Supporting Information for:

Synthesis, Characterization, and Density Functional Theory Analysis of Uranium and Thorium Complexes Containing Nitrogen-rich 5-methyltetrazolate Ligands

Kevin P. Browne, Katie A. Maerzke, Nicholas E. Travia, David E. Morris, Brian L. Scott, Neil J. Henson,* Ping Yang,* Jaqueline L. Kiplinger,* Jacqueline M. Veauthier*

Neil J. Henson Mail Stop B214 Los Alamos National Laboratory, Los Alamos, NM, 87545 +1 505-667-7795 (ph), +1 505-667-9671 (fax), neil.henson@lanl.gov

Ping Yang Mail Stop B221 Los Alamos National Laboratory, Los Alamos, NM, 87545 +1 505-667-5620 (ph), pyang@lanl.gov

Jaqueline L. Kiplinger Mail Stop J514 Los Alamos National Laboratory, Los Alamos, NM, 87545 +1 505-665-9553 (ph), +1 505-667-9905 (fax), kiplinger@lanl.gov

Jacqueline M. Veauthier Mail Stop P918 Los Alamos National Laboratory, Los Alamos, NM, 87545 +1 505-665-8001 (ph), veauthier@lanl.gov

Contents:

Table S1. Comparison of bond distances and angles for experimental and calculated structures of $(C_5Me_5)_2U[\eta^2-(N,N')$ -tetrazolate] ₂ (7) and $(C_5Me_5)_2Th[\eta^2-(N,N')$ -		
tetrazolate] ₂ (8)		
Complete author list for reference 25 (Gaussian 09) in Main Text	S3	
Figure S1. Spectral fitting results for the electronic spectral data for $(C_5Me_5)_2U[\eta^2 -$	S4	
(N,N)-tetrazolate] ₂ (7)		
Figure S2. Spectral fitting results for the electronic spectral data for $(C_5Me_5)_2$ Th $[\eta^2$ -	S4	
(N,N)-tetrazolate] ₂ (8)		
Figure S3. Molecular orbital pictures for $(C_5Me_5)_2U[\eta^2 - (N,N) - \text{tetrazolate}]_2$ (7) of MOs with a significant contribution from the unpaired U 5f electrons.	S5	
Table S2. Molecular orbital energies for $(C_5Me_5)_2U[\eta^2 - (N,N) - \text{tetrazolate}]_2$ (7)	S6–S8	
(relative to the HOMO of the α manifold) and (C ₅ Me ₅) ₂ Th[η^2 -(N,N)-tetrazolate] ₂ (8)		
and percentage contributions from An f and d orbitals.		
Figure S4. Pictures of the calculated orbitals (including virtual orbitals) for the	S9–S11	
α manifold for (C ₅ Me ₅) ₂ U[η^2 -(N,N)-tetrazolate] ₂ (7)		

Table S1. Comparison of bond lengths and angles for the calculated and crystal structures of $(C_5Me_5)_2U[\eta^2-(N,N')-\text{tetrazolate}]_2$ (7) and $(C_5Me_5)_2Th[\eta^2-(N,N')-\text{tetrazolate}]_2$ (8). Bond lengths in Å and angles in degrees.

	$(C_5 Me_5)_2 U[\eta^2 - (N,N') - totrogolated (7)]$		$(C_5Me_5)_2$ Th $[\eta^2 - (N,N') - tatragelate] (\mathbf{R})$	
	Exp. $Exp.$) Calc.	$\frac{\text{tetrazolate}_{12}(8)}{\text{Exp.}}$	Calc.
An–N(1)	2.456(2)	2.471	2.5244(19)	2.475
An-N(2)	2.457(2)	2.485	2.5008(18)	2.610
An-N(5)	2.427(2)	2.485	2.4912(18)	2.506
An-N(6)	2.492(3)	2.466	2.5402(18)	2.519
N(1)–N(2)	1.349(3)	1.344	1.357(3)	1.348
N(2) - N(3)	1.315(3)	1.302	1.315(3)	1.309
N(3) - N(4)	1.341(4)	1.338	1.340(3)	1.326
N(4) - C(21)	1.334(4)	1.337	1.344(3)	1.345
N(1) - C(21)	1.339(3)	1.339	1.334(3)	1.335
N(5) - N(6)	1.352(3)	1.345	1.351(3)	1.346
N(6)–N(7)	1.303(4)	1.302	1.310(3)	1.303
N(7) - N(8)	1.353(4)	1.338	1.353(3)	1.335
N(8)-C(23)	1.339(4)	1.337	1.331(3)	1.339
N(5)-C(23)	1.336(3)	1.339	1.335(3)	1.338
C(1)–C(2)	1.422(4)	1.422	1.424(3)	1.424
C(2)–C(3)	1.424(4)	1.423	1.423(3)	1.424
C(3)–C(4)	1.420(4)	1.424	1.421(3)	1.424
C(4)–C(5)	1.415(4)	1.424	1.413(3)	1.424
C(1)–C(5)	1.422(4)	1.423	1.426(3)	1.422
C(11)–C(12)	1.420(4)	1.424	1.433(3)	1.424
C(12)–C(13)	1.426(3)	1.423	1.415(3)	1.424
C(13)–C(14)	1.421(4)	1.424	1.421(3)	1.424
C(14)–C(15)	1.419(4)	1.422	1.422(3)	1.422
C(11)–C(15)	1.429(4)	1.422	1.422(3)	1.424
An(1)–C _{cent}	2.447(3)	2.506	2.511(2)	2.577
$An(1)-C_{cent}'$	2.444(3)	2.505	2.514(2)	2.577
N(1)-An(1)-N(2)	31.86(7)	31.51	31.33(6)	30.60
N(5)–An(1)–N(6)	31.87(8)	31.47	31.13(6)	31.08
N(1)/N(2)-An(1)-N(5)	80.01(8)	80.51	77.73(6)	79.37
C_{cent} -An(1)- $C_{cent'}$	140.2(1)	150.9	136.65(7)	137.9

Complete author list for reference 25 (Gaussian 09) in Main Text

Gaussian 09, Revision **D.01**, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

Figure S1. Spectral fitting results for electronic spectral data for $(C_5Me_5)_2U[\eta^2-(N,N')-$ tetrazolate]₂ (7), in toluene solution. The fit is comprised of a sum of Gaussian bands (dashed lines) using an unconstrained non-linear least squares fitting routine. The best fit illustrated also required two additional bands (shown, but without peaks labeled) to higher energy than illustrated in the figure that contributed a significant tail into the UV region.

Figure S2. Spectral fitting results for electronic spectral data for $(C_5Me_5)_2$ Th $[\eta^2-(N,N)$ -tetrazolate]₂ (8), in toluene solution. The fit is comprised of a sum of Gaussian bands (dashed lines) using an unconstrained non-linear least squares fitting routine. The best fit illustrated also required one additional band (shown, but without peak labeled) to higher energy than illustrated in the figure that contributed a significant tail into the UV region.

Figure S3. Molecular orbital pictures for $(C_5Me_5)_2U[\eta^2-(N,N')-\text{tetrazolate}]_2$ (7) of MOs with a significant contribution from the unpaired U 5f electrons.

Table S2. Molecular orbital energies for $(C_5Me_5)_2U[\eta^2-(N,N)$ -tetrazolate]₂ (7) (relative to the HOMO of the α manifold) and $(C_5Me_5)_2Th[\eta^2-(N,N)$ -tetrazolate]₂ (8) and percentage contributions from An f and d orbitals.

)= ET ()	·
MO #	energy relative to	percentage	percentage
		contribution from U	contribution from U
		d orbitals	f orbitals
HOMO + 11	6.171	32	2
HOMO + 10	5.978	26	
HOMO + 9	5.849	28	16
HOMO + 8	5.543	10	
HOMO + 7	5.408	8	4
HOMO + 6	5.328	9	9
HOMO + 5	3.947	1	86
HOMO + 4	3.679	2	82
HOMO + 3	3.383	2	91
HOMO + 2	3.300	1	88
HOMO + 1	3.064	1	93
HOMO	0.000	2	19
HOMO – 1	-0.120	7	35
HOMO - 2	-0.276	5	21
HOMO – 3	-0.316	7	10
HOMO - 4	-0.430	1	74
HOMO – 5	-0.658	4	56
HOMO – 6	-1.846		
HOMO – 7	-1.882		
HOMO – 8	-1.889		
HOMO – 9	-1.922		4
HOMO – 10	-2.255		
HOMO – 11	-2.521	4	
HOMO – 12	-2.682		
HOMO – 13	-2.712	6	
HOMO – 14	-2.977	4	
HOMO – 15	-3.351		
HOMO – 16	-3.397		
HOMO – 17	-3.415		
HOMO – 18	-3.448		
HOMO – 19	-3.545	2	6
HOMO – 20	-3.584	4	
HOMO – 21	-3.956	5	1

Molecular orbitals for the α manifold of $(C_5Me_5)_2U[\eta^2-(N,N')-tetrazolate]_2$ (7)

MO #	energy relative to HOMO [eV]	percentage	percentage
		contribution from U	contribution from U
		d orbitals	f orbitals
HOMO + 12	6.185	11	4
HOMO + 11	6.078	29	22
HOMO + 10	5.652	8	28
HOMO + 9	5.571	7	
HOMO + 8	5.447	8	5
HOMO + 7	4.658		90
HOMO + 6	4.553	3	80
HOMO + 5	4.460		85
HOMO + 4	4.222	2	72
HOMO + 3	4.111		86
HOMO + 2	4.072	1	88
HOMO + 1	4.018	2	88
НОМО	-0.024	1	7
HOMO – 1	-0.227	6	7
HOMO - 2	-0.237	5	1
HOMO - 3	-0.357	9	2
HOMO - 4	-1.839		
HOMO – 5	-1.882		
HOMO – 6	-1.891		
HOMO – 7	-2.247		
HOMO – 8	-2.514		
HOMO – 9	-2.667	4	
HOMO – 10	-2.694		1
HOMO – 11	-2.977	5	
HOMO – 12	-3.528	3	
HOMO – 13	-3.584		
HOMO – 14	-3.933		

Molecular orbitals for the β manifold of $(C_5Me_5)_2U[\eta^2-(N,N')-\text{tetrazolate}]_2$ (7)

MO #	energy relative to	percentage contribution from	percentage contribution from
		Th d orbitals	Th f orbitals
HOMO + 10	6.042		48
HOMO + 9	5.760		88
HOMO + 8	5.741	6	14
HOMO + 7	5.515		19
HOMO + 6	5.232	7	64
HOMO + 5	5.019		71
HOMO + 4	4.909	6	69
HOMO + 3	4.654	11	57
HOMO + 2	4.593	20	52
HOMO + 1	4.524	8	46
HOMO	0.000		5
HOMO – 1	-0.210	7	
HOMO - 2	-0.275	8	5
HOMO – 3	-0.442	12	
HOMO - 4	-1.767		
HOMO – 5	-1.786		
HOMO – 6	-1.811		
HOMO – 7	-1.862		
HOMO – 8	-2.271		
HOMO – 9	-2.523		
HOMO – 10	-2.635		
HOMO – 11	-2.718	3	
HOMO – 12	-3.038	4	
HOMO – 13	-3.397		
HOMO – 14	-3.427		
HOMO – 15	-3.433		
HOMO – 16	-3.487		
HOMO – 17	-3.544		4
HOMO – 18	-3.593	4	
HOMO – 19	-3.965	8	

Molecular orbitals for $(C_5Me_5)_2$ Th $[\eta^2-(N,N')$ -tetrazolate $]_2$ (8)

Figure S4. Pictures of the calculated orbitals (including virtual orbitals) for the α manifold for $(C_5Me_5)_2U[\eta^2-(N,N')-\text{tetrazolate}]_2$ (7)

Virtual Orbitals for the α manifold for $(C_5Me_5)_2U[\eta^2-(N,N')-\text{tetrazolate}]_2$ (7)