Palladium-Catalyzed [3 + 3] Cycloaddition of Trimethylenemethane with Azomethine Imines

Ryo Shintani and Tamio Hayashi*

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

Supporting Information

I. General

All air- and moisture-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or in a glove box under argon.

Toluene and THF were purified by passing through a neutral alumina column under nitrogen. 1,2-Dichloroethane and CH₂Cl₂ were distilled over CaH₂ under nitrogen. MeOH was distilled over Mg turnings under nitrogen.

p-Tolualdehyde (Wako Chemicals), *m*-chlorobenzaldehyde (Wako Chemicals), *o*-tolualdehyde (TCI), 3-pyridinecarboxaldehyde (Wako Chemicals), pivaldehyde (Aldrich), benzaldehyde (Wako Chemicals), *p*-trifluoromethylbenzaldehyde (Wako Chemicals), methyl crotonate (TCI), hydrazine monohydrate (Wako Chemicals), triphenylphosphine (Wako Chemicals), and Pd(OAc)₂ (Furuya Metal) were used as received.

(2-(Acetoxymethyl)-2-propenyl)trimethylsilane (1),¹ (2-(1'-acetoxyethyl)-2-propenyl)trimethylsilane (4),² (2-(acetoxymethyl)-1-buten-3-yl)trimethylsilane (5),² pyrazolidin-3-one,³ 4,4-dimethylpyrazolidin-3-one,³ 1-benzylidene-3-oxopyrazolidin-1-ium-2-ide (2a),⁴ 1-(p-trifluoromethylbenzylidene)-3-oxopyrazolidin-1-ium-2-ide (2e),⁴ 1-(1-cyclohexenylmethylidene)-3-oxopyrazolidin-1-ium-2-ide (2h),⁴ 1-benzylidene-4,4-dimethyl-3-oxopyrazolidin-1-ium-2-ide (2j),⁴ Pd(PPh₃)₄,⁵ and CpPd(η ³-C₃H₅)⁶ were

¹ Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1983, 105, 2315.

² Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1981, 103, 5972.

³ Perri, S. T.; Slater, S. C.; Toske, S. G.; White, J. D. J. Org. Chem. 1990, 55, 6037.

⁴ Shintani, R.; Fu, G. C. *J. Am. Chem. Soc.* **2003**, *125*, 10778.

⁵ Coulson, D. R. *Inorg. Synth.* **1972**, *13*, 121.

synthesized following the literature procedures.

All other chemicals and solvents were purchased from Aldrich, Wako Chemicals, TCI, or Kanto Chemicals and used as received.

II. Synthesis of Substrates

The yields have not been optimized.

1-(p-Methylbenzylidene)-3-oxopyrazolidin-1-ium-2-ide (2b) (CAS 62516-59-0)

p-Tolualdehyde (245 μ L, 2.08 mmol) was added to a solution of pyrazolidin-3-one (179 mg, 2.08 mmol) in MeOH (0.50 mL). The mixture was stirred for 1 h at room temperature and then diluted with Et₂O (2.0 mL). The precipitate was collected by filtration, washed with Et₂O, and dried under vacuum to afford compound **2b** as a pale yellow solid (240 mg, 1.27 mmol; 61% yield).

¹H NMR (DMSO- d_6): δ 8.17 (d, ³ J_{HH} = 8.0 Hz, 2H), 7.59 (s, 1H), 7.34 (d, ³ J_{HH} = 8.1 Hz, 2H), 4.52 (t, ³ J_{HH} = 8.0 Hz, 2H), 2.55 (t, ³ J_{HH} = 8.1 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (DMSO- d_6): δ 184.8, 141.8, 132.9, 131.3, 129.6, 127.4, 57.3, 29.5, 21.4.

1-(m-Chlorobenzylidene)-3-oxopyrazolidin-1-ium-2-ide (2d) (CAS 61283-27-0)

This was synthesized from *m*-chlorobenzaldehyde, following the procedure for compound **2b**. White solid, 63% yield.

¹H NMR (DMSO- d_6): δ 8.55 (s, 1H), 8.07-8.05 (m, 1H), 7.66 (s, 1H), 7.58-7.54 (m,

⁶ Parker, G.; Werner, H. Helv. Chim. Acta 1973, 56, 2819.

2H), 4.59 (t, ${}^{3}J_{HH}$ = 8.0 Hz, 2H), 2.58 (t, ${}^{3}J_{HH}$ = 8.1 Hz, 2H). ${}^{13}C$ NMR (DMSO- d_{6}): δ 184.6, 133.3, 131.8, 130.53, 130.46, 129.9, 129.53, 129.46, 57.7, 29.0.

1-(o-Methylbenzylidene)-3-oxopyrazolidin-1-ium-2-ide (2f)

This was synthesized from *o*-tolualdehyde, following the procedure for compound **2b**. White solid, 61% yield.

¹H NMR (DMSO- d_6): δ 8.93 (d, ³ J_{HH} = 8.1 Hz, 1H), 7.68 (s, 1H), 7.39-7.31 (m, 3H), 4.60 (t, ³ J_{HH} = 8.4 Hz, 2H), 2.56 (t, ³ J_{HH} = 8.2 Hz, 2H), 2.47 (s, 3H). ¹³C NMR (DMSO- d_6): δ 184.5, 138.4, 130.8, 130.5, 130.2, 129.4, 128.3, 126.0, 57.8, 29.1, 19.4. HRMS (ESI) calcd for C₁₁H₁₃N₂O (M+H⁺) 189.1022, found 189.1030.

1-(3-Pyridiylmethylidene)-3-oxopyrazolidin-1-ium-2-ide (2g) (CAS 84198-94-7)

This was synthesized from 3-pyridinecarboxaldehyde, following the procedure for compound **2b**. Pale yellow solid, 58% yield.

¹H NMR (DMSO- d_6): δ 9.19 (d, ⁴ J_{HH} = 1.9 Hz, 1H), 8.82 (dt, ³ J_{HH} = 8.0 Hz and ⁴ J_{HH} = 1.9 Hz, 1H), 8.63 (dd, ³ J_{HH} = 4.7 Hz and ⁴ J_{HH} = 1.7 Hz, 1H), 7.71 (s, 1H), 7.57 (dd, ³ J_{HH} = 8.2 and 4.7 Hz, 1H), 4.61 (t, ³ J_{HH} = 8.0 Hz, 2H), 2.59 (t, ³ J_{HH} = 8.1 Hz, 2H). ¹³C NMR (DMSO- d_6): δ 184.6, 151.4, 150.7, 137.0, 128.7, 126.4, 123.8, 57.7, 29.2.

1-(2,2-Dimethylpropylidene)-3-oxopyrazolidin-1-ium-2-ide (2i)

$$\begin{array}{c}
O \\
\bigcirc N \\
\oplus N \\
t\text{-Bu}
\end{array}$$

This was synthesized from pivaldehyde, following the procedure for compound **2b**. White solid, 57% yield.

¹H NMR (DMSO- d_6): δ 6.77 (s, 1H), 4.31 (t, ${}^3J_{\rm HH}$ = 8.2 Hz, 2H), 2.43 (t, ${}^3J_{\rm HH}$ = 8.3 Hz, 2H), 1.25 (s, 9H). ¹³C NMR (DMSO- d_6): δ 182.9, 145.2, 56.7, 33.7, 29.5, 25.8. HRMS (ESI) calcd for C₈H₁₄N₂ONa (M+Na⁺) 177.0998, found 177.1007.

5-Methylpyrazolidin-3-one (CAS 10234-76-1)

This was synthesized from methyl crotonate and hydrazine monohydrate, following the procedure for pyrazolidin-3-one.³ Pale yellow oil, 100% yield.

¹H NMR (CDCl₃): δ 3.83-3.76 (m, 1H), 2.55 (dd, $^2J_{HH}$ = 16.2 Hz and $^3J_{HH}$ = 7.1 Hz, 1H), 2.18 (dd, $^2J_{HH}$ = 16.2 Hz and $^3J_{HH}$ = 8.8 Hz, 1H), 1.29 (d, $^3J_{HH}$ = 6.3 Hz, 3H).

1-Benzylidene-5-methyl-3-oxopyrazolidin-1-ium-2-ide (2k) (CAS 14893-83-5)

This was synthesized from benzaldehyde and 5-methylpyrazolidin-3-one, following the procedure for compound **2b**. White solid, 62% yield.

¹H NMR (DMSO- d_6): δ 8.32-8.30 (m, 2H), 7.72 (s, 1H), 7.55-7.50 (m, 3H), 4.84-4.78 (m, 1H), 2.84 (dd, $^2J_{HH}$ = 16.3 Hz and $^3J_{HH}$ = 9.1 Hz, 1H), 2.24 (dd, $^2J_{HH}$ = 16.3 Hz and $^3J_{HH}$ = 4.1 Hz, 1H), 1.55 (d, $^3J_{HH}$ = 6.7 Hz, 3H). ¹³C NMR (DMSO- d_6): δ 183.2, 132.0, 131.4, 131.2, 130.1, 128.8, 65.7, 37.2, 22.2.

N-(p-Ethoxycarbonylphenyl)-α-(p-trifluoromethylphenyl)nitrone (8)

p-Trifluoromethylbenzaldehyde (290 μ L, 2.12 mmol) was added to a solution of ethyl p-hydroxylaminobenzoate (385 mg, 2.12 mmol) in EtOH (1.5 mL). The mixture was stirred for 2 h at room temperature and then diluted with MeOH. The precipitate was collected by filtration, washed with MeOH, and dried under vacuum to afford compound **8** as a white solid (185 mg, 0.55 mmol; 26% yield).

¹H NMR (C₆D₆): δ 8.23 (d, ³ J_{HH} = 8.0 Hz, 2H), 8.01 (d, ³ J_{HH} = 8.7 Hz, 2H), 7.39 (d, ³ J_{HH} = 8.0 Hz, 2H), 7.38 (d, ³ J_{HH} = 8.5 Hz, 2H), 7.12 (s, 1H), 4.11 (q, ³ J_{HH} = 7.1 Hz, 2H), 1.01 (t, ³ J_{HH} = 7.1 Hz, 3H). ¹³C NMR (DMSO- d_6): δ 164.7, 151.2, 134.4, 133.6, 131.3, 130.1, 130.0 (q, ² J_{CF} = 32.1 Hz), 129.4, 125.4 (q, ³ J_{CF} = 4.1 Hz), 123.9 (q, ¹ J_{CF} = 272 Hz), 122.1, 61.2, 14.1. HRMS (ESI) calcd for C₁₇H₁₅F₃NO₃ (M+H⁺) 338.0999, found 338.1007.

III. Catalytic Reactions

General Procedure for Table 2 and Equations 2-3.

A solution of $Pd(PPh_3)_4$ (18.5 mg, 16.0 μ mol), (2-(acetoxymethyl)-2-propenyl)trimethylsilane **1** (74.5 mg, 0.400 mmol), and azomethine imine **2** (0.200 mmol) in CH_2Cl_2 (1.0 mL) was stirred for 48 h at 40 °C, and the reaction mixture was directly passed through a pad of silica gel with EtOAc. After removing the solvent under vacuum, the residue was purified by silica gel preparative TLC to afford compound **3**.

Entry 1. White solid. 81% yield.

¹H NMR (CDCl₃): δ 7.39-7.30 (m, 5H), 5.01 (s, 1H), 4.89 (s, 1H), 4.59 (d, $^2J_{\rm HH} = 13.8$

Hz, 1H), 3.65 (d, ${}^2J_{HH}$ = 13.5 Hz, 1H), 3.36 (dd, ${}^2J_{HH}$ = 11.3 Hz and ${}^3J_{HH}$ = 2.8 Hz, 1H), 3.21 (td, J_{HH} = 10.1 Hz and ${}^3J_{HH}$ = 5.0 Hz, 1H), 2.66 (q, J_{HH} = 9.6 Hz, 1H), 2.59-2.38 (m, 4H). 13 C NMR (CDCl₃): δ 170.0, 140.2, 138.7, 129.0, 128.5, 127.7, 111.9, 71.6, 48.5, 47.6, 42.4, 30.7. Anal. Calcd for $C_{14}H_{16}N_2O$: C, 73.66; H, 7.06. Found: C, 73.54; H, 7.26.

Entry 2. Colorless oil. 74% yield.

¹H NMR (CDCl₃): δ 7.25 (d, ${}^{3}J_{HH}$ = 7.8 Hz, 2H), 7.17 (d, ${}^{3}J_{HH}$ = 7.9 Hz, 2H), 5.00 (s, 1H), 4.88 (s, 1H), 4.59 (d, ${}^{2}J_{HH}$ = 14.2 Hz, 1H), 3.65 (d, ${}^{2}J_{HH}$ = 14.4 Hz, 1H), 3.32 (d, ${}^{2}J_{HH}$ = 11.0 Hz, 1H), 3.20 (td, J_{HH} = 10.1 Hz and ${}^{3}J_{HH}$ = 5.0 Hz, 1H), 2.66 (q, J_{HH} = 9.5 Hz, 1H), 2.59-2.51 (m, 2H), 2.48-2.34 (m, 2H), 2.36 (s, 3H). ¹³C NMR (CDCl₃): δ 170.0, 138.8, 138.2, 137.1, 129.7, 127.5, 111.8, 71.3, 48.4, 47.5, 42.4, 30.6, 21.3. Anal. Calcd for C₁₅H₁₈N₂O: C, 74.35; H, 7.49. Found: C, 74.19; H, 7.50.

Entry 3. White solid. 92% yield.

¹H NMR (CDCl₃): δ 7.64 (d, ${}^{3}J_{HH}$ = 8.3 Hz, 2H), 7.51 (d, ${}^{3}J_{HH}$ = 8.0 Hz, 2H), 5.04 (s, 1H), 4.91 (s, 1H), 4.61 (d, ${}^{2}J_{HH}$ = 13.9 Hz, 1H), 3.65 (d, ${}^{2}J_{HH}$ = 13.9 Hz, 1H), 3.44 (dd, ${}^{2}J_{HH}$ = 10.7 Hz and ${}^{3}J_{HH}$ = 3.7 Hz, 1H), 3.24 (td, J_{HH} = 10.2 Hz and ${}^{3}J_{HH}$ = 4.8 Hz, 1H), 2.66-2.42 (m, 5H). ¹³C NMR (CDCl₃): δ 169.9, 144.3, 138.0, 130.7 (q, ${}^{2}J_{CF}$ = 32.6 Hz), 128.0, 126.0 (q, ${}^{3}J_{CF}$ = 4.1 Hz), 124.1 (q, ${}^{1}J_{CF}$ = 271.7 Hz), 112.3, 71.1, 48.6, 47.5, 42.4, 30.6. Anal. Calcd for C₁₅H₁₅F₃N₂O: C, 60.81; H, 5.10. Found: C, 60.73; H, 5.40.

Entry 4. Colorless oil. 90% yield.

¹H NMR (CDCl₃): δ 7.39 (s, 1H), 7.31-7.29 (m, 2H), 7.27-7.24 (m, 1H), 5.02 (s, 1H), 4.90 (s, 1H), 4.59 (d, ${}^2J_{\text{HH}} = 13.8 \text{ Hz}$, 1H), 3.63 (d, ${}^2J_{\text{HH}} = 13.8 \text{ Hz}$, 1H), 3.34 (dd, ${}^2J_{\text{HH}} = 10.8 \text{ Hz}$ and ${}^3J_{\text{HH}} = 3.9 \text{ Hz}$, 1H), 3.25 (td, $J_{\text{HH}} = 10.0 \text{ Hz}$ and ${}^3J_{\text{HH}} = 5.0 \text{ Hz}$, 1H), 2.65 (q, $J_{\text{HH}} = 9.3 \text{ Hz}$, 1H), 2.59-2.40 (m, 4H). ¹³C NMR (CDCl₃): δ 169.9, 142.3, 138.1, 134.9, 130.3, 128.6, 127.7, 125.8, 112.1, 70.9, 48.6, 47.5, 42.3, 30.6. Anal. Calcd for C₁₄H₁₅ClN₂O: C, 64.00; H, 5.75. Found: C, 63.71; H, 5.80.

Entry 5. Pale yellow oil. 88% yield.

¹H NMR (CDCl₃): δ 7.54 (t, ${}^{3}J_{HH}$ = 7.3 Hz, 1H), 7.32-7.27 (m, 1H), 7.18 (t, ${}^{3}J_{HH}$ = 7.5 Hz, 1H), 7.07 (t, ${}^{3}J_{}$ = 9.2 Hz, 1H), 5.03 (s, 1H), 4.92 (s, 1H), 4.61 (d, ${}^{2}J_{HH}$ = 14.0 Hz, 1H), 3.85 (d, ${}^{2}J_{HH}$ = 10.3 Hz, 1H), 3.66 (d, ${}^{2}J_{HH}$ = 13.3 Hz, 1H), 3.27 (td, J_{HH} = 9.9 Hz and ${}^{3}J_{HH}$ = 5.4 Hz, 1H), 2.70 (q, J_{HH} = 9.4 Hz, 1H), 2.62-2.39 (m, 4H). ¹³C NMR (CDCl₃): δ 170.0, 160.5 (d, ${}^{1}J_{CF}$ = 246.5 Hz), 138.2, 129.6 (d, ${}^{3}J_{CF}$ = 8.3 Hz), 128.6, 126.9 (d, ${}^{2}J_{CF}$ = 13.0 Hz), 124.9 (d, ${}^{3}J_{CF}$ = 3.0 Hz), 115.8 (d, ${}^{2}J_{CF}$ = 22.2 Hz), 112.1, 62.9, 48.3, 47.5, 40.8, 30.5. Anal. Calcd for C₁₄H₁₅FN₂O: C, 68.28; H, 6.14. Found: C, 68.07; H, 6.16.

Entry 6. Colorless oil. 70% yield.

¹H NMR (CDCl₃): δ 7.52 (bs, 1H), 7.23 (t, ${}^{3}J_{HH}$ = 7.3 Hz, 1H), 7.20-7.15 (m, 2H), 5.00 (s, 1H), 4.89 (s, 1H), 4.61 (d, ${}^{2}J_{HH}$ = 14.0 Hz, 1H), 3.68-3.64 (m, 2H), 3.31-3.26 (m, 1H), 2.62-2.52 (m, 2H), 2.48-2.39 (m, 3H), 2.35 (s, 3H). ¹³C NMR (CDCl₃): δ 170.0, 138.8, 138.3, 135.4, 130.8, 127.6, 126.8, 111.7, 66.6, 48.2, 47.5, 41.4, 30.7, 19.7. Anal. Calcd for C₁₅H₁₈N₂O: C, 74.35; H, 7.49. Found: C, 74.10; H, 7.51.

Entry 7. Pale yellow oil. 75% yield.

¹H NMR (CDCl₃): δ 8.62 (s, 1H), 8.60 (d, ³ J_{HH} = 4.6 Hz, 1H), 7.77 (d, ³ J_{HH} = 7.7 Hz, 1H), 7.35 (dd, ³ J_{HH} = 7.8 and 4.7 Hz, 1H), 5.05 (s, 1H), 4.92 (s, 1H), 4.61 (d, ² J_{HH} = 13.8 Hz, 1H), 3.65 (d, ² J_{HH} = 13.4 Hz, 1H), 3.43 (d, ² J_{HH} = 8.8 Hz, 1H), 3.22 (td, J_{HH} = 10.0 Hz and ³ J_{HH} = 4.7 Hz, 1H), 2.67-2.41 (m, 5H). ¹³C NMR (CDCl₃): δ 169.9, 150.0, 149.3, 137.8, 135.8, 135.2, 124.1, 112.4, 69.0, 48.7, 47.5, 42.2, 30.6. HRMS (ESI) calcd for $C_{13}H_{16}N_3O$ (M+H⁺) 230.1288, found 230.1299.

Entry 8. White solid. 71% yield.

¹H NMR (CDCl₃): δ 5.70 (s, 1H), 4.93 (s, 1H), 4.83 (s, 1H), 4.48 (d, ${}^2J_{HH} = 12.5$ Hz, 1H), 3.48 (d, ${}^2J_{HH} = 13.8$ Hz, 1H), 3.32 (td, $J_{HH} = 10.0$ Hz and ${}^3J_{HH} = 5.2$ Hz, 1H), 2.78 (q, $J_{HH} = 9.6$ Hz, 1H), 2.72 (dd, ${}^2J_{HH} = 11.7$ Hz and ${}^3J_{HH} = 2.5$ Hz, 1H), 2.54 (ddd, ${}^2J_{HH} = 16.6$ Hz and ${}^3J_{HH} = 9.0$ and 5.1 Hz, 1H), 2.50-2.37 (m, 2H), 2.24 (d, ${}^2J_{HH} = 13.6$ Hz, 1H), 2.06-1.94 (m, 4H), 1.70-1.50 (m, 4H). ¹³C NMR (CDCl₃): δ 169.8, 139.2, 136.5, 126.9, 111.5, 73.8, 47.8, 47.3, 38.4, 30.7, 25.3, 24.2, 22.9, 22.7. Anal. Calcd for $C_{14}H_{20}N_2O$: C, 72.38; H, 8.68. Found: C, 72.27; H, 8.79.

Entry 9. Pale yellow oil. 20% yield.

¹H NMR (CDCl₃): δ 4.91 (s, 1H), 4.88 (s, 1H), 4.56 (d, $^2J_{HH}$ = 14.6 Hz, 1H), 3.66 (td, J_{HH} = 9.6 Hz and $^3J_{HH}$ = 3.5 Hz, 1H), 3.50 (d, $^2J_{HH}$ = 14.4 Hz, 1H), 2.85 (q, J_{HH} = 9.8 Hz, 1H), 2.59 (ddd, $^2J_{HH}$ = 16.6 Hz and $^3J_{HH}$ = 8.8 and 3.6 Hz, 1H), 2.52-2.43 (m, 2H), 2.33 (dd, $^3J_{HH}$ = 8.6 and 4.1 Hz, 1H), 2.26 (dd, $^2J_{HH}$ = 13.5 Hz and $^3J_{HH}$ = 9.0 Hz, 1H), 1.02 (s, 9H). ¹³C NMR (CDCl₃): δ 169.5, 139.4, 110.9, 74.0, 53.0, 47.2, 34.9, 34.0, 31.4, 28.5. HRMS (ESI) calcd for C₁₂H₂₁N₂O (M+H⁺) 209.1648, found 209.1658.

Equation 2. White solid. 94% yield.

¹H NMR (CDCl₃): δ 7.39-7.30 (m, 5H), 5.02 (d, ${}^{2}J_{HH} = 1.5$ Hz, 1H), 4.90 (d, ${}^{2}J_{HH} = 1.3$ Hz, 1H), 4.57 (dd, ${}^{2}J_{HH} = 13.9$ Hz and ${}^{4}J_{HH} = 1.4$ Hz, 1H), 3.63 (d, ${}^{2}J_{HH} = 13.8$ Hz, 1H), 3.24 (dd, ${}^{3}J_{HH} = 12.4$ Hz and 2.9 Hz, 1H), 2.97 (d, ${}^{2}J_{HH} = 9.7$ Hz, 1H), 2.56 (dd, ${}^{2}J_{HH} = 13.1$ Hz and ${}^{3}J_{HH} = 12.4$ Hz, 1H), 2.47 (d, ${}^{2}J_{HH} = 13.5$ Hz, 1H), 2.35 (d, ${}^{2}J_{HH} = 9.8$ Hz, 1H), 1.17 (s, 3H), 1.14 (s, 3H). ¹³C NMR (CDCl₃): δ 174.5, 140.1, 138.8, 129.0, 128.3, 127.7, 111.8, 72.4, 63.7, 48.0, 42.6, 41.2, 23.5, 23.4. Anal. Calcd for C₁₆H₂₀N₂O: C, 74.97;

H, 7.86. Found: C, 74.77; H, 7.80.

Equation 3. White solid. 87% yield, dr = 96/4. Recrystallization from Et₂O afforded single crystals suitable for X-ray analysis, and the relative configuration of the major diastereomer was determined to be *syn*.

Major diastereomer: 1 H NMR (CDCl₃): δ 7.40-7.30 (m, 5H), 4.97 (d, ${}^{2}J_{HH} = 1.5$ Hz, 1H), 4.83 (d, ${}^{2}J_{HH} = 1.3$ Hz, 1H), 4.68 (dd, ${}^{2}J_{HH} = 14.0$ Hz and ${}^{4}J_{HH} = 1.4$ Hz, 1H), 3.68 (d, ${}^{2}J_{HH} = 13.9$ Hz, 1H), 3.52 (dd, ${}^{3}J_{HH} = 11.4$ and 3.1 Hz, 1H), 3.16 (dqd, ${}^{3}J_{HH} = 9.0$, 6.7, and 3.4 Hz, 1H), 2.85 (d, ${}^{2}J_{HH} = 16.9$ Hz and ${}^{3}J_{HH} = 8.8$ Hz, 1H), 2.63-2.57 (m, 1H), 2.47 (dt, ${}^{2}J_{HH} = 13.8$ Hz and $J_{HH} = 2.4$ Hz, 1H), 2.03 (ddd, ${}^{2}J_{HH} = 16.9$ Hz and ${}^{3}J_{HH} = 3.3$ Hz and ${}^{4}J_{HH} = 1.3$ Hz, 1H), 0.98 (d, ${}^{3}J_{HH} = 6.6$ Hz, 3H). 13 C NMR (CDCl₃): δ 169.0, 141.0, 139.1, 129.0, 128.4, 127.6, 111.3, 70.5, 52.8, 46.8, 42.9, 36.8, 22.0. Anal. Calcd for C₁₅H₁₈N₂O: C, 74.35; H, 7.49. Found: C, 74.11; H, 7.49.

Procedure for Equation 4.

A solution of $Pd(PPh_3)_4$ (18.5 mg, 16.0 μ mol), (2-(1'-acetoxyethyl)-2-propenyl)trimethylsilane **4** (80.1 mg, 0.400 mmol), and azomethine imine **2a** (34.8 mg, 0.200 mmol) in CH_2Cl_2 (1.0 mL) was stirred for 48 h at 40 °C, and the reaction mixture was directly passed through a pad of silica gel with EtOAc. After removing the solvent under vacuum, the residue was purified by silica gel preparative TLC with EtOAc/hexane = 1/1 to afford compound **3l** as a colorless oil (27.6 mg, 0.114 mmol; 57% yield) and compound **3m** as a white solid (7.3 mg, 30 μ mol; 15% yield).

3l: 1 H NMR (CDCl₃): δ 7.40-7.31 (m, 5H), 5.54 (q, ${}^{3}J_{HH} = 6.8$ Hz, 1H), 4.49 (d, ${}^{2}J_{HH} = 13.7$ Hz, 1H), 3.65 (d, ${}^{2}J_{HH} = 13.7$ Hz, 1H), 3.29 (d, ${}^{2}J_{HH} = 11.5$ Hz, 1H), 3.20 (td, $J_{HH} = 11.5$ Hz, 1H)

10.0 Hz and ${}^{3}J_{HH} = 5.0$ Hz, 1H), 2.77 (d, ${}^{2}J_{HH} = 14.1$ Hz, 1H), 2.66 (q, $J_{HH} = 8.1$ Hz, 1H), 2.54 (ddd, ${}^{2}J_{HH} = 16.5$ Hz and ${}^{3}J_{HH} = 8.9$ and 5.0 Hz, 1H), 2.44-2.37 (m, 1H), 2.28 (t, $J_{HH} = 12.9$ Hz, 1H), 1.61 (d, ${}^{3}J_{HH} = 6.8$ Hz, 3H). ${}^{13}C$ NMR (CDCl₃): δ 169.8, 140.5, 129.5, 129.0, 128.4, 127.7, 121.0, 71.1, 48.7, 48.6, 36.0, 30.6, 13.0. HRMS (ESI) calcd for $C_{15}H_{19}N_{2}O$ (M+H⁺) 243.1492, found 243.1482.

3m: ¹H NMR (CDCl₃): δ 7.39-7.31 (m, 5H), 4.97 (s, 1H), 4.87 (q, ³ J_{HH} = 6.8 Hz, 1H), 4.82 (s, 1H), 3.35 (dd, ² J_{HH} = 11.8 Hz and ³ J_{HH} = 3.0 Hz, 1H), 3.18 (td, J_{HH} = 9.9 Hz and ³ J_{HH} = 4.8 Hz, 1H), 2.76 (dd, ² J_{HH} = 14.1 Hz and ³ J_{HH} = 12.2 Hz, 1H), 2.61 (q, J_{HH} = 9.5 Hz, 1H), 2.54 (ddd, ² J_{HH} = 16.1 Hz and ³ J_{HH} = 8.8 and 4.9 Hz, 1H), 2.42-2.33 (m, 2H), 1.46 (d, ³ J_{HH} = 6.8 Hz, 3H). ¹³C NMR (CDCl₃): δ 169.4, 143.2, 140.5, 129.0, 128.4, 127.6, 110.9, 72.1, 53.0, 48.6, 39.2, 31.0, 17.9. HRMS (ESI) calcd for C₁₅H₁₉N₂O (M+H⁺) 243.1492, found 243.1483.

Procedure for Equation 5.

A solution of $Pd(PPh_3)_4$ (18.5 mg, 16.0 µmol), (2-(acetoxymethyl)-1-buten-3-yl)trimethylsilane **5** (80.1 mg, 0.400 mmol), and azomethine imine **2a** (34.8 mg, 0.200 mmol) in CH_2Cl_2 (1.0 mL) was stirred for 72 h at 40 °C, and the reaction mixture was directly passed through a pad of silica gel with EtOAc. After removing the solvent under vacuum, the residue was purified by silica gel preparative TLC with EtOAc/hexane = 1/1 to afford a mixture of compounds **3l–3n** as a colorless oil (32.1 mg, 0.132 mmol; 66% yield).

3n (mixture of *cis/trans* ~ 46/54): 1 H NMR (CDCl₃): δ 7.39-7.27 (m, 5H), 5.10 (s, 0.54H), 5.00 (bs, 0.46H), 4.924 (s, 0.54H), 4.918 (s, 0.46H), 4.63 (d, $^{2}J_{HH} = 13.7$ Hz, 0.54H), 4.47 (bs, 0.46H), 3.83 (bs, 0.46H), 3.72 (d, $^{2}J_{HH} = 13.7$ Hz, 0.54H), 3.65 (bs, 0.46 H), 3.38 (bs, 0.46H), 3.07 (td, $J_{HH} = 10.0$ Hz and $^{3}J_{HH} = 4.6$ Hz, 0.54H), 2.94 (d, $^{3}J_{HH} = 10.3$ Hz, 0.54H), 2.63-2.35 (m, 4H), 0.99 (d, $^{3}J_{HH} = 6.0$ Hz, 1.38H), 0.80 (d, $^{3}J_{HH} = 6.6$ Hz, 1.62H). 13 C NMR (CDCl₃): δ 169.8, 169.4, 143.3, 139.0, 128.9, 128.54, 128.52, 127.9, 111.0, 110.1, 78.0, 77.5, 49.0, 48.6, 43.9, 41.7, 30.7, 30.6, 14.0, 13.5. Anal. Calcd for

C₁₅H₁₈N₂O: C, 74.35; H, 7.49. Found: C, 74.06; H, 7.61

$$CF_3$$

Procedure for Equation 6.

A solution of Pd(PPh₃)₄ (11.6 mg, 10.0 μ mol), (2-(acetoxymethyl)-2-propenyl)trimethylsilane **1** (46.6 mg, 0.25 mmol), and nitrone **8** (33.8 mg, 0.10 mmol) in CH₂Cl₂ (0.50 mL) was stirred for 43 h at 40 °C, and the reaction mixture was directly passed through a pad of silica gel with EtOAc. After removing the solvent under vacuum, the residue was purified by silica gel preparative TLC with EtOAc/hexane = 1/4.5 to afford **9** as a colorless oil (35.7 mg, 91.2 μ mol; 91% yield).

¹H NMR (CDCl₃): δ 7.88 (d, ${}^{3}J_{HH}$ = 8.9 Hz, 2H), 7.51 (d, ${}^{3}J_{HH}$ = 8.8 Hz, 2H), 7.49 (d, ${}^{3}J_{HH}$ = 8.8 Hz, 2H), 6.94 (d, ${}^{3}J_{HH}$ = 8.9 Hz, 2H), 5.04 (dd, ${}^{3}J_{HH}$ = 6.0 and 4.7 Hz, 1H), 4.99 (s, 1H), 4.94 (s, 1H), 4.68 (d, ${}^{2}J_{HH}$ = 12.8 Hz, 1H), 4.57 (d, ${}^{2}J_{HH}$ = 12.7 Hz, 1H), 4.31 (q, ${}^{3}J_{HH}$ = 7.1 Hz, 2H), 3.09 (dd, ${}^{2}J_{HH}$ = 14.0 Hz and ${}^{3}J_{HH}$ = 6.3 Hz, 1H), 2.72 (dd, ${}^{2}J_{HH}$ = 13.9 Hz and ${}^{3}J_{HH}$ = 4.4 Hz, 1 H), 1.35 (t, ${}^{3}J_{HH}$ = 7.1 Hz, 3H). ¹³C NMR (CDCl₃): δ 166.6, 152.0, 144.1, 139.3, 131.0, 129.8 (q, ${}^{2}J_{CF}$ = 32.6 Hz), 128.3, 125.5 (q, ${}^{3}J_{CF}$ = 3.6 Hz), 124.3 (q, ${}^{1}J_{CF}$ = 272 Hz), 123.1, 114.4, 111.8, 74.3, 63.3, 60.7, 37.5, 14.6. HRMS (ESI) calcd for C₂₁H₂₁F₃NO₃ (M+H⁺) 392.1468, found 392.1463.

V. X-ray Crystal Structure of 3k

Data Collection

A colorless Et_2O solution of **3k** was prepared. Crystals suitable for X-ray analysis were obtained by slow evaporation of Et_2O at room temperature.

A colorless prism crystal of $C_{15}H_{18}N_2O$ having approximate dimensions of 0.52 x 0.30 x 0.10 mm was mounted on a glass fiber. All measurements were made on a Rigaku RAXIS RAPID imaging plate area detector with graphite monochromated Mo-K α radiation.

Indexing was performed from 3 oscillations that were exposed for 30 seconds. The crystal-to-detector distance was 127.40 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive triclinic cell with dimensions:

$$\begin{array}{lll} a = & 7.076(5) \; \mbox{\mbox{\mathring{A}}} & \alpha = & 77.94(3)^{\circ} \\ b = & 7.693(5) \; \mbox{\mbox{\mathring{A}}} & \beta = & 84.96(3)^{\circ} \\ c = & 12.82(1) \; \mbox{\mbox{\mathring{A}}} & \gamma = & 75.35(3)^{\circ} \\ V = & 659.7(8) \; \mbox{\mbox{\mathring{A}}}^3 \end{array}$$

For Z=2 and F.W. = 242.32, the calculated density is 1.22 g/cm³. Based on a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

The data were collected at a temperature of -150 ± 1 °C to a maximum 20 value of 54.9°. A total of 44 oscillation images were collected. A sweep of data was done using ω scans from 130.0 to 190.0° in 5.0° step, at χ =45.0° and ϕ = 0.0°. The exposure rate was 110.0 [sec./°]. A second sweep was performed using ω scans from 0.0 to 160.0° in 5.0° step, at χ =45.0° and ϕ = 180.0°. The exposure rate was 110.0 [sec./°]. The crystal-to-detector distance was 127.40 mm. Readout was performed in the 0.100 mm pixel mode.

Data Reduction

A total of 3001 reflections was collected.

The linear absorption coefficient, μ , for Mo-K α radiation is 0.8 cm $^{-1}$. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods⁷ and expanded using Fourier techniques.⁸ The non-hydrogen atoms were refined anisotropically. Hydrogen atoms

~

⁷ <u>SIR92</u>: Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M.; Polidori, G.; Camalli, M. *J. Appl. Cryst.* **1994**, *27*, 435.

were refined using the riding model. The final cycle of full-matrix least-squares refinement⁹ on F was based on 2539 observed reflections (I > $3.00\sigma(I)$) and 181 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$R = \Sigma \mid |Fo| - |Fc| \mid / \Sigma \mid Fo| = 0.046$$

$$R_W = [\Sigma w (|Fo| - |Fc|)^2 / \Sigma w Fo^2]^{1/2} = 0.064$$

The standard deviation of an observation of unit weight¹⁰ was 1.34. A Sheldrick weighting scheme was used. Plots of Σ w $(|Fo|-|Fc|)^2$ versus |Fo|, reflection order in data collection, $\sin\theta/\lambda$ and various classes of indices showed no unusual trends. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.22 and -0.39 e⁻/Å³, respectively.

Neutral atom scattering factors were taken from Cromer and Waber.¹¹ Anomalous dispersion effects were included in Fcalc;¹² the values for $\Delta f'$ and $\Delta f''$ were those of Creagh and McAuley.¹³ The values for the mass attenuation coefficients are those of Creagh and Hubbell.¹⁴ All calculations were performed using the CrystalStructure^{15,16} crystallographic software package.

 $\Sigma w(|F_0| - |F_C|)^2$ where w = Least Squares weights.

$$[\Sigma w(|F_{O}| - |F_{C}|)^{2}/(N_{O}-N_{V})]^{1/2}$$

where: N_0 = number of observations, N_V = number of variables

⁸ <u>DIRDIF99</u>: Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R; Smits, J. M. M. The DIRDIF-99 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands (1999).

⁹ Least Squares function minimized: (SHELXL97)

¹⁰ Standard deviation of an observation of unit weight:

¹¹ Cromer, D. T.; Waber, J. T. "International Tables for X-ray Crystallography", Vol. IV. The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

¹² Ibers, J. A.; Hamilton, W. C. *Acta Crystallogr.* **1964**, *17*, 781.

¹³ Creagh, D. C.; McAuley, W. J. "International Tables for Crystallography", Vol C, (Wilson, A. J. C., ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219–222 (1992).

¹⁴ Creagh, D. C.; Hubbell, J. H. "International Tables for Crystallography", Vol C, (Wilson, A. J. C., ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200–206 (1992).

¹⁵ <u>CrystalStructure 3.6.0</u>: Crystal Structure Analysis Package, Rigaku and Rigaku/MSC (2000-2004). 9009 New Trails Dr. The Woodlands TX 77381 USA.

¹⁶ <u>ČRYSTALS Issue 10</u>: Watkin, D. J.; Prout, C. K.; Carruthers, J. R.; Betteridge, P. W. Chemical Crystallography Laboratory, Oxford, UK. (1996).

The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (deposition number: CCDC 297116). The data can be obtained free of charge via the Internet at www.ccdc.cam.ac.uk/conts/retrieving.html.

Experimental Details

A. Crystal Data

Empirical Formula $C_{15}H_{18}N_2O$

Formula Weight 242.32

Crystal Color, Habit colorless, prism

Crystal Dimensions 0.52 X 0.30 X 0.10 mm

Crystal System triclinic

Lattice Type Primitive

Indexing Images 3 oscillations @ 30.0 seconds

Detector Position 127.40 mm

Pixel Size 0.100 mm

Lattice Parameters a = 7.076(5) Å

b = 7.693(5) Å c = 12.82(1) Å $\alpha = 77.94(3)^{\circ}$ $\beta = 84.96(3)^{\circ}$ $\gamma = 75.35(3)^{\circ}$ $V = 659.7(8) \text{ Å}^{3}$

Space Group P-1 (#2)

Z value 2

 D_{calc} 1.220 g/cm³

F₀₀₀ 260.00

 $\mu(\text{MoK}\alpha)$ 0.77 cm⁻¹

B. Intensity Measurements

Diffractometer Rigaku RAXIS-RAPID

Radiation $MoK\alpha (\lambda = 0.71075 \text{ Å})$

graphite monochromated

Detector Aperture 280 mm x 256 mm

Data Images 44 exposures

ω oscillation Range ((χ=45.0, φ=30.0) 130.0 - 190.0°

Exposure Rate 110.0 sec./°

ω oscillation Range (χ=45.0, φ=180.0) 0.0 - 160.0°

Exposure Rate 110.0 sec./°

Detector Position 127.40 mm

Pixel Size 0.100 mm

 $2\theta_{\text{max}}$ 54.9°

No. of Reflections Measured Total: 3001

Corrections Lorentz-polarization

C. Structure Solution and Refinement

Structure Solution Direct Methods (SIR92)

Refinement Full-matrix least-squares on F

Function Minimized $\sum w (|Fo| - |Fc|)^2$

Least Squares Weights $w = 1/[0.0010Fo^2 + 3.0000\sigma(Fo^2) +$

0.5000]

 $2\theta_{max}$ cutoff 0.0°

Anomalous Dispersion All non-hydrogen atoms

No. Observations (I> 3.00σ (I)) 2539

No. Variables 181

Reflection/Parameter Ratio 14.03

Residuals: R ($I > 3.00\sigma(I)$) 0.046

Residuals: Rw $(I>3.00\sigma(I))$ 0.064

Goodness of Fit Indicator 1.340

Max Shift/Error in Final Cycle 0.000

Maximum peak in Final Diff. Map $0.22 e^{-}/\text{Å}^{3}$

Minimum peak in Final Diff. Map $-0.39 e^{-}/\text{Å}^{3}$