1596$, found $236.1591\left(\mathrm{M}^{+}\right)$.

Preparation of starting substrates

Starting materials $\mathbf{1 b},{ }^{2} \mathbf{1 c}$ and $\mathbf{1 f},{ }^{3} \mathbf{1 d},{ }^{4} \mathbf{1 e},{ }^{5} \mathbf{1 g},{ }^{6} \mathbf{1 3 a},{ }^{7} \mathbf{1 3 b},{ }^{8} \mathbf{1 3 c}$ and $\mathbf{1 3 d},{ }^{9}$ were prepared using literature procedures with minor modifications. 1a, 1h, 16, and 20 were prepared and characterized as described below.

4-Methyl- N-penta-2,4-dienyl- N-prop-2-ynyl-benzenesulfonamide (1a). To a 28 mL THF suspension of $\mathrm{NaH}(96 \mathrm{mg}, 2.4 \mathrm{mmol}, 60 \%)$ and tetrabutylammonium iodide (75 $\mathrm{mg}, 0.2 \mathrm{mmol}$) was added a 2 mL THF solution of 4-methyl- N-prop-2-ynylbenzenesulfonamide ($420 \mathrm{mg}, 2 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to rt and stirred at rt for 1 h , then a 2 mL THF solution of 5-chloro-penta-1,3-diene $(248 \mathrm{mg}, 2.4 \mathrm{mmol})$ was added dropwise. The final solution was stirred at rt overnight. The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. Standard extraction and column chromatography provided $480 \mathrm{mg}(87 \%)$ of $\mathbf{1 a}$ as a light oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{dt}, J=16.5,10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.21(\mathrm{dd}, J=15.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{dt}, J=14.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.42(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.8,136.2,136.0$, $135.8,129.7,128.0,127.1,118.7,76.7,74.0,48.2,36.0,21.8$. IR (film) 3291, 2922, 2121, $1599 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S} 275.0980$, found $275.0980\left(\mathrm{M}^{+}\right)$.

1b: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.24(\mathrm{dt}, J=16.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dd}, J=15.0$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dt}, J=15.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=10.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 2.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{t}, J=2.5$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 170.3,136.7,135.9,127.2,117.1,78.9,71.8$, 57.3, 53.0, 35.6, 23.0.

1c: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.35(\mathrm{~m}, 1 \mathrm{H}), 6.29(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{dt}, J=14.5,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.23(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.44$ $(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.4,134.4,129.2,118.3,79.9,74.7$, 69.9, 57.2.

1d: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.26(\mathrm{dt}, J=17.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=15.5$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dt}, J=15.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 2.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{q}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{t}, J=2.5$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 170.7,136.8,135.6,127.7,116.8,79.2,73.4$, 57.7, 52.9, 35.7, 23.4, 3.7.

1e: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.34(\mathrm{~m}, 1 \mathrm{H}), 6.27(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{dt}, J=15.5,6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.21(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{dd}, J=6.5,1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.85(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 136.5,134.0,129.6,118.0,82.8$, 75.3, 69.8, 57.9, 3.8.

1f: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.20(\mathrm{dd}, J=15.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{ddq}, J=15.0$, $10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dq}, J=15.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{dt}, J=15.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.4,130.9,130.7,125.8,80.0,74.6,70.2,56.9$, 18.3.

1g: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.20(\mathrm{dd}, J=15.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=15.6$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dq}, J=15.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dt}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{q}, J=$ $2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.84(\mathrm{t}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 134.1,131.0,130.5,126.2,82.6,75.4,70.1,57.6,18.4$, 3.9.
(1-But-2-ynyloxy-4-methyl-penta-2,4-dienyl)-benzene (1h). The Wipf procedure ${ }^{10}$ was followed to prepare the alcohol \mathbf{A} (4-methyl-1-phenyl-penta-2,4-dien-1-ol). The procedure of making $1 \mathbf{a}$ was followed using $\mathrm{NaH}(96 \mathrm{mg}, 2.4 \mathrm{mmol})$, tetrabutylammonium iodide ($75 \mathrm{mg}, 0.2 \mathrm{mmol}$), alcohol A ($350 \mathrm{mg}, 2 \mathrm{mmol}$), 1-bromo-2butyne ($210 \mu \mathrm{~L}, 2.4 \mathrm{mmol}$) to afford $360 \mathrm{mg}(80 \%)$ of product $\mathbf{1 h}$ as a light oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.37(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{dd}, J=15.0$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{dq}, J=15.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ $(\mathrm{dq}, J=15.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 141.6,140.9,135.2,129.9,128.7,128.0,127.3,117.6,82.6,81.1,75.4,56.2$, 18.8, 3.9; IR (film) 2919, 2855, 2222, 1609, $1452 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}$ 211.1123, found $211.1124\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}$.

13a: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.60(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}$, $6 \mathrm{H}), 2.78(\mathrm{~m}, 4 \mathrm{H}), 2.01(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,131.8$, $120.2,78.9,71.7,57.0,53.0,36.7,22.9$.

13b: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.75-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=2.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.8,136.2,132.1,129.7,128.0,120.2,76.6,74.0,49.2,36.0,21.8$.

13c: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.79(\mathrm{dtt}, J=15.5,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dtt}, J=$ $15.5,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{dq}, J=7.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{t}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $137.7,124.5,80.1,74.4,70.6,56.9,25.5,13.5$.

13d: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.63(\mathrm{dtt}, J=10.5,7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dtt}, J=$ $11.0,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.11(\mathrm{~m}, 4 \mathrm{H}), 2.42(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 2 \mathrm{H})$, $0.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.7,124.6,80.1,74.4,65.2$, 57.1, 21.1, 14.4.
(E)-4-((But-2-ynyloxy)methyl)penta-1,3-diene (16). To a $20 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ solution of carbethoxyethylidene-(triphenylphosphorane) ($2.7 \mathrm{~g}, 7 \mathrm{mmol}$)) was added dropwise acrolein $(0.47 \mathrm{~mL}, 7 \mathrm{mmol})$) at rt . After stirring at rt for 1 h , the reaction mixture was warmed to $38{ }^{\circ} \mathrm{C}$ over 2 h . Most of the solvent was removed by rotary evaporation. The residue was diluted with pentane and then filtered. Condensation and column chromatography (pentane : ethyl ether $=20: 1)$ afforded (E)-ethyl 2-methylpenta-2,4dienoate ($900 \mathrm{mg}, 92 \%$) as a colorless oil. To an $80 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ solution of (E)-ethyl 2-methylpenta-2,4-dienoate ($1.8 \mathrm{~g}, 12.8 \mathrm{mmol}$) was added quickly DIBAL-H (38.4 mL ,
$38.4 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexane) at $-78^{\circ} \mathrm{C}$. After stirring 5 min at $-78^{\circ} \mathrm{C}$, the reaction was quenched with 6 mL saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and stirred for another 10 min , followed by addition of $\mathrm{Et}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$ and 10 g sodium potassium tartrate. Then the reaction mixture was allowed to warm to rt and stir until it became clear solution. Standard extraction and column chromatography (hexane : ethyl ether $=3: 1$) provided $1.04 \mathrm{~g}(83 \%)$ of (E)-2-methylpenta-2,4-dien-1-ol as a light oil. The procedure for preparing 1a was then followed using (E)-2-methylpenta-2,4-dien-1-ol ($1.0 \mathrm{~g}, 10.2 \mathrm{mmol}$), 1-bromo-2-butyne ($1.1 \mathrm{~mL}, 12.5 \mathrm{mmol}$), $\mathrm{NaH}(0.5 \mathrm{~g}, 12.5 \mathrm{mmol})$, TBAI ($0.37 \mathrm{~g}, 1 \mathrm{mmol}$) to generate compound 16 ($1.5 \mathrm{~g}, 99 \%$) as a light oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.57(\mathrm{dt}, J=17.0$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.04(\mathrm{q}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H}), 1.84(\mathrm{t}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 134.9,132.7,128.0,117.4,82.5,75.4,75.2,57.7,14.6,3.8$.
(20). To a mixture of cis-1-bromo-propene $(0.85 \mathrm{~mL}, 10 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20 \mathrm{mg}$, $0.015 \mathrm{mmol})$ in 10 mL pyrrolidine was added propargyl alcohol $(0.87 \mathrm{~mL}, 15 \mathrm{mmol})$ at rt . The resulting mixture was refluxed at $98^{\circ} \mathrm{C}$ for 2 h , cooled to rt and then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. Standard extraction and column chromatography (hexane : ethyl ether $=2: 1)$ provided $420 \mathrm{mg}(45 \%)$ of alcohol (Z)-hex-4-en-2-yn-1-ol as a light oil. To a suspension of $\mathrm{LiAlH}_{4}(190 \mathrm{mg}, 5 \mathrm{mmol})$ in $16 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ was added a 4 mL ethyl ether solution of (Z)-hex-4-en-2-yn-1-ol ($384 \mathrm{mg}, 4 \mathrm{mmol}$) at rt. The resulting mixture was refluxed for 7 h , cooled to $0{ }^{\circ} \mathrm{C}$ and then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. Standard extraction and column chromatography (hexane : ethyl ether $=2: 1$) provided $386 \mathrm{mg}(98 \%)$ of alcohol (2E,4Z)-hexa-2,4-dien-1-ol as a light oil. The procedure for
preparing 1a was then followed using (2E,4Z)-hexa-2,4-dien-1-ol (285 mg, 2.9 mmol), 1-bromo-2-butyne ($0.3 \mathrm{~mL}, 3.6 \mathrm{mmol}$), $\mathrm{NaH}(138 \mathrm{mg}, 3.6 \mathrm{mmol})$, TBAI ($111 \mathrm{mg}, 0.3$ $\mathrm{mmol})$ to generate compound $20(390 \mathrm{mg}, 85 \%)$ as a light oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.56(\mathrm{ddd}, J=15.5,11.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{td}, J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dt}$, $J=15.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.07(\mathrm{~m}, 4 \mathrm{H}), 1.84(\mathrm{t}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.74$ (dd, $J=7.5,1.5 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 128.8,128.7,128.5,127.3,82.7$, 75.4, 70.2, 57.8, 13.6, 3.8.

References

(1) Monnier, F.; Castillo, D.; Dérien, S.; Toupet, L.; Dixneuf, P. H. Angew. Chem. Int. Ed. 2003, 42, 5474.
(2) Harvey, D. F.; Lund, K. P. J. Am. Chem. Soc. 1991, 113, 5066.
(3) Gilbertson, S. R.; DeBoef, B. J. Am. Chem. Soc. 2002, 124, 8784.
(4) Wender, P. A.; Deschamps, N. M.; Gamber, G. G. Angew. Chem., Int. Ed. 2003, 42, 1853.
(5) Ezoe, A.; Kimura, M.; Inoue, T.; Mori, M.; Tamaru, Y. Angew. Chem., Int. Ed. 2002, 41, 2784.
(6) Wang, B.; Cao, P.; Zhang, X. Tetraheron Lett. 2000, 41, 8041.
(7) Miura, K.; Saito, H.; Fujisawa, N. J. Org. Chem. 2000, 65, 8119.
(8) Jeong, N.; Hwang, S. H.; Lee. Y.; Chung, Y. K. J. Am. Chem. Soc. 1994, 116, 3159.
(9) Mikami, K.; Kazuhiko, T.; Takeshi, N. Chem. Lett. 1987, 2347.
(10) Wipf, P. et al, Org. Lett. 2003, 5, 2449.

S's

2.5
0•历 $\quad S^{\cdot F}$
$0^{\circ} \varepsilon \quad G^{\bullet} \varepsilon$
ω
0
0
i
0 ,

urda
N

$0^{\circ} \mathrm{S} \quad \mathrm{G} \cdot \mathrm{S}$
$0^{*} \boldsymbol{F} \quad S^{-\boldsymbol{F}}$
1
0
ω
iv
$0 \cdot \varepsilon$
$S \cdot Z$
$0^{\circ} \tau \quad S^{*} \tau \quad 0^{*} Z$
s. 0
is
${ }^{\circ} \cdot$
si
3

显
\square
iv
$0 \cdot 7 \quad S$

$0.5 \quad \mathrm{~s} \cdot \mathrm{~s}$
$0^{\circ} \varepsilon \quad G^{\bullet} \varepsilon \quad 0^{\bullet \nabla} \quad G^{\bullet \nabla}$
$G \cdot Z$
$0^{*} Z$
$G^{\bullet} \tau$
\circ
$G^{\circ} 0$
\mathbf{S}^{-}
1

够
$1+1,1+1$

