Supporting information for

Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention

Chih-Long Tsai,^{*,†‡} Vladimir Roddatis,[§] C. Vinod Chandran,^I Qianli Ma,^{†‡} Sven Uhlenbruck,^{†‡} Martin Bram,^{†‡} Paul Heitjans,^I and Olivier Guillon^{†,‡,⊥}

[†]Institute of Energy and Climate Research, Materials Synthesis and Processing (IEK-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

[‡]Jülich Aachen Research Alliance: JARA-Energy

[§]Institute of Materials Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstrasse 3-3a, 30167 Hannover, Germany

[⊥]Institute of Mineral Engineering, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Mauerstrasse 5, 52064 Aachen, Germany

e-mail address: c.tsai@fz-juelich.de (Chih-Long Tsai)

Table S1. ICP-OES result for HP-LLZ:Ta.

Element	AI	La	Li	Zr	Та
wt %	<0.01	0.38	4.96	15.7	7.99
at %	0.00	2.99	6.64	1.6	0.411

*The relative error for the content: >1% \pm 3%, otherwise it is \pm 10%

Table S2. Fitting parameters of Li/LLZ:Ta/Li cells that using and without using Au buffer layers. The fitting model circuit and results are shown in figure 5.

	R1	R2	CPE2-T	CPE2-P	R3	CPE3-T	CPE3-P
Without Au	107.1	1055	2.446E-7	0.896	1871	1.496E-6	0.751
With Au	101.6	167.8	4.30E-6	0.689	116.6	1.14E-3	0.56

Table S3. Fitting parameters of Li/LLZ:Ta/Li cell for before and after the constant dc experiment with a current density of 0.5 mA cm⁻² at 25 °C. The fitting results are shown in figure S4.

	R1	R2	CPE2-T	CPE-T	R3	CPE3-T	CPE3- P	R4	CPE4-T	CPE4-P
Before	101.40	33.07	8.36E-7	0.73	210.4	7.83E-3	0.5	-	-	-
After	98.96	5921	3.19E-8	0.95	40121	3.25E-8	0.89	9949	3.70E-5	0.5

Figure S1. The XRD patterns of LLZ:Ta and HP-LLZ:Ta. The calculated cubic $Li_7La_3Zr_2O_{12}$ was calculated from the result of Awaka *et al.* in reference¹.

Figure S2. Constant dc measurements of Li/LLZ:Ta/Li and Li/HP-LLZ:Ta/Li cells without using Au as buffer layer at a current density of 0.5 mA cm⁻².

Figure S3. TEM images and EELS of HP-LLZ:Ta where Li oxide was found along the grain boundaries. The area used for the EELS is marked with the red circle.

Figure S4. Impedance spectra for constant dc measurement of Li/LLZ:Ta/Li cell using Au buffer layers at 25 °C. The current density was 0.5 mA cm⁻². The inset model circuits were used for fittings.

References

1. Awaka, J.; Takashima, A.; Kataoka, K.; Kijima, N.; Idemoto, Y.; Akimoto, J. Crystal Structure of Fast Lithium-Ion-Conducting Cubic Li₇La₃Zr₂O₁₂. *Chem. Lett.* **2011**, 40, 60-62.